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Excess energy intake, without a compensatory increase of energy expenditure, leads to obesity. Several molecules are involved in 
energy homeostasis regulation and new ones are being discovered constantly. Appetite regulating hormones such as ghrelin, pep-
tide tyrosine-tyrosine and amylin or incretins such as the gastric inhibitory polypeptide have been studied extensively while other 
molecules such as fibroblast growth factor 21, chemerin, irisin, secreted frizzle-related protein-4, total bile acids, and heme oxy-
genase-1 have been linked to energy homeostasis regulation more recently and the specific role of each one of them has not been 
fully elucidated. This mini review focuses on the above mentioned molecules and discusses them in relation to their regulation by 
the macronutrient composition of the diet as well as diet-induced weight loss.
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INTRODUCTION

Several molecules are involved in energy homeostasis regula-
tion and new ones are being discovered constantly. The central 
nervous system (CNS) integrates information from the envi-
ronment and the periphery to regulate energy homeostasis. Al-
though in normal-weight people the system maintains a bal-
ance of energy homeostasis, the system fails in the two ex-
tremes, i.e., in obese as well as in extremely lean individuals 
(e.g., anorexia nervosa). The study of novel molecules involved 
in energy homeostasis is of utmost importance to shed more 
light in the mechanisms behind the observed imbalances.

NOVEL MOLECULES IMPORTANT IN 
ENERGY HOMEOSTASIS

Fibroblast growth factor 21 (FGF-21) was identified in 2000 
[1]. It is a novel hepatokine that is involved in several metabolic 
pathways and in the regulation of adiposity in both animals and 
humans [2-7]. FGF-21 is an important molecule for energy ho-
meostasis regulation as knock-out mice present mild weight 
gain, slightly impaired glucose homeostasis and tolerance after 
24 hours fasting while they cannot effectively mobilize and uti-
lize lipids after a ketogenic diet [8]. FGF-21 levels are increased 
in obesity and there is evidence of FGF-21 resistance in both 
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obese animals and humans [2,9,10]. Its levels are reduced after 
weight loss with either caloric restriction or specific types of 
bariatric surgery in humans [11-13]. FGF-21 can induce weight 
loss in obese animals through stimulation of the sympathetic 
nerve activity into brown adipose tissue [14]. Macronutrient in-
take seems to affect FGF-21 levels. Specifically, in animal stud-
ies, a ketogenic diet, i.e., a high fat-low carbohydrate diet has 
been shown to increase FGF-21 expression and levels [15,16]. 
However this could, also, be attributed to the low protein con-
tent of this diet since a low protein diet leads to FGF-21 levels 
increase in both animals and humans compared to a control diet 
regardless of energy intake [17-19]. On the other hand, dietary 
manipulation (low or high carbohydrate diets) of the diet was 
not found to affect FGF-21 levels in humans [20]. In addition, 
FGF-21 could regulate macronutrient intake in humans as ge-
nome wide associations studies show that certain variants in the 
FGF-21 locus are associated with a reduced protein and/or lipid 
intake but with an increased carbohydrate intake [21,22]. Taken 
together, available evidence indicates that in humans caloric re-
striction reduces FGF-21 levels. Although a low-protein diet 
seems to increase the expression and concentrations of FGF-21 
the effect of carbohydrates on FGF-21 levels still needs to be 
elucidated. More research is needed to explore how caloric re-
striction and/or macronutrient manipulation of the diet can af-
fect FGF-21 levels and shed light into this field. 

Chemerin is a novel chemoattractant adipokine and hepato-
kine, first characterized in 2003 [23]. Chemerin is involved in 
the regulation of many metabolic pathways including adipocyte 
and glucose metabolism, in adipogenesis and in immune re-
sponses [24-30]. Chemerin levels positively correlate with 
body mass index (BMI), fat mass, and several markers of in-
flammation and are elevated in obese individuals, in individu-
als with diabetes and also in prediabetic states [24,26,31-33]. 
Weight loss achieved either with hypocaloric diet or a combi-
nation of diet with exercise or bariatric surgery results in reduc-
tions of chemerin levels [33-39]. Significant reductions of 
chemerin levels can be observed either acutely, i.e., 24-hour 
postoperation or in the long-term, i.e., 6 or 12 months later [40]. 
Although chemerin concentrations decrease with weight loss, 
they may increase again with weight regain [41]. Energy deficit 
induced by exercise seems to result in greater chemerin level 
reductions in obese males compared to when the same energy 
deficit is induced by diet alone, probably due to the greater re-
duction in fat mass with the exercise program [42]. Macronutri-
ent composition of the diet seems to affect chemerin levels. A 
high carbohydrate diet results in increased chemerin concentra-

tions compared to a diet lower in carbohydrate content [43]. In 
another study a low carbohydrate diet did not result in signifi-
cantly greater chemerin levels reductions compared to a low 
lipid diet or a Mediterranean diet [41]. To summarize, energy 
restriction reduces chemerin levels in humans and there is pre-
liminary evidence that the macronutrient composition of the 
diet can affect chemerin concentrations with higher carbohy-
drate consumption resulting in an increase of its levels. 

Irisin is a novel myokine that is considered a muscle-derived 
energy-expenditure signal secreted from the skeletal muscle af-
ter cleavage of the myokine fibronectin type III domain con-
taining 5 (FNDC5) in response to exercise and/or peroxisome 
proliferator-activated receptor-γ coactivation 1a (PGC-1a) [44]. 
A diverse array of metabolic actions has been associated with 
irisin levels [45-66]. Irisin levels correlate positively with 
markers of adiposity, are increased in obesity and irisin resis-
tance might develop in obese individuals [67-70]. In mice, re-
combinant irisin administration results in weight loss [71], 
while in humans, weight loss results in irisin levels reduction 6 
months after bariatric surgery [64] or after a weight loss diet 
[72,73]. However, irisin concentrations increase again after 
weight regain [69]. In response to diet composition, irisin lev-
els seem to be minimally affected. Specifically, in animals, cir-
culating irisin levels remain unaffected by the fat content of the 
diet (high vs. low) [74]. Furthermore, irisin concentrations 
were equally reduced in humans after two weight loss diets dif-
fering in macronutrient composition followed for 8 weeks be-
cause of the energy restriction induced weight loss but were 
positively correlated with carbohydrate intake coming from ce-
reals, pulses, fruit, and vegetables at the end of the 8 weeks in-
tervention [63] and with prudent diets including the DASH 
(Dietary Approaches to Stop Hypertension) diet according to 
another study [75]. Other studies fail to support an association 
between irisin levels and diet quality or caloric intake [76,77]. 
Furthermore, supplementation with or without eicosapentaeno-
ic acid and/or α-lipoic acid and/or both had no additional effect 
on the reduction of irisin levels after an energy restricted 
weight loss diet [78]. Although available data suggest a reduc-
tion of irisin levels in response to energy restriction, limited 
data exist regarding the effect of the macronutrient composition 
of the diet on its levels.

Secreted frizzle-related protein-4 (SFRP-4) is an adipokine 
that acts as an extracellular antagonist of the wingless-type 
mouse mammary tumor virus integration site family (WNT) 
signaling pathway [79]. SFRP-4 levels are increased in obesity 
and are associated with insulin resistance [80]. Diet induced 
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obese SFRP-4–/– mice on a high fat diet had reduced food intake 
and energy expenditure compared to their control littermates 
[81]. On the other hand, SFRP-4–/– mice on a chow diet pre-
sented normal food intake and energy expenditure [81]. How-
ever, since this is a pretty new field of investigation, way more 
research is needed to explore the effects of obesity, energy re-
striction, and weight loss as well as the macronutrient composi-
tion of the diet on SFRP-4 levels in both animals and humans.

Bile acids are involved in dietary lipid absorption and cho-
lesterol catabolism but an emerging role of them as signaling 
molecules in energy homeostasis has also been indicated. Spe-
cifically, administration of bile acids to mice can prevent and 
reserve obesity but also can increases energy expenditure in 
brown adipose tissue [82]. The weight that mice on a high fat 
diet gained was reversed (reached same weight gain levels with 
chow-fed mice) by the supplementation of the high fat diet 
with cholic acid due to adipose mass and morphology preven-
tion changes. In animal models, bariatric surgery alters bile 
flow and this is associated with an increase in bile acids and 
gut hormones inducing satiety as well as with a decrease in 
food intake and body weight [83-85]. In humans, bile acids in 
the plasma correlate positively with BMI and negatively with 
the cognitive restraint of eating in obese patients [86]. Levels 
of total bile acids increase either acutely or in the long-term af-
ter bariatric surgery regardless of energy restriction but in a 
type of surgery specific manner [87-90]. Fecal bile acid excre-
tion is increased after bariatric surgery in a type of surgery spe-
cific manner, too [91]. This increase correlates with alterations 
in substrate oxidation [92], with increased peak postprandial 
plasma glucagon-like peptide-1 but not with resting energy ex-
penditure [93]. On the other hand, diet-induced weight loss re-
sults in the reduction of blood levels of unconjugated bile acids 
or biliary bile acids without affecting total plasma bile acids 
[88,94]. Fecal bile acid excretion was also greater after weight 
loss [95]. In response to macronutrients, a high fat diet with 
high protein to carbohydrate ratio might be associated with in-
creased bile acid production according to preliminary evidence 
in mice, but this warrants further investigation [96]. In addi-
tion, high fat diets result in greater fecal bile acid excretion 
compared to high carbohydrate diets in humans [97-99]. A low 
fat diet might change the proportion of specific bile acids in se-
rum but since no weight change data were available to exclude 
as a mediating factor weight loss, results should be interpreted 
with caution [100]. In summary, bariatric surgery results in an 
increase of blood levels of bile acids which occurs independent 
of energy restriction, while limited data indicate that energy re-

striction does not affect circulating total bile acids concentra-
tions. Data on the effect of macronutrient composition of the 
diet on bile acids blood levels is still lacking. 

Heme oxygenase-1 (HO-1) is a stress-induced isozyme of 
HOs that catalyzes the metabolic conversion of heme to bile 
pigments, iron, and carbon monoxide affecting many important 
cellular functions such as inflammation, cellular proliferation, 
and apoptotic cell death [101,102]. In obesity, HO-1 is upregu-
lated in adipose tissue and in macrophages mostly in the subcu-
taneous rather than in the visceral adipose tissue and this over-
expression correlates negatively with the waist to hip ratio in 
humans [103,104]. In animals, the chronic induction of HO-1 
results in body weight loss [105-110] while inhibition of HO-1 
attenuates it [111]. Potential mechanisms for this decrease in 
body weight include but are not limited to the increase of O2 
consumption, heat production, and locomotor activity [112] 
while a decrease in the food intake has not been fully proven 
but cannot be excluded. Furthermore, HO-1 could decrease the 
content of both visceral and subcutaneous adipose tissue and 
could ameliorate vascular and adipocyte dysfunction and in-
flammation occurring in diet-induced obesity [113-116]. How-
ever, HO-1 overexpression in adipocytes was not found to pro-
tect against high fat diet-induced obesity [117]. Since all these 
studies are animal studies and different HO-1 inducers/metabo-
lites have been investigated, more research is needed to repli-
cate these in humans. Furthermore, more research is needed to 
elucidate the effect of energy restriction and weight loss as well 
as the macronutrient composition of the diet on HO-1 levels.

Ghrelin is an orexigenic hormone of the periphery secreted 
by the stomach with several actions [118-121]. It is considered 
a meal initiator; its levels increase preprandially and fall post-
prandially [122] in proportion to the amount of calories con-
sumed [123]. Fasting ghrelin levels are suppressed in obesity 
[124,125] and its responses to a meal are blunted in obese indi-
viduals [126,127]. Diet-induced weight loss results in the in-
crease of fasting ghrelin levels [128,129]. The macronutrient 
composition of the diet affects ghrelin responses to a meal with 
a high carbohydrate and a high protein diet suppressing ghrelin 
levels to a greater extent than a high fat diet in both mice and 
humans [130-132]. Other studies have failed to show an effect 
of macronutrients [133,134]. Thus, weight gain and loss affect 
circulating ghrelin concentrations but since some inconsistenc-
es still exist regarding the effect of macronutrient composition 
of the diet on ghrelin levels, more studies will be a useful addi-
tion to the literature.

Peptide tyrosine-tyrosine (PYY) is an anorexigenic hormone 
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produced by the L-cells of the distal gut that suppresses energy 
intake [119,135,136]. Its levels increase after meal intake in 
proportion to the caloric content of the meal and exogenous ad-
ministration of PYY reduces food consumption [127,137]. It is 
not clear whether its fasting levels are decreased in obesity 
[125,127,137,138] or remain stable [139-141], but is seems that 
PYY level responses to a meal are attenuated [125,127,137, 
138]. Diet induced weight loss has been proposed to decrease 
PYY levels [140,142], but this is not supported by all studies 
[143-145]. The macronutrient composition of the diet seems to 
affect PYY levels, as well. All macronutrients can stimulate 
PYY release but lipids and protein trigger the greater responses 
[133,134,146-150]. Although research has shown that obesity, 
diet-induced weight loss, and macronutrient composition of the 
diet may affect PYY levels, mixed results still exist. 

Amylin is a hormone co-stored and co-secreted with insulin 
from the pancreatic beta cells in response to nutrients [151]. 
Amylin can act as an anorexigenic factor/signal of satiation 
[152]. Central and peripheral amylin administration in animals 
reduces food intake and body weight as well as it slows gastric 
emptying in both animals and humans [153-157]. Amylin may 
have a synergistic effect in causing negative energy balance 
with leptin [155,156] and recently, it was suggested that endog-
enous ventromedial amylin signaling is essential for full leptin 
signaling in order to protect from diet-induced obesity [158]. 
Amylin levels are increased in obesity [157] and they fall after 
diet-induced weight loss in humans [142,159]. Furthermore, 
macronutrients seem to affect amylin levels which are triggered 
mostly by carbohydrate rather than lipid consumption in hu-
mans [160]. Amylin levels are affected by obesity and weight 
loss and may be also by the macronutrient composition of the 
diet but this remains to be confirmed. 

Gastric inhibitory polypeptide (GIP) is an incretin secreted 
by the K-cells of the gastrointestinal track [161] following the 
ingestion of nutrients which stimulates insulin release [162-
164]. Although it is not considered a main appetite regulating 
peptide, GIP might affect appetite indirectly through its insulin 
stimulating effects [165]. Exogenous administration of GIP in 
humans had no effect on appetite feelings but decreased gas-
tric-half emptying time [166]. A null effect has also been re-
ported by others for gastric emptying [167]. In obesity GIP lev-
els are increased in the postprandial but not in the fasting state 
[168]. Diet-induced weight loss does not affect fasting GIP lev-
els while it is unclear whether postprandial levels of GIP 
change or not [142,168,169]. Furthermore, weight regain after 
surgical weight loss does not change fasting GIP levels or re-

sponses compared to weight maintenance [170]. The macronu-
trient composition of the diet affects GIP responses which seem 
to be more sensitive to a high carbohydrate and a high fat diet 
[171,172], while a high glycemic-load diet seems to increase 
its levels, too [173]. Although GIP levels depend on nutrient 
intake, still it is not clear what is the effect of weight loss espe-
cially on its postprandial levels and thus further investigation is 
needed.

CONCLUSIONS

Available data indicate that diet-induced weight loss decreases 
the concentrations of FGF-21, chemerin, irisin, amylin, and/or 
PYY while it increases the concentrations of ghrelin. Fasting 
GIP and total bile acids circulating levels remain unaffected by 
diet-induced weight loss. The effect of macronutrient composi-
tion on all these molecules is not that well investigated and fu-
ture research will provide more insight to this topic. Available 
evidence suggest that a high fat or a high protein diet increases 
PYY levels, a high fat or a high carbohydrate diet increases 
GIP levels, a high carbohydrate diet increases amylin levels 
while it lowers ghrelin levels as a high protein diet does. Limit-
ed evidence indicate that a high fat/low carbohydrate or a low 
protein diet increases FGF-21 levels while a high carbohydrate 
diet increases chemerin levels and a high fat diet increases bile 
acids levels. However, much more research is needed to con-
firm and expand currently available evidence. There is a great 
heterogeneity between the designs, sample sizes, duration and 
type of interventions of the existing studies and discrepancies 
do not allow for making firm conclusions. Furthermore, as 
most of the research has been performed in animals, studies on 
humans are of outmost important. Randomized, crossover, 
controlled studies with adequate sample size and duration that 
will examine the sole effect of weight loss after energy restric-
tion and/or other strategies inducing weight loss as well as the 
effect of macronutrient composition of the diet with or without 
weight loss on the circulating levels of these markers will pro-
vide essential answers. Then, we will be able to design and im-
plement better interventions for the combat against obesity, an 
epidemic of the modern times.
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