
INTRODUCTION

Aging is accompanied by numerous changes in 
the function of the endocrine system. Many of these 
changes are very pronounced, readily detectable, and 
thoroughly documented. However, interpretation of 
the biological meaning of these changes is far from 
simple. Thus, age-related decline in circulating levels of 
a particular hormone, dehydroepiandrosterone, estra-
diol 17 beta, testosterone, or growth hormone (GH) can 
be viewed as yet another symptom of aging, as one of 
its potential mechanisms, or as a protective adaptation 

to alterations in physiological functioning and disease 
risk in the aging organism. In this article, we will pro-
vide an overview of the intricate relationships between 
GH and aging with emphasis on recent findings. 

ACTIVITY OF THE SOMATOTROPIC 
AXIS DECLINES DURING AGING

It is well documented that circulating levels of GH 
decline with age in various mammalian species, in-
cluding humans [1-3], domestic dogs [4], and laboratory 
rodents [5,6]. In the human, age-related decrease in 
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plasma GH levels begins soon after attainment of final 
height and full physical maturation, and continues 
during the ensuing decades of life [1-3]. Circulating lev-
els of insulin-like growth factor-1 (IGF-1) also decline 
during human aging, but the decrease is less step than 
the changes in GH levels, with considerable overlap of 
values measured in young adults and in elderly sub-
jects [7]. In relating the age-related changes in IGF-1 to 
the levels of GH, it is necessary to consider that not all 
of the circulating IGF-1 is derived from GH-dependent 
hepatic secretion and that peripheral and tissue levels 
of IGF-1 are differently regulated and thus might ex-
hibit different pattern of changes with age. Moreover, 
bioavailability of IGF-1 present in the circulation, as 
well as in the individual organs or tissues, is impor-
tantly influenced by complexing with IGF binding 
proteins (IGFBPs). In mammals, there are at least six 
IGFBPs. Regulation of biosynthesis of these proteins 
and their IGF-1 related, as well as IGF-1-independent 
effects, are outside the scope of this article. The inter-
ested reader is referred to recent reviews [8,9]. We will 
return to the topic of biological actions of IGFBPs in 
the discussion of the impact of somatotropic axis on 
longevity of laboratory mice.

EFFECTS OF GROWTH HORMONE 
THERAPY IN THE ELDERLY

Consistent with its lipolytic and anabolic activities, 
administration of GH reduces adiposity and increases 
lean body mass, including mass of skeletal muscula-
ture. A report of such changes in body composition in 
elderly men with low plasma IGF-1 levels in response 
to injections of GH published in 1990 [10], attracted 
enormous attention and wide interest in recombinant 
human GH as an ‘anti-aging’ agent. Aging is normally 
associated with increased adiposity and progressive 
loss of muscle mass and, thus, effects of GH on body 
composition were interpreted as reversal of important 
symptoms of aging. Increases in bone mineral density 
at some of the examined sites of the skeleton and in-
creased skin thickness in the elderly GH-treated men 
[10], combined with the evidence for numerous benefits 
of GH replacement therapy in younger individuals 
with GH deficiency (GHD) [11-13], helped to increase 
and sustain interest in GH treatment as an anti-aging 
intervention. 

However, further studies identified various side ef-

fects of GH treatment, including joint pain, edema, 
carpal tunnel syndrome [14,15], and indicated that GH-
inducted increase in muscle mass is not accompanied 
by increased strength [16,17]. Concerns were also raised 
that the well documented anti-insulinemic effects of 
GH and the impact of GH and IGF-1 on the progression 
and, likely also the incidence, of neoplasms would lead 
to increased risk of metabolic syndrome, diabetes, and 
cancer in GH-treated individuals [18,19]. Remarkable 
reduction in the incidence of cancer and diabetes in 
individuals with genetic resistance to GH (details later 
in this article) supports the validity of these concerns. 
However, commercial promotion of GH and various 
GH-related products as anti-aging agents continues and 
abounds with great and, in some cases, ludicrous prom-
ises of ‘rejuvenation’. One major complication in critical 
evaluation of the potential utility of GH as ‘anti-aging’ 
therapy is that its proponents usually compare (and 
often equate) the benefits of injecting GH in healthy 
elderly individuals, in which GH levels exhibit a nor-
mal age-related decline, to the results obtained in pa-
tients diagnosed with adult GHD, that is a pathological 
and often abrupt decline of GH secretion resulting in 
levels inappropriately low for age. The benefits of GH 
therapy in healthy elderly people are controversial and, 
according to many authors, questionable, unproven, 
and likely non-existent, with a number of troublesome 
side effects [14,15]. In contrast, GH therapy can be very 
beneficial in younger individuals with GHD resulting 
from traumatic brain injury, treatment of pituitary tu-
mors, or other causes [11-13,20-22]. The benefits include 
reduced adiposity, increased muscle mass and improve-
ment in glucose homeostasis, general well-being, and 
some aspects of cognitive function.

Current consensus of medical professional organiza-
tions and governmental regulatory agencies is that, 
while adult GHD is a valid indication for GH replace-
ment therapy, old age without diagnosable somato-
tropic axis pathology is not [23]. Thus, until further 
large, well-designed studies are conducted, prescribing 
GH to endocrinologically-normal middle aged or elderly 
individuals for the purpose of delaying or reversing 
aging is generally considered futile, unethical, and, 
in the United States, also illegal [24]. In this author’s 
opinion, an area which somewhat surprisingly re-
mains understudied, is the potential utility of GH in 
the treatment of sarcopenia, one of key components of 
age-related frailty. Another relatively unexplored area 
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is the potential benefits of interventions aimed at in-
creasing the release of endogenous GH. Of particular 
interest in this regard are agonists of the ghrelin re-
ceptor [25,26]. However, a major concern in any plans to 
treat healthy middle-aged or elderly people with GH or 
agents stimulating GH release in an attempt to slow or 
reverse aging or some of its symptoms is the evidence 
that GH may have opposite effects. The evidence that 
physiological actions of GH may promote, rather than 
prevent, aging will be summarized in the next section 
of this article. We will also discuss recent studies aimed 
at identifying mechanisms that appear to be involved.

DOES GROWTH HORMONE 
ACCELERATE AGING? FINDINGS IN 
GROWTH HORMONE-DEFICIENT 
AND GROWTH HORMONE-
RESISTANT MICE

In laboratory mice, disruption of GH signaling leads 
to a remarkable extension of longevity. This was origi-
nally demonstrated in animals homozygous for muta-
tions which disrupt development of selected lineages of 
secretory cells in the anterior pituitary leading to defi-
ciency of several adenohypophyseal hormones includ-
ing GH [27,28]. These observations were soon extended 
to animals with isolated GHD due to genetic defects in 
hypothalamic control of GH release [28,29] and to ani-
mals with GH resistance due to targeted disruption of 
the GH receptor gene [30]. These findings were hard to 
interpret and were originally received with some skep-
ticism because they implied that normal actions of a 
hormone have significant ‘costs’ in terms of longevity, 
and that a gross defect in the functioning of the en-
docrine system can have striking benefits for healthy 
survival. However, the evidence that absence of GH 
signaling extends longevity of mice is strong, reproduc-
ible, and now generally accepted.

Several aspects of the findings in GH-deficient and 
GH-resistant mice deserve particular emphasis. First, 
the significant extension of longevity in these animals 
is reproducible and not limited to a particular labora-
tory, diet, or genetic background [31-33]. Second, lifespan 
is extended in both females and males [27-30]. Third, ex-
tension of longevity is associated with a similarly strik-
ing extension of healthspan [31,33]. Fourth, the magni-
tude of the increase in longevity exceeds the effects of 
most genetic, pharmacological, or dietary interventions 

that have anti-aging effects in mice. Recent analysis of 
survival curves of GH-related mouse mutants indicates 
that their mortality rate is lower than their normal 
(‘wild type’) siblings, and increases only late in life, after 
most of the normal siblings have died [34].

Evidence for extension of the healthspan and for 
‘healthy aging’ of GH-deficient and GH-resistant mice 
included demonstration that these animals maintain 
youthful levels of cognitive function into advanced age 
[35,36]. At the same chronological age, cognitive function 
of their normal siblings is significantly impaired. Re-
cently, spatial learning and memory were shown to be 
improved in 12-month-old GH receptor antagonist (GHA) 
transgenic mice in comparison to their wild type litter-
mates [37]. Since GHA transgenic mice were previously 
shown to have a normal lifespan [30], these findings 
indicate that beneficial effects of reduced GH signaling 
on cognitive function cam be dissociated from extension 
of longevity and might involve different mechanisms. 
In support of the negative association of cognitive func-
tion and GH signals, pathological excess of GH has been 
associated with impairments of learning and memory 
in different lines of transgenic mice [37,38].

A recent study examined longevity of mice lacking 
both GH and functional GH receptors [39]. While these 
tiny ‘double mutants’ were remarkably long-lived com-
pared to their normal siblings, they did not live signifi-
cantly longer than mice lacking only GH or only GH 
receptors. In females, survival curves of GH-deficient 
Ames dwarf, GH-resistant GHRKO, and ‘double mu-
tant’ (df/KO) animals were nearly identical, while lon-
gevity of double mutant males was numerically longer 
than longevity of males from either of the parental 
strains. Phenotypic characterization of the diminutive 
df/KO mice and real-time PCR analysis of gene expres-
sion in different tissues revealed multiple differences 
from wild type animals and from one of the single 
mutants, but very few characteristics differed from 
both Ames dwarf and GHRKO mice. These included 
more extreme increases in relative brain weight and in 
plasma adiponectin levels [39]. These findings indicate 
that some of the characteristics of GH-related mutants 
can be dissociated from longevity. However, it is equal-
ly possible that quantitative relationships between 
longevity and these phenotypic features or levels of 
messenger RNA for the examined genes exhibit a ‘ceil-
ing’ or a ‘floor’ effect with changes greater than those 
measured in Ames dwarf or GHRKO mice having no 
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additional effect on aging and lifespan.
The importance of GH signaling in the control of 

murine lifespan is further emphasized by the evidence 
that disruption of signaling events ‘downstream’ from 
GH and its receptor also extends longevity. Early find-
ings of extended longevity of female mice heterozygous 
for the deletion of IGF-1 receptor [40] were confirmed 
and extended in further studies [41]. A recent report 
documented extension of lifespan of female mice by 
inducing IGF-1 deficiency before weaning or during 
adulthood [42]. Major increase of longevity was seen 
in mice in which amount of bioavailable IGF-1 was 
reduced at the tissue level by germline or adult dis-
ruption of the gene coding for pregnancy associated 
plasma protein A, an enzyme degrading IGF-1 binding 
protein [43,44]. Significant and reproducible extension 
of longevity was also produced by pharmacological 
suppression of the activity of mechanistic target of 
rapamycin a kinase regulated by GH and IGF1 with a 
major role in RNA translation, protein synthesis, and 
cell growth [45]. 

Importantly, conclusions concerning pro-aging effects 
of normal or elevated GH based on studies in mutant, 
gene knockout, transgenic, or drug treated mice ap-
pear to apply to genetically normal mice and to other 
mammalian species. Multiple studies reported negative 
association of adult body size (a strongly GH- and IGF-
1-dependemt trait) with longevity in comparisons of 
different mouse strains, selected lines, and individual 
animals [46-48]. Similar associations were documented 
in rats [49], domestic dogs [50,51], and horses [52]. Hu-
man studies addressing this issue with be discussed 
later in the article. 

MECHANISMS OF EXTENDED 
LONGEVITY OF ANIMALS WITH 
GROWTH HORMONE-RELATED 
MUTATIONS

The demonstration of a remarkable extension of lon-
gevity in GH-deficient and GH-resistant mice prompted 
a search for mechanisms linking GH signaling with 

Table 1. Mechanisms of extended healthspan and longevity in GH-deficient and GH-resistant mice (details and references in the text)

Mechanisms related to somatic growth
  • Reduced hepatic IGF-1 expression and circulating IGF-1 levels
  • Reduced mTORC1 signaling and mRNA translation; increased autophagy
  • Reduced growth rate and adult body size
Mechanisms related to glucose homeostasis and lipid metabolism
  • Hypoinsulinemia combined with enhanced insulin sensitivity
  • Increased utilization of fatty acids; reduced hepatic and serum levels of lipids
  • Reduced hepatic lipogenesis
Mechanisms related to cell senescence and low-grade chronic inflammation
  • Reduced levels of pro-inflammatory cytokines: IL-1b, IL-6, TNF-α
  • Increased levels of adiponectin
  • Inhibition of NLRP3 inflammasome
  • Reduced burden of senescent cells
Mechanisms related to stress resistance and repair
  • Improved antioxidant defenses and reduced reactive oxygen species production
  • Altered glutathione metabolism
  • Increased cellular and whole animal resistance to toxins and a variety of stresses
  • Improved maintenance of stem cell populations
Mechanisms related to energy metabolism
  • Increased brown adipose tissue mass and activity; white adipose tissue ‘browning’; increased thermogenesis
  • Increased utilization of lipids vs. carbohydrates as energy source
  • Increased oxygen consumption per unit of total or lean body mass
Miscellaneous mechanism
  • Hypogonadotropism and delayed puberty
  • Increased hepatic hydrogen sulfide (H2S) production
  • Suppression of age-related epigenetic changes
  • Altered microRNA profiles

GH: growth hormone, IGF-1: insulin-like growth factor-1, mTORC1: mechanistic target of rapamycin complex 1, IL: interleukin, TNF-α: tumor ne-

crosis factor-α.
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the rate of aging. Detailed characterization of the phe-
notypic characteristics of these long-lived GH-related 
mutants [31-33] together with analysis of their pro-
files of gene expression [53-55] and their responses to 
dietary, hormonal, surgical, or pharmacological inter-
ventions [29,56-60] led to the identification of multiple 
candidate mechanisms of the extension of healthspan 
and lifespan in these animals (Table 1). The picture 
that emerges from these studies suggests interplay of 
multiple interacting mechanisms that translate severe 
reduction (or absence) of GH signals into a healthy 
‘longevous’ phenotype resembling, but not identical to, 
the phenotype of animals subjected to chronic calorie 
restriction. Some of the interactions between various 
mechanisms of delayed and/or slower aging in GH-
deficient and GH-resistant mice are shown in Fig. 1.

Interpretation of the findings that identify likely 
mechanisms of slower or delayed aging is complicated 
because mechanisms can be very difficult to separate 
from the symptoms (‘biomarkers’) or consequences of 
aging, and firm evidence of causality is difficult to 
obtain. However, GH-deficient and GH-resistant mice 
are uniquely suitable for identifying mechanistic links 
between GH and longevity and, more broadly, for stud-
ies of the mechanisms of mammalian aging. Because 
their propensity for extreme longevity is inherited as 
fully recessive trait and heterozygous carriers of these 
mutations as well as homozygous males are fertile, it is 
a standard practice to use a breeding scheme in which 

mutant and normal offspring are born in the same 
litter. This makes it possible to compare animals that 
shared the same uterine environment, maternal care 
and provision of nutrients, as well as every detail of 
laboratory environment, and genetic background, and 
differ only by the presence or absence of two copies of 
the loss-of-function mutation at a particular chromo-
somal site. Moreover, since their extended longevity 
is genetically determined, it is possible to study these 
mutants as well as the matched control (wild type) 
animals when they are young and their physiological 
characteristics are not impacted by the process of ag-
ing and only minimally (or not at all) impacted by the 
differences in life expectancy [61].

Our laboratory is particularly interested in the role 
of reduced chronic low-grade inflammation in adipose 
tissue [62,63] and in the central nervous system [64], the 
combination of reduced insulin levels and enhanced in-
sulin sensitivity [65], and the alterations in thermogen-
esis and energy metabolism [66] as mechanisms linking 
reduced GH signaling with extensions of healthspan 
and lifespan. We are also pursuing the question of pos-
sible differences in the role of GH at different stages 
of the life history in the control of aging. The evidence 
available to date indicates that GH actions during the 
rapid peri-pubertal growth may have major impact on 
longevity [67], but GH signaling during adult life also 
plays a role [68]. We will return to this issue in the last 
(closing) section of this article. 

GH signals Longevity

Peripheral
IGF-1

Cancer
incidence

mTORC1
signaling

Insulin
secretion

Stress
resistance

Antioxidant
enzymes

Inflammation
Cell

senescence

Insulin
sensitivity

Adiponectin
level

Fig. 1. Key mechanisms mediating the effects of reduced growth hormone (GH) signaling on aging and longevity (↓decrease, ↑increase). IGF-1: 
insulin-like growth factor-1, mTORC1: mechanistic target of rapamycin complex 1.
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GROWTH HORMONE AND HUMAN 
LONGEVITY

The initial evidence for a role of GH signaling in the 
control of human aging was largely indirect and often 
considered controversial. Samaras [69] reported numer-
ous examples of a negative correlation of longevity 
with height, a GH-dependent trait. However, some ex-
amples of taller people living longer were also reported 
[70]. Subsequent studies provided new examples of 
longer survival of shorter people [71] and uncovered as-
sociation of polymorphism of genes coding for GH, IGF-
1, IGF-1 receptor and their downstream targets, with 
exceptional longevity [33,71-74].

Reports of  remarkably extended longevity in di-
minutive mice lacking GH or GHR increased interest 
in aging of humans with the same genetic defects or 
with dwarfism of different etiologies but few clear 
answers emerged from these studies. Although some 
individuals with isolated GHD resulting from muta-
tions affecting GH releasing hormone, genetic hypopi-
tuitarism (including GHD) resulting from Prop1 loss of 
function mutations, or with GH resistance (the Laron 
syndrome) attained very old age, average longevity did 
not appear to be altered by these mutations [75-78]. In 
one study, isolated GHD was associated with mark-
edly reduced longevity [79]. Intriguingly, reduced lon-
gevity also characterizes patients with pathologically 
increased GH levels in the syndrome of acromegaly 
[80,81]. The rare syndrome of gigantism with excessive 
GH secretion starting before maturation appears to be 
associated with very high risk of early mortality, al-
though the evidence consists primarily from case stud-
ies [82,83] and media reports. Increased risk of diabetes, 
cardiovascular disease and cancer associated with ac-
romegaly resembles the effects of chronological age on 
the incidence of these disease and, thus, could perhaps 
be interpreted as an indication of accelerated aging. 
Transgenic mice with a massive increase in circulating 
GH levels due to ectopic expression of heterologous GH 
genes exhibit a significant, often dramatic, reduction of 
longevity along with multiple symptoms of accelerated 
aging [84].

Research conducted during the last decade provided 
a considerable amount of new evidence for the role 
of GH in human aging. Study of a large cohort of 
American men of Japanese ancestry confirmed earlier 
reports of negative association of height (a GH-related 

trait) and longevity, and indicated that this association 
was most pronounced in the eighth and ninth decades 
of life [71]. Importantly, this study also demonstrated 
that height is negatively associated with the FOXO3 
longevity allele and positively associated with fasting 
blood insulin levels, both of which have been mecha-
nistically related to the process of aging in humans 
and other species. Detailed analysis of pulsatile pat-
tern of GH relates in serum samples collected every 10 
minutes for 24 hours, revealed that offspring of long-
lived families which are themselves genetically predis-
posed to increased longevity secrete less GH than their 
spouses or partners [85]. Moreover, GH secretion in 
these individuals was more tightly controlled [85]. 

In a different cohort of long-lived people, Milman et 
al [86] demonstrated negative association of circulat-
ing IGF-1 levels and survival in nonagenarian women. 
Ben-Avraham et al [87] recently reported increased 
longevity of men homozygous for a mutation of GH 
receptor. Reduced serum levels of IGF-1 in these indi-
viduals were consistent with reduced GH signaling but, 
unexpectedly, they were taller than men without this 
mutation. Tanisawa et al [88] approached the relation-
ship between growth and longevity by comparing the 
frequency of height increasing alleles in large cohorts 
of centenarians and control subjects. This interesting 
approach removes some important confounders, such 
as nutrition and childhood diseases, that can influence 
adult height. The results revealed inverse association 
between height-increasing alleles and extreme longev-
ity in Japanese women [88].

There is also considerable evidence that mutations 
which disrupt GH signaling in humans offer signifi-
cant protection from various age-associated diseases. 
Early observations of reduced cancer risk in individu-
als with Laron dwarf syndrome (genetic GH resistance) 
[89] were followed by demonstration that members of 
a large cohort of Laron dwarfs in Ecuador are almost 
completely protected from cancer and diabetes [78]. 
More recently, these individuals were also shown to 
have increased adiponectin levels and enhanced insu-
lin sensitivity in spite of greater percentage of body fat 
[90], enhanced cognitive performance and structural 
features of the brain hippocampus and other brain 
regions resembling younger unaffected relatives [91]. 
Aguiar-Oliveira et al [77] reported that individuals 
with isolated GHD in Brazil are remarkably protected 
from atherosclerosis in spite of unfavorable serum 
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lipid profiles and frequent obesity, that they tend to ‘age 
well’, in terms of physical appearance and fitness and 
can survive to an advanced age with one becoming a 
centenarian (Aguiar-Oliveira, personal communication).

Discrepancies between the findings in different co-
horts of individuals with genetic defects in GH signal-
ing are difficult to explain. Rarity of these genetic syn-
dromes precludes recruitment of large cohorts needed 
for critical analysis of mortality rates, median, and 
maximal longevity. The impact of genomic, lifestyle, 
and medical care differences between the ethnically 
diverse and geographically distant populations exam-
ined in these studies could, of course, be suspected, but 
explanations based on these differences would, at this 
point, be entirely speculative. It is also unclear why the 
protection from cancer, diabetes, and atherosclerosis in 
the affected individuals is not associated with a clear 
increase in life expectancy. A relatively high incidence 
of alcoholism and accidental deaths among the GH-
resistant individuals in Ecuador [78] may provide at 
least a partial explanation. It also hints at a possible 
interaction of this syndrome with social, behavioral, 
and environmental factors, an issue that would seem 
to merit further studies.

CONCLUSION: OVERVIEW; WHAT DO 
WE KNOW AND WHAT ARE THE KEY 
UNANSWERED QUESTIONS?

The impact of GH actions on longevity of laboratory 
mice is major, consistent and well documented, and 
some of the findings obtained in these animals clearly 
apply to other mammalian species, including humans. 
Still, inconsistencies and controversies abound. Promi-
nent among them is the issue of differences between 
findings concerning longevity in mice and humans. 
However, pathological GH excess is associated with 
comorbidities and reduced longevity in both species. 
Negative association of GH levels and adult body size 
(a GH-dependent trait) with longevity was reported in 
multiple studies in both species, but these relationships 
are much more pronounced and consistent in mice. 
What could be the reasons? The most obvious differ-
ences are that human growth and adult height are 
influenced by nutrition, childhood disease, and access 
to healthcare (all related to the birth cohort and socio-
economic status), and human longevity is impacted by 
smoking, dietary and exercise habits, alcohol and drug 

use, traffic and industrial accidents, murder, and sui-
cide, while none of these factors can impact the results 
of experimental studies of aging in mice. Another im-
portant difference that we are currently evaluating is, 
perhaps surprisingly, the difference in environmental 
(ambient) temperature. Laboratory mice are routinely 
housed at room temperature and it is easy for us to 
forget that this represents a comfortable indoor tem-
perature for humans wearing light clothing and it is 
much below the thermoneutral and the preferred tem-
perature for mice, which is approximately 30°C (86°F) 
[92]. We have shown that major metabolic differences, 
as well as differences in gene expression profiles, be-
tween normal (wild type) mice and long-lived mice 
with diminished GH signaling disappear or are greatly 
reduced when the mice are housed in a thermoneutral 
environment [93, unpublished data]. Thus, we should 
probably not expect full consistency between findings 
obtained in humans living in an environment close to 
thermoneutrality and in mice exposed to a constant 
cold stress [94,95].

In trying to reconcile some seemingly inconsistent 
findings concerning GH and aging in different species, 
it may also be necessary to consider that the question, 
‘does GH promote or prevent aging?’ is overly simplis-
tic. Emerging evidence suggests that the impact of 
GH on aging is not the same at different stages of life 
history. For example, interesting studies conducted in 
the Sonntag laboratory in dwarf rats suggests that GH 
signals have a positive effect on longevity during de-
velopment, but a negative impact later on, most likely 
by increasing the risk of cancer [96]. However, results 
of GH replacement therapy in juvenile GH-deficient 
mice suggest that the absence of GH signals during 
development importantly contributes to the remark-
able extended longevity of these mutants [67]. The 
mechanisms by which early-life changes in GH signals 
influence adult phenotype, aging, and longevity are al-
most certainly epigenetic. This intriguing possibility is 
indirectly supported by the recently reported impact of 
Ames dwarfism on the epigenetic signatures of aging 
[97,98], and clearly deserves further study. However, 
the lifespan of the dwarf mice was not completely nor-
malized (‘rescued’) by early-life GH therapy, suggesting 
that adult GH levels are also involved in the control 
of aging. A recent report that disrupting GHR gene in 
adult female mice extends their longevity [68] provides 
direct evidence for the role of GH signaling during 
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adult life in the control of mammalian aging. 
It is also interesting to consider that the evidence for 

delayed puberty, reduced fecundity, and extended lifes-
pan of GH-deficient and GH-resistant mice fits perfect-
ly into the concept of antagonistic pleiotropy proposed 
many years ago [99]. Genes related to the somatotropic 
signaling promote growth, sexual maturation, and fe-
cundity, the key elements of evolutionary fitness and, 
thus, their actions would have been selected for in the 
course of evolution, even though later in life they may 
have detrimental effects on disease risk and survival. 
This concept likely applies broadly to the genetic con-
trol of aging and fits remarkably well with the rather 
counterintuitive findings that most of  the strong 
‘longevity genes’ discovered in various organisms are 
either loss-of-function mutations or mutations that 
reduce the level of gene expression. Much work will be 
needed to identify the role of somatotropic signaling at 
different stages of life history in the control of aging, 
risks of age-related disease and longevity. We believe 
that studies of the role of GH in aging in different spe-
cies, the mechanisms involved, and the interactions of 
these mechanisms with environmental factors will lead 
to new insights with significant implications for both 
individual and public health.
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