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Branched-chain amino acids (BCAAs) are essential amino acids that are not synthesized in our body; thus, they need to be obtained 
from food. They have shown to provide many physiological and metabolic benefits such as stimulation of pancreatic insulin secre-
tion, milk production, adipogenesis, and enhanced immune function, among others, mainly mediated by mammalian target of ra-
pamycin (mTOR) signaling pathway. After identified as a reliable marker of obesity and type 2 diabetes in recent years, an increas-
ing number of studies have surfaced implicating BCAAs in the pathophysiology of other diseases such as cancers, cardiovascular 
diseases, and even neurodegenerative disorders like Alzheimer’s disease. Here we discuss the most recent progress and review stud-
ies highlighting both correlational and potentially causative role of BCAAs in the development of these disorders. Although we are 
just beginning to understand the intricate relationships between BCAAs and some of the most prevalent chronic diseases, current 
findings raise a possibility that they are linked by a similar putative mechanism.

Keywords: Branched-chain amino acids; Metabolism; Cancers; Alzheimer disease; Heart failure

INTRODUCTION

Although first discovered and studied extensively since the late 
1800s, it was the last 20 years or so during which branched-
chain amino acids (BCAAs) have emerged as vital elements in 
various aspects of health and diseases as investigators began to 
unfold their roles beyond protein synthesis and degradation. 
BCAAs comprise leucine, isoleucine, and valine that have 
branched functional R groups [1]. Known as the essential amino 
acids due to the inability of animals to synthesize them (unlike 
microbial organisms and plants), BCAAs must be obtained 
through diet sources. All three BCAAs together make up about 
20% of the total protein content and account for one-third of the 
dietary essential amino acids [2]. They are primarily known for 
their ability to promote protein synthesis and suppress proteoly-

sis in both rodents and humans [3-9]. In support of these studies, 
BCAAs, specifically leucine, induce activation of mammalian 
target of rapamycin (mTOR) signaling pathway which is essen-
tial for initiation of protein synthesis [10-13]. This likely led to 
increased consumption of BCAAs as a performance-enhancing 
anabolic supplements by bodybuilders and individuals who 
would try to improve their physical fitness, although the effects 
of BCAAs per se that are independent of other essential amino 
acids or hormones are not clear [14]. BCAAs are also critical 
for protein/muscle preservation as evidenced by the beneficial 
effects of BCAA supplementation on protein turnover and mus-
cle wasting in patients with cirrhosis [15-17], kidney failure 
[18], liver cancers [19-22], and sepsis [23-25]. Apart from their 
anabolic response, it has become clear that BCAAs serve as im-
portant nutrient signals and metabolic regulators. They can in-
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crease insulin secretion through their action at both protein and 
transcriptional levels in pancreatic β-cells [26], regulate adipose 
tissue metabolism [27-29] and glucose homeostasis [30,31], en-
hance intestinal development and health [32,33], promote milk 
production from mammary gland [34-36], participate in im-
mune function [37,38], and alter gut microbial diversity and 
functions [39,40]. The metabolic and health benefits of BCAA 
ingestion have been described in detail in other excellent re-
views [26,41-43].

Based on ex vivo assays using extracts from various tissues, 
early studies have shown that unlike other amino acids, BCAAs 
first pass the liver due to the lack of BCAA aminotransferase 
(branched chain amino acid transaminase [BCAT]), the first en-
zyme in BCAA catabolic pathway [44,45]. Instead, they are 
transaminated to branched-chain keto acids (BCKAs) by BCAT 
in organs such as muscle, kidney, heart, and adipose tissue, after 
which BCKAs are released back into circulation and taken up 
primarily by liver for oxidation through the rate-limiting en-
zyme complex, branched-chain α-keto acid dehydrogenase 
(BCKDH). The resulting acyl coenzyme A (acyl-CoA) are then 
further oxidized by different enzymes yielding either succinyl-
CoA or acyl-CoA that can enter tricarboxylic acid cycle for ade-
nosine triphosphate (ATP) synthesis. Interestingly, a recent 
study by Arany and Neinast [46] used an in vivo isotopic tracing 
to demonstrate that many peripheral organs do in fact oxidize 
BCAAs, indicating that tissues other than liver are fully capable 
of engaging in BCAA breakdown. While ingestion of excess 
glucose and fatty acids can be stored mainly in a form of glyco-
gen in liver and muscle and triglycerides in white adipose tis-
sue, amino acids including BCAAs are not converted to protein 
for later use, indicating that the only way to control BCAA 
overload is through its catabolic pathway. The clinical impor-
tance of BCAA catabolism is demonstrated in patients with in-
born errors of metabolism such as maple syrup urine disease, a 
rare autosomal recessive disorder caused by mutations in BCK-
DH enzyme complex. The body is not able to break down 
BCAAs leading to supraphysiological levels of BCAAs and 
BCKAs in the blood. As a result, these individuals experience 
hypotonia and ketoacidosis as well as serious neurological is-
sues such as developmental delay, hallucinations, seizures, and 
coma [47].

In spite of BCAAs being the prerequisite for many health 
benefits as mentioned above, emerging studies in both animals 
and humans suggest an important role of BCAAs in the patho-
genesis of metabolic disorders like obesity and diabetes, other 
chronic diseases such as cancer and heart disease, and even neu-

rodegenerative disorders such as Alzheimer’s disease (AD). The 
purpose of this review is to discuss and summarize recent ad-
vances in knowledge on both correlational and causal link be-
tween BCAAs and some of the most prevalent chronic diseases.

OBESITY AND TYPE 2 DIABETES

The observation of higher circulating BCAA levels in individu-
als with obesity was first reported by Felig et al. [48] nearly a 
half century ago, but the association between BCAAs and obe-
sity was resurfaced only recently by She et al. [49] that was sub-
sequently confirmed with high-throughput metabolomics analy-
sis by other investigators [50-52]. Once BCAAs gained traction, 
it did not take long for others to show that plasma BCAAs and/
or their derived intermediates, BCKAs, are not just elevated in 
individuals with insulin resistance or type 2 diabetes [52-55], 
but they are also a strong predictive marker for future risk of 
these conditions regardless of age and ethnicity [56-60]. Inter-
estingly, mounting evidence suggests that BCAAs or BCKAs 
lead to hyperactivation of mTOR signaling [50,61], induction of 
oxidative stress [62-65], mitochondrial dysfunction [66,67], 
apoptosis [68,69], and more importantly, insulin resistance and/
or impaired glucose metabolism [50,70-77], all of which are the 
key factors involved in the pathogenesis of diabetes. Consistent 
with these findings, BCAA supplementation with high-fat diet 
(HFD) or defective BCAA oxidation through deletion of meth-
ylmalonyl-CoA mutase in mice induce insulin resistance and 
impaired glucose tolerance [50,75,77]. Jang et al. [74] have re-
cently shown that 3-hydroxyisobutyrate, a catabolic intermedi-
ate of valine that is elevated in diabetic individuals, drives vas-
cular fatty acid transport in muscle and causes glucose intoler-
ance in mice. Findings from an in vitro study have demonstrated 
that a leucine metabolite, ketoisocaproic acid, suppresses insu-
lin-stimulated glucose transport in L6 myotubes [76]. Converse-
ly, depriving any one of BCAAs in regular chow diet or HFD in 
mice, or giving isocaloric and isonitrogenous diet with all three 
BCAAs restricted in genetically diabetic Zucker fatty rats im-
proves insulin sensitivity and glycemic control [31,78,79]. More 
recently, Cummings et al. [80] recapitulated these findings by 
showing that 80% restriction of BCAAs in western diet for 4 
weeks significantly alleviates glucose intolerance and insulin 
resistance in mice. Mechanistically, drinking BCAA metabolite-
containing water has been shown to decrease the active state of 
AKT (pAKT), a marker of insulin signaling, in muscle [74]. 
Newgard et al. [50,81] have reported similar results in which 
BCAAs supplemented to HFD reduce pAKT and cause hyper-
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activation of mTOR signaling in skeletal muscle compared to 
BCAAs plus regular chow or HFD alone, leading to impaired 
glucose tolerance. In line with these findings, BCAA depriva-
tion in mice increases pAKT in liver and improves insulin sen-
sitivity [31,78]. Together, these results support the notion of not 
just a correlative, but a causal role of BCAAs in the develop-
ment of obesity, insulin resistance, and diabetes, possibly medi-
ated by downregulation of AKT signaling pathway in insulin-
sensitive tissues.

An obvious question at this point is, why are circulating 
BCAA levels elevated in obese or insulin-resistant/diabetic in-
dividuals to begin with? The most intuitive answer would be 
that these individuals consume more food in general, thus natu-
rally increasing their BCAA intake. However, it should be noted 
that higher BCAAs are observed even after matching protein/
BCAA intake or overnight fasting [50,54,57]. While it may be 
tempting to speculate that obese or diabetic individuals have 
higher BCAAs due to an increased proteolysis and/or decreased 
protein synthesis that is analogous to their elevated free fatty ac-
ids through increased lipid breakdown [82,83], their whole-
body protein synthesis and degradation do not seem to be differ-
ent from those in healthy individuals [84-89]. The most likely 
explanation is impaired BCAA catabolic pathway that would 
lead to BCAA build-up in the circulation. Indeed, mRNA of the 
rate-limiting enzyme BCKDH was significantly downregulated 
in subcutaneous adipose tissue of monozygotic twins discordant 
for obesity [90] and obese Pima Indians [29]. These findings are 
in agreement with our earlier study revealing reduced BCKDH 
activity in liver of obese macaques and humans [91], as well as 
others’ findings with lower BCKDH protein expression in liver 
or subcutaneous adipose tissue of genetically obese ob/ob mice, 
diabetic fa/fa rats, or diet-induced obese mice [29,49]. More re-
cently, Zhou et al. [92] have beautifully demonstrated that treat-
ing either ob/ob or diet-induced obese mice with 3,6-dichloro-
benzo[b]thiophene-2-carboxylic acid (BT2), a pharmacological 
inhibitor of BCKDH kinase that lowers plasma BCAAs, signifi-
cantly attenuated insulin resistance, indicating that efficient 
BCAA breakdown is critical for decreasing plasma BCAAs and 
improving insulin sensitivity.

While many investigators have mainly focused on probing 
the cellular underpinnings through which BCAAs or their me-
tabolites impair insulin signaling and glucose homeostasis, not 
much attention has been dedicated to their regulatory mecha-
nism that might shed light on the dysfunctional BCAA degrada-
tion in obesity and diabetes. Early studies have shown that sys-
temic hyperinsulinemia induced by either intravenous insulin 

injection or hyperinsulinemic euglycemic clamp lowers circu-
lating BCAA levels in normal healthy subjects but less so in 
obese or diabetic individuals, implicating insulin resistance as a 
major cause for the elevated BCAAs in obesity and diabetes 
[93-96]. However, it was not clear how insulin is able to reduce 
plasma BCAAs. We hypothesized that this could be mediated 
primarily through induction of BCAA catabolism in liver, an or-
gan with high BCKDH expression and activity [44]. Using hy-
perinsulinemic euglycemic clamps in rats, we demonstrated for 
the first time that insulin dose-dependently enhances BCKDH 
activity in liver but not white adipose tissue or muscle, and low-
ers plasma BCAA levels [91]. We further showed that this is ac-
complished by insulin action in the brain, specifically the me-
diobasal hypothalamus (MBH), a brain region critical for many 
physiological functions including the control of body weight, 
appetite, and nutrient partitioning [97,98]. These results suggest 
that insulin resistance in the brain, not the periphery, may be the 
first event that triggers defective BCAA breakdown and the re-
sultant increase in circulating BCAAs. Identifying the exact 
neuronal populations within the MBH responsible for the con-
trol of BCAA metabolism would be an important step toward 
better understanding of BCAA dysmetabolism in obesity and 
diabetes.

CANCERS

Several independent labs have indicated a tight link between 
BCAAs and development of different types of cancers. Mayers 
et al. [99] have shown that plasma BCAAs are elevated in pa-
tients 2 to 5 years before they are diagnosed with pancreatic 
ductal adenocarcinoma (PDAC), increasing the risk by at least 
two-fold that is independent of intermediate development of di-
abetes. Similarly, mice bearing Kras-driven pancreatic tumors 
display higher plasma BCAAs before manifestation of subclini-
cal cancer. This would presumably be associated with impaired 
glycemic control as commonly observed in patients with PDAC; 
however, there is no change in fasting glucose or glucose excur-
sion during oral glucose tolerance test. These findings suggest 
that plasma BCAAs do not necessarily indicate impaired glyce-
mic control or insulin resistance as in type 2 diabetes, but rather 
reflect an early consequence of PDAC. Using 13C-leucine to 
study BCAA uptake and incorporation into protein, the same 
group went on to demonstrate that BCAA metabolic fate is 
unique for specific cancers [100]. While PDAC tumors in mice 
have lower BCAA uptake, tumors derived from non-small cell 
lung carcinoma exhibit enhanced BCAA uptake and incorpora-
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tion into protein. Other investigators have provided valuable in-
sights into the role of BCAAs in proliferation and metabolic ca-
pacity of different types of cancers. Wang et al. [101] has shown 
that protein abundance of cytoplasmic BCAT1, the first enzyme 
in BCAA degradation pathway that is responsible for reversible 
transamination of BCAAs to BCKAs, is significantly upregu-
lated in both low-malignant potential tumors and high-grade tu-
mors from patients with epithelial ovarian cancer (EOC). Lenti-
viral short hairpin RNA (shRNA)-mediated knockdown of 
BCAT1 in EOC cell lines decreases the number of colony for-
mation, and suppresses tumor cell replication and migration 
compared to tumor control cells. Interestingly, similar results 
are observed in tumors from hepatocellular carcinoma (HCC) 
[102] and breast cancer [103]. In addition to in vitro study, 
Zheng et al. [102] injected nude BALB/c mice subcutaneously 
with BCAT1-transfected HCC cells using lentiviral vector to 
demonstrate that BCAT1 overexpression in vivo accelerates tu-
mor growth in mice. Support and extension of these findings 
comes from a recent study by Ericksen et al. [104] showing 
higher mRNAs of BCAT1/2 but lower BCKDH and down-
stream catabolic enzymes such as acyl-CoA dehydrogenase in 
tumors from HCC patients. Targeted metabolomics analysis in 
tumor versus adjacent non-tumor tissue revealed a significant 
increase in all three BCAAs but lower oxidized intermediates of 
BCAAs, indicating impaired BCAA breakdown in liver. Instead 
of being utilized as a source for ATP synthesis, it seems that 
BCAAs hyperactivate mTOR signaling in HCC tumors in both 
human and animals. Considering the role of mTOR in protein 
synthesis and cell proliferation [105], this explains the efficient 
growth rate of the tumor cells which is reversed after decreasing 
BCAAs in media or restoring BCAA breakdown. Conversely, 
treatment of HCC cells with lower BCAAs or mTOR inhibitor 
rapamycin, or either genetic or pharmacological inhibition of 
BCKDH kinase (BCKDH-suppressing enzyme) all results in 
significant reduction in tumor cell proliferation rates. It is inter-
esting to note that tumors from breast cancer display gene up-
regulation of not only BCAT1 but also BCKDH and other 
downstream enzymes [103], indicating enhanced BCAA catab-
olism as opposed to impaired breakdown that is observed in 
HCC tumors described above (although whether or not the ac-
tual catabolic activity is increased is not clear). In spite of this 
difference in metabolic phenotype, similar to what occurs in 
EOC and HCC cells, BCAT1 knockdown decreases mTOR sig-
naling and mitochondrial biogenesis, thereby repressing the 
growth rate of breast cancer cell lines [103]. Collectively, these 
findings clearly demonstrate a link between BCAA metabolism 

and tumor development across different types of cancer. While 
differences in BCAA metabolic fate are present between differ-
ent cancers, BCAT1 seems to be a major common driver for tu-
mor proliferation; thus, it may potentially serve as a therapeutic 
target for cancer treatment.

HEART DISEASES

Glucose and fatty acids as the primary energy substrates and 
their respective metabolism in the heart have been widely stud-
ied in cardiovascular health and disease states [106,107]. On the 
other hand, the role of amino acids, specifically BCAAs, and its 
catabolic pathway in the control of cardiac function has been 
highlighted only recently. Ruiz-Canela et al. [108] have shown 
that baseline plasma levels of leucine and isoleucine, but not va-
line, are associated with increased risk of cardiovascular disease 
(CVD) at 1 year follow-up from the participants in the Preven-
ción con Dieta Mediterránea (PREDIMED) study. Likewise, in-
creased dietary BCAA intake in healthy individuals has shown 
to raise the hazard ratio for hypertension 3 years later, with 61% 
higher risk of incident hypertension after adjusting for variables 
such as age, sex, body mass index (BMI), and diabetes [109]. 
Importantly, in both studies, plasma BCAAs were measured af-
ter overnight fasting and dietary BCAA intake between the con-
trol and treatment groups were matched, hence eliminating a 
potentially significant confounder. Adding more evidence on 
circulating BCAAs as a biomarker, Du et al. [110] have re-
vealed that plasma BCAAs are independent predictors for ad-
verse cardiovascular events in patients with myocardial infarc-
tion and acute heart failure after adjusting for BMI and diabetes. 
While there seems to be a general agreement on the relationship 
between BCAAs and heart diseases, their potential causal effect 
was not examined until recently. Sun et al. [111] have shown 
that both BCAA and BCKA levels are higher in human failing 
hearts as well as pressure overload-induced mouse failing hearts 
that are associated with coordinated downregulation of key 
genes involved in BCAA catabolism including BCKDH. In 
light of their findings that suppression of BCKDH activity re-
duces cardiac systolic function in mice whereas BT2 treatment 
enhances cardiac BCAA degradation and preserves heart con-
tractility, BCAA catabolic efficiency seems to play a vital role 
in preserving cardiac health after heart failure. Two other inde-
pendent studies using either coronary artery ligation [112] or 
ischemia-reperfusion injury [113] were able to replicate these 
results, all pointing cardiac BCAA degradation as the prerequi-
site for proper heart remodeling after insults. While the exact 
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mechanisms by which BCAAs or their defective breakdown ex-
acerbate cardiac dysfunction are not clear, activated mTOR sig-
naling and mitochondrial stress may be involved [111,112]. It is 
also worth mentioning that in Dahl salt-sensitive rats that are 
fed a high-salt diet for induction of heart failure, BCAA supple-
mentation in drinking water decreased heart rate and preserved 
cardiac function [114]. The discrepancy in BCAA effects may 
be due to the fact that this specific model leads to a progressive 
deterioration of heart function and a significant weight and 
muscle loss compared to the models described above.

ALZHEIMER’S DISEASE

BCAAs readily cross the blood-brain-barrier and compete for 
the same large amino acid transporter with aromatic amino acids 
(i.e., tyrosine, tryptophan, and phenylalanine) that serve as pre-
cursors for neurotransmitters involved in cognition and memory 
such as dopamine, serotonin, and norepinephrine [115-117]. 
Further, in the presence of α-ketoglutarate, the enzyme BCAT 
converts BCAAs to glutamate, an excitatory neurotransmitter 
that can induce excitotoxicity and neuronal death in AD brains 
[118]. This indicates that excess BCAAs may lead to a profound 
imbalance of these key neurotransmitters that are vital for prop-
er neuronal functions and the resultant behaviors. Moreover, 
BCAA overload has been shown to induce neural oxidative 
stress and apoptosis [62-65,68,69], and mTOR hyperactivation 
commonly induced by BCAAs can lead to insulin resistance in 
the brain [119,120]. Importantly, all of these abnormalities rep-
resent the pathophysiological hallmarks of AD, making BCAAs 
a potentially significant contributor in the development of AD.

Emerging evidence shows a clear link between BCAAs and 
AD. Hudd et al. [121] have demonstrated that serum BCAAs 
are elevated in subjects with mild cognitive impairment or AD 
compared to healthy controls. Interestingly, serum glutamate 
and the transaminating enzyme BCAT are also higher in AD pa-
tients and are positively correlated with AD severity. These re-
sults imply that glutamate overproduction through heightened 
BCAT activity may deteriorate brain functions and lead to AD, 
supporting the “glutamate excitotoxicity” hypothesis for AD 
pathogenesis. On the contrary, Gonzalez-Dominguez et al. [122] 
have shown that circulating valine levels are lower in AD pa-
tients compared to those in healthy subjects. Similarly, a pro-
spective study by Tynkkynen et al. [123] have reported a signifi-
cant association between lower serum valine levels and in-
creased risk of AD, although this disappears after adjusting for 
BMI and cholesterol-lowering medications. Nonetheless, it is 

not clear why serum levels of other BCAAs (i.e., leucine and 
isoleucine) are not altered in these AD patients. Consistent with 
the concept of BCAAs being a contributor to AD development, 
through Mendelian randomization analysis a recent study has 
identified several single nucleotide polymorphisms related to 
isoleucine degradation in AD patients, including the gene 
PPM1K, a phosphatase that activates BCKDH enzyme complex 
[124]. These findings suggest for the first time that individuals 
genetically predisposed to higher BCAA levels may have in-
creased susceptibility to AD.

Rodent studies also support the role of BCAAs in AD patho-
genesis. We have previously shown [125] that plasma BCAAs 
are already elevated in amyloid precursor protein/presenilin 1 
(APP/PS1) transgenic AD mouse model at 5 months of age 
when overt cognitive deficit is not yet present [126,127]. Our 
recent observations demonstrate that this increase is persistent 
at 9 months of age at which memory function is clearly im-
paired (unpublished), suggesting that BCAAs and/or their me-
tabolites may serve as a potential predictive or diagnostic mark-
er for AD. Li et al. [128] have recently shown that plasma 
BCAAs are higher in both aged and 3xTg AD mice, and this is 
associated with reduced expression of BCAT in the brain. The 
study further extends and shows that BCAA supplementation in 
drinking water stimulates Tau phosphorylation and exacerbates 
cognitive impairment in AD mice. Hyperphosphorylation of 
Tau is recapitulated following BCAT knockdown in neurons of 
AD mouse brains in mTOR-dependent manner [128]. In keep-
ing with these results, 50% BCAA restriction significantly low-
ers plasma BCAAs and improves memory function in both reg-
ular chow and HFD-fed 3xTg AD mice [129]. Similarly, protein 
restriction cycling in 3xTg AD mice also has shown to improve 
memory function [130]. While these findings are consistent 
with the notion that BCAA overload or defective breakdown 
has a causal role in AD pathogenesis, several caveats need to be 
considered. First, since BCAT induces a reversible conversion 
between BCAAs and their keto acids, reduction of BCAT pro-
tein expression does not necessarily indicate impaired BCAA 
degradation. Examining the rate-limiting enzyme BCKDH and 
its actual oxidative activity would help address this issue. Sec-
ond, dietary BCAA manipulation can alter caloric intake and 
body weight [50,131] that can potentially influence the degree 
of brain pathology and consequently the magnitude of cognitive 
deficits in AD mice. Third, since BCAA supplementation or re-
striction in these studies leads to unequal calorie amount, and 
especially different nitrogen content in their diet that is essential 
for protein/DNA synthesis and enzymatic activities, it is diffi-
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cult to make a clear conclusion. In future studies, it would be 
important to match caloric content and molar nitrogen quantity 
in diet in order to eliminate or minimize these potential con-
founders.

It is interesting to note that dihydrolipoamide dehydrogenase 
(DLDH), or E3 subunit of mitochondrial proteins including 
BCKDH complex and pyruvate dehydrogenase, is in fact pres-
ent in both human and mouse serum [132]. Yan et al. [132] have 
shown that unlike the one found in mitochondria, DLDH in se-
rum is very sensitive to oxygen-induced inactivation and lacks 
the usual diaphorase activity for redox reactions. Considering 
that dysfunction of DLDH stimulates oxidative stress in both in 
vivo and in vitro [133,134], whether this circulating subunit has 

different biological functions and whether its levels are altered 
and play a role in the development of AD, or any of the disease 
conditions aforementioned, needs to be investigated.

CONCLUSIONS 

Unlike glucose and lipids, studies on amino acids, more specifi-
cally BCAA metabolism and its physiological functions beyond 
protein synthesis, have garnered a substantial interest from dif-
ferent fields mainly in the last two decades. BCAAs have un-
doubtedly beneficial effects in preserving protein content in in-
dividuals with age-related and muscle-wasting conditions, and a 
number of studies have demonstrated their importance in im-

Fig. 1. An overview of what is currently known about the role of branched-chain amino acids (BCAAs) or their derived keto-acids (i.e., 
branched-chain keto acids [BCKAs]) in different disease states and their potential molecular mechanisms. It is interesting to note that most 
studies reveal higher circulating levels of BCAAs in each disease. Items in dark blue shapes indicate mechanistic interventions based on re-
cent studies. CNS, central nervous system; pmTOR, phosphorylated mammalian target of rapamycin; pAKT, phosphorylated protein kinase 
B; BCAT1, cytoplasmic branched-chain amino acid transaminase; KO, knockout; BT2, 3,6-dichlorobenzo[b]thiophene-2-carboxylic acid; 
BCKDH, branched-chain α-keto acid dehydrogenase.
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mune function, adipogenesis, glucose uptake, and gut microbial 
diversity. Interestingly, recent studies from our lab as well as 
from other investigators have revealed that circulating BCAAs 
and/or their metabolites are elevated in prevalent chronic dis-
eases such as obesity, type 2 diabetes, cancers, CVDs, and neu-
rodegenerative disorders like AD (Fig. 1). These similar find-
ings across different disease conditions, while novel and excit-
ing, are not all that surprising given that they are risk factors for 
one another and share several key physiological dysfunctions 
including insulin resistance, inflammation, and impaired nutri-
ent partitioning. Although BCAA levels alone most likely will 
not be able to serve as a diagnostic marker specifically for any 
one of these diseases for the very findings discussed above, per-
haps they might be utilized in conjunction with other existing 
biomarkers to enhance diagnostic precision or to facilitate early 
detection. Current evidence points to hyperactivated mTOR sig-
naling as the critical mediator in some of the diseases. Clearly, 
more mechanistic and well-controlled studies are necessary to 
confirm current results and gain deeper understanding of how 
BCAAs become elevated in these chronic illnesses with com-
mon abnormal features, and provide insights into how they con-
tribute to specific pathologies and symptoms. Once future stud-
ies reproduce and validate the causal role of BCAAs, it would 
be important to consider two potential therapeutic strategies to 
fight these disease conditions: (1) assess a safe limit of BCAA 
intake in individuals that already have or are susceptible to the 
diseases in order to determine appropriate dietary BCAA rec-
ommendations and (2) establish pharmacological interventions 
that can ameliorate BCAA-driven impairment in cellular signal-
ing and subsequent maladaptive phenotypes. 
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