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Vision loss in diabetic retinopathy (DR) is ascribed primarily to retinal vascular abnormalities—including hyperpermeability, hy-
poperfusion, and neoangiogenesis—that eventually lead to anatomical and functional alterations in retinal neurons and glial cells. 
Recent advances in retinal imaging systems using optical coherence tomography technologies and pharmacological treatments 
using anti-vascular endothelial growth factor drugs and corticosteroids have revolutionized the clinical management of DR. 
However, the cellular and molecular mechanisms underlying the pathophysiology of DR are not fully determined, largely because 
hyperglycemic animal models only reproduce limited aspects of subclinical and early DR. Conversely, non-diabetic mouse mod-
els that represent the hallmark vascular disorders in DR, such as pericyte deficiency and retinal ischemia, have provided clues to-
ward an understanding of the sequential events that are responsible for vision-impairing conditions. In this review, we summarize 
the clinical manifestations and treatment modalities of DR, discuss current and emerging concepts with regard to the pathophysi-
ology of DR, and introduce perspectives on the development of new drugs, emphasizing the breakdown of the blood-retina barri-
er and retinal neovascularization.
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INTRODUCTION

Diabetic retinopathy (DR) is the most common microvascular 
complication in diabetic patients, with a higher incidence in 
people with type 1 diabetes mellitus compared with type 2 dia-
betes mellitus [1]. Consistent with the increasing prevalence of 
diabetes in developed and developing nations, DR is the lead-
ing cause of vision loss globally in working middle-aged adults 
[2,3]. Based on the presence or absence of retinal neovascular-
ization, DR can be classified clinically into non-proliferative 
(NPDR) and proliferative (PDR) forms [2,3]. In eyes with 
PDR, aberrant neovascularization following retinal ischemia 
causes vision-threatening vitreous hemorrhage and tractional 

retinal detachment. Further, diabetic macular edema (DME) 
affects central vision at any stage of DR. Among diabetic popu-
lations, the estimated prevalence of any form of DR is 34.6% 
(93 million worldwide), and those of PDR and DME are 6.96% 
and 6.81%, respectively [1].

A major risk factor for DR is sustained hyperglycemia, but 
hypertension, dyslipidemia, and pregnancy have also been im-
plicated [1-3]. Notably, certain diabetic populations do not de-
velop DR despite having these systemic risk factors, whereas 
good glycemic control might not necessarily eliminate the life-
time risk of DR [2]. These patterns indicate that additional fac-
tors, such as genetic susceptibility, are involved in the initiation 
and progression of DR. Thus, it is often difficult to predict the 
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risk of DR in individual diabetic patients.
In the past decade, pharmacological therapies using anti-

vascular endothelial growth factor (VEGF) drugs and cortico-
steroids have dramatically changed the clinical management of 
DR [2,3]. However, because of their limited efficacy and poten-
tial adverse effects, a comprehensive understanding of the 
pathophysiology of DR is urgently needed for the development 
of new drugs. In this review, we summarize the current knowl-
edge and emerging concepts of the pathophysiology of DR that 
have been obtained from the clinic and basic research and in-
troduce perspectives on the development of new drugs.

CLINICAL MANAGEMENT OF DIABETIC 
RETINOPATHY

Because an early diagnosis of DR is crucial for preventing vi-
sion loss, routine ophthalmological examinations are recom-
mended for all diabetic patients at severity-dependent intervals 
[2,3]. DR can be diagnosed ophthalmoscopically, based on ret-

inal vascular lesions, such as microaneurysms, dot and blot 
hemorrhages, and deposition of exudative lipoproteins (hard 
exudates). Fluorescein angiography (FA), in conjunction with 
ultra-widefield scanning laser ophthalmoscopy, can reveal vas-
cular leakage, non-perfusion, and neovascularization over the 
entire retina in DR (Fig. 1A). Optical coherence tomography 
(OCT) generates cross-sectional retinal images, enabling lon-
gitudinal assessments of the macular morphology and thick-
ness in eyes with DME (Fig. 1B). In contrast to the potential 
risk of allergic reactions with FA, OCT angiography (OCTA) 
noninvasively generates high-resolution images of superficial 
and deep retinal vascular networks (Fig. 1C). Adaptive optics 
scanning laser ophthalmoscopy can detect retinal hemorheo-
logical changes and cone photoreceptor irregularities in dia-
betic eyes [4,5]. Overall and local retinal functions can be eval-
uated by full-field and multifocal electroretinography (ERG), 
respectively [6]. These multimodal data might be able to be in-
tegrated by artificial intelligence-based systems in the future 
management of DR [7].
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Fig. 1. Clinical features of diabetic retinopathy (DR). (A) Pseudo-colored fundus (left) and fluorescein angiography (right) images 
from ultra-widefield ophthalmoscopy. Note the elevated leakage of fluorescein dye in the macular area in non-proliferative DR 
(NPDR) and from aberrant neovascularization (NV) in proliferative DR (PDR). Dark areas in fluorescein angiography represent 
vascular non-perfusion (NP). (B) Cross-sectional macular images from optical coherence tomography (OCT). Note the recur-
rence of diabetic macular edema (DME) at 3 months after intravitreal anti-vascular endothelial growth factor injection. (C) Su-
perficial and deep retinal vessel images from OCT angiography. Note the microaneurysms and enlargement of the foveal avascu-
lar zone in NPDR. HE, hard exudate; VH, vitreous hemorrhage.

CB

A



Kusuhara S, et al.

366 Diabetes Metab J 2018;42:364-376  http://e-dmj.org

Non-proliferative diabetic retinopathy
Based on the severity of retinal vascular lesions, NPDR is cate-
gorized into mild, moderate, and severe forms (Table 1) [2,3]. 
Whereas mild NPDR exhibits only microaneurysms, moder-
ate NPDR presents with additional signs of impaired vessel in-
tegrity and vessel occlusion, including dot and blot hemor-
rhages, hard exudates, and cotton wool spots. Severe NPDR is 
accompanied by more distinct features of retinal ischemia, 
such as venous beading and intra-retinal microvascular abnor-
malities (IRMAs) that are adjacent to non-perfusion areas. 

For patients with mild to moderate NPDR, systemic control 
of hyperglycemia, hypertension, and dyslipidemia is critical in 
preventing the progression and reversing the severity of reti-
nopathy [2,3]. However, if blood glucose levels decrease rapid-
ly, the DR worsens in 10% to 20% of patients within 3 to 6 
months [8]. For severe NPDR, panretinal photocoagulation 
(PRP) is considered for ablating ischemic neurons and glial 
cells in non-perfusion areas, thereby reducing their oxygen de-
mand and production of pro-angiogenic growth factors, in-
cluding VEGF [2,3]. Although PRP reduces the risk of progres-
sion to PDR, its destructive properties can cause peripheral vi-
sual field defects and reduced night vision [9]. Moreover, PRP 
often deteriorates central vision by exacerbating DME, which 
can be suppressed by adjunct sub-Tenon injections of triam-
cinolone acetonide, a potent long-acting corticosteroid [10].

Diabetic macular edema
By slit-lamp biomicroscopy or OCT, DME can be detected as 
retinal thickening in the macular areas, which is a consequence 
of the accumulation of fluid within neural tissues [11-13]. 
Since the 1980s, DME had long been treated initially with focal 
lasers that targeted leaky microaneurysms and grid lasers that 
targeted macular areas of diffuse leakage and capillary non-
perfusion [14,15]. Today, intravitreal anti-VEGF therapy has 
become the standard of care for DME, based on a series of ran-
domized controlled clinical trials that demonstrated its superi-
ority in improving vision compared with laser therapy [2,3].

Bevacizumab (Avastin; Genentech, San Francisco, CA, USA), 
a humanized monoclonal antibody against VEGFA, was ap-
proved by the U.S. Food and Drug Administration (FDA) for 
metastatic colorectal cancer in 2004 and has been used off-la-
bel for the treatment of DME [16]. Subsequently, intravitreal 
injections of ranibizumab (Lucentis; Genentech), the Fab frag-
ment of a monoclonal anti-VEGFA, and aflibercept (Eylea; Re-
generon, Tarrytown, NY, USA), a recombinant VEGF receptor 
(VEGFR) protein that neutralizes VEGFA, VEGFB, and pla-
cental growth factor (PlGF), were approved by the FDA for 
DME in 2012 and 2014, respectively [16]. The biological prop-
erties of VEGF signals are described below. Based on their an-
ti-leakage and anti-angiogenic potency, intravitreal ranibi-
zumab and aflibercept are used globally for DME, age-related 

Table 1. Classification of diabetic retinopathy and recommended eye care

DR severity Defining features Management Follow-up

No DR No microvascular abnormalities Control blood glucose levels, serum lipid 
levels, and blood pressure

1−2 yr

Mild NPDR Microaneurysms only Control blood glucose levels, serum lipid 
levels, and blood pressure

6−12 mo

Moderate NPDR Microaneurysms and other signs (dot and blot hemorrhages, 
hard exudates, cotton wool spots), but not severe NPDR

Control blood glucose levels, serum lipid 
levels, and blood pressure

3−6 mo

Severe NPDR Intraretinal hemorrhages (≥20 in each of 4 quadrants),  
definite venous beading (in at least 2 quadrants), or  
apparent IRMA (in at least 1 quadrant), but not PDR

Consider PRP <3 mo

PDR Neovascularization of optic disc or elsewhere, preretinal 
hemorrhage, or vitreous hemorrhage

Strongly consider PRP, consider vitrectomy 
for persistent vitreous hemorrhage or 
tractional retinal detachment

<1 mo 
   (variable)

DME Retinal thickening in the macula Consider focal laser photocoagulation,  
anti-VEGF therapya, or corticosteroid 
therapy for center-involving DME

1−3 mo

DR, diabetic retinopathy; NPDR, non-proliferative DR; IRMA, intra-retinal microvascular abnormality; PDR, proliferative DR; PRP, panretinal 
photocoagulation; DME, diabetic macular edema; VEGF, vascular endothelial growth factor. 
aIntravitreal ranibizumab is approved by the U.S. Food and Drug Administration to treat all forms of DR, with or without DME.
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macular degeneration, myopic choroidal neovascularization, 
and macular edema secondary to retinal vein occlusion, 
whereas off-label intravitreal bevacizumab is administered re-
gionally because of its cost-effectiveness [16,17]. In most cases, 
repeated intravitreal injections of these anti-VEGF agents are 
needed because of the recurrence of DME (Fig. 1B), which 
raises concerns over infectious endophthalmitis, cerebro-car-
diovascular events, and a greater economic burden [18].

Intravitreal or sub-Tenon injections of triamcinolone ace-
tonide and intravitreal implants of dexamethasone (Ozurdex; 
Allergan, Dublin, Ireland) and fluocinolone acetonide (Iluvien, 
Alimera Sciences, Alpharetta, GA, USA; and Retisert, Bausch 
& Lomb, Bridgewater, NJ, USA) are also used for DME, al-
though the potential adverse effects of these corticosteroids, 
including cataract progression and elevations in intraocular 
pressure, should be monitored carefully [2,19]. Notably, corti-
costeroids are often effective for DME refractory to anti-VEGF 
therapies [19]. Based on their prolonged efficacy and cost-ef-
fectiveness, corticosteroids can be a useful option for DME, es-
pecially in eyes that have been implanted with intraocular 
lenses. In cases that experience unsuccessful outcomes with 
these pharmacological therapies, focal or grid laser remains an 
alternative therapy. Otherwise, vitrectomy surgery can be con-
sidered, particularly for DME that is associated with vitreo-
macular traction [20].

Proliferative diabetic retinopathy
In eyes with PDR, new blood vessels that protrude from the 
ischemic retinal surface cause vitreous hemorrhages (Fig. 1A) 
[21]. In approximately 8% of PDR patients, the formation of 
contractile fibrovascular membranes accompanies aberrant 
neoangiogenesis, inducing tractional retinal detachment [22]. 
Persistent retinal hypoxia further leads to neovascularization 
of the iris and refractory glaucoma [21]. To avoid these devas-
tating consequences, PRP should be applied immediately out-
side of the macular area [9]. For PDR eyes with sustained vitre-
ous hemorrhage or tractional retinal detachment, vitrectomy 
should be performed in a timely manner [2].

Notably, repeated anti-VEGF injections for DME suppress 
the progression to PDR and mitigate the severity of PDR [23, 
24]. Moreover, repeated anti-VEGF injections for PDR result 
in better visual acuity and lower rates of vitreous hemorrhage, 
retinal detachment, and neovascular glaucoma compared with 
PRP [25-28]. These findings might prompt a shift in the clini-
cal management of PDR, wherein treatment regimens that 

combine PRP, anti-VEGF agents, and corticosteroids should 
be optimized, depending on the ocular, systemic, and econom-
ic status of individual patients.

PATHOPHYSIOLOGY OF DIABETIC 
RETINOPATHY

To gain insights into the cellular and molecular mechanisms 
that underlie the pathophysiology of DR, diabetic mouse mod-
els are frequently employed because of their low maintenance 
cost and short reproductive cycle and the availability of geneti-
cally modified strains [29]. The structure and function of 
mouse retinas can be monitored longitudinally by ultra-wide-
field scanning laser ophthalmoscopy, OCT, OCTA, and ERG 
[29-31]. Moreover, 2-photon and confocal laser scanning fluo-
rescence microscopy, combined with a cataract-preventing 
contact lens in anesthetized mice, enables the in vivo imaging 
of retinal cell dynamics [32]. 

Type 1 diabetes mellitus mice, induced by β-cell destruction 
with streptozotocin (STZ) or by a spontaneous dominant-neg-
ative mutation in the insulin-2 gene (Akita mouse), recapitulate 
several features of early DR, including hyperpermeability and 
degeneration of retinal vessels [29]. However, these mice fail to 
reproduce any signs of advanced DR [29]. As alternative DR 
models, non-diabetic mice that overexpress or lack specific 
genes have been developed. For example, a transgenic mouse 
line that overexpresses insulin-like growth factor-1 develops 
retinal non-perfusion, IRMA, and neovascularization [33]. In 
addition, overexpression of VEGF and hyperglycemia in Akim-
ba mice synergistically enhances the vascular abnormalities 
that are characteristic of DR [29]. With the recent advances in 
genomic engineering with CRISPR-Cas9 technology [34], mu-
tant mouse models will expand our understanding of the caus-
ative roles of specific molecules in the pathophysiology of DR.

Hyperglycemia, oxidative stress, and inflammation
The metabolic abnormalities of diabetes induce the overpro-
duction of mitochondrial superoxide in vascular endothelial 
cells (ECs), which subsequently leads to increased flux through 
the polyol pathway, the production of advanced glycation end-
products (AGEs), upregulation of the receptor for AGEs and 
its activating ligands, activation of the protein kinase C path-
way, and overactivity of the hexosamine pathway [35]. These 
pathways elevate the levels of intracellular reactive oxygen spe-
cies and cause irreversible cell damage through epigenetic 
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changes, such as histone modifications, DNA methylation, and 
non-coding RNAs [35,36]. Consistent with this concept of 
“metabolic/hyperglycemic memory,” euglycemic re-entry after 
transplantation of pancreatic islet cells to STZ-induced diabet-
ic mice fails to heal retinal microvascular damage [37]. These 
findings might explain the effects of early glycemic control on 
the future development of DR [38].

Under sustained hyperglycemia, oxidative stress, various 
signaling pathways, and epigenetic modifications induce in-

flammation (Fig. 2) [35,36,39]. The levels of pro-inflammatory 
cytokines and chemokines, such as monocyte chemoattractant 
protein 1 (MCP-1), tumor necrosis factor α (TNF-α), interleu-
kin 1β (IL-1β), and IL-6, are elevated in eyes with DR [40]. The 
pivotal functions of inflammation in the initiation and pro-
gression of DR have been corroborated empirically with the 
therapeutic efficacy of corticosteroids for DME and DR per se 
[41]. In diabetic retinas, the adhesion and infiltration of leuko-
cytes might damage vascular ECs and neuroglial cells by physi-

Fig. 2. Schematic of key cellular and molecular events in the progression of diabetic retinopathy. Hyperglycemia initiates oxida-
tive stress, epigenetic modifications, and inflammation in vascular endothelial cells (ECs). Neuroglial degeneration precedes mi-
crovascular changes. Pericyte loss from vessel walls sensitizes ECs to microenvironmental stimuli. Infiltrating macrophages se-
crete vascular endothelial growth factor (VEGF) A and placental growth factor (PlGF). A positive feedback loop between angio-
poietin-2 (Ang2) and a forkhead box transcription factor, forkhead Box O1 (FOXO1), in ECs further destabilizes vessel integrity. 
These events form a cycle of vessel damage, leading to the breakdown of the blood-retina barrier. Retinal hypoxia resulting from 
vessel occlusion induces extra-retinal neoangiogenesis accompanied by fibrovascular membrane formation. Throughout these 
processes, signal transduction via the mitogen-activated protein kinase (MAPK) and the phosphatidyl inositol 3-kinase (PI3K)/
Akt pathways downstream of VEGF receptor (VEGFR) 2 in ECs is pivotal in retinal angiogenesis and vascular leakage. Tie2, tyro-
sine kinase with immunoglobulin-like loops and epidermal growth factor homology domains 2.
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cal occlusion of capillaries and through the release of inflam-
matory mediators and superoxide [42]. Thus, novel anti-in-
flammatory drugs with fewer adverse effects than corticoste-
roids are desired for the treatment of DR. To date, several com-
pounds and antibody drugs that target inflammatory signals, 
such as MCP-1, TNF-α, IL-1β, and IL-6, have been evaluated 
clinically for DME or DR [19,40], but none of them has been 
approved.

Although it remains unknown why retinal microvascular 
abnormalities develop over years of hyperglycemic periods 
(more than 5 years in type 2 diabetes mellitus), clinical and ex-
perimental evidence has demonstrated irreversible loss of neu-
rons preceding vascular lesions in diabetic retinas (Fig. 2) [43-
46]. Thus, neuroprotective agents, such as eye drops of soma-
tostatin or brimonidine (an α-2 adrenergic receptor agonist), 
are expected to prevent neuroglial degeneration and preserve 
long-term vision in subclinical and early DR (EUROCON-
DOR study [NCT01726075]) [47,48].

Vascular endothelial growth factors
In 1948, Michaelson postulated the presence of a pro-angio-
genic factor derived from hypoxic retinas in DR [49]. After the 
discovery of VEGF in the 1980s [50,51], increased VEGF levels 
were reported in eyes with PDR in 1994 [52]. Then, VEGF in-
jections into monkey eyes reproduced the retinal vascular ab-
normalities that were seen in NPDR and PDR [53]. Subse-
quently, extensive research on the physiological and pathologi-
cal functions of VEGF led to the development of anti-VEGF 
drugs [16].

The VEGF family, comprising VEGFA, VEGFB, VEGFC, 
VEGFD, and PlGF, are secretory glycoprotein ligands, each of 
which binds distinctly to the transmembrane tyrosine kinases 
VEGFR1, VEGFR2, and VEGFR3 (Fig. 2) [54,55]. VEGFA 
(herein referred to as VEGF unless otherwise noted) binds to 
VEGFR1 and VEGFR2, whereas VEGFB and PlGF bind only 
to VEGFR1 [54,55]. VEGFC and VEGFD bind to VEGFR3 
and regulate lymphangiogenesis, whereas proteolytic process-
ing of these ligands allows binding to VEGFR2 [54,55].

During hypoxia, VEGFA is upregulated transcriptionally, 
and alternative mRNA splicing generates several VEGFA iso-
forms, such as VEGFA121, VEGFA165, and VEGFA189, in 
human [54-56]. These VEGFA isoforms have disparate bind-
ing affinities to extracellular matrices and a VEGFR2 co-recep-
tor, neuropilin-1. Post-translational processing of VEGFA pro-
teins further diversifies their distribution and signaling activi-

ties [54]. In vascular ECs, the binding of VEGFA to VEGFR2 
activates several signal transduction cascades, including the 
mitogen-activated protein kinase pathway and the phosphati-
dyl inositol 3-kinase (PI3K)/Akt pathway, thereby promoting 
cell proliferation and migration and the subsequent formation 
of new blood vessels [54,55]. Further, the VEGFA-VEGFR2 
signal disrupts EC-EC adherens and tight junctions, leading to 
vascular hyperpermeability and fluid extravasation [54,55]. 
Thus, the VEGFA-VEGFR2 signal is pivotal in retinal angio-
genesis and vascular leakage in DR (Fig. 2) [49,56]. 

In ECs, transmembrane and soluble VEGFR1 functions as a 
decoy for VEGFA, modulating the intensity of the VEGFR2 
signal [54,55]. The physiological functions of endothelial 
VEGFR1 signaling, activated by VEGFA, VEGFB, or PlGF, are 
assumed to be negligible, because mice that lack the intracellu-
lar kinase domain of VEGFR1 are viable and have no vascular 
abnormalities [57]. Conversely, the VEGFR1 signal in mono-
cytes and macrophages contributes significantly under inflam-
matory conditions [58], correlating with the upregulation of 
VEGFB and PlGF in eyes with DR [59].

In contrast to its deleterious functions in pathological set-
tings, VEGFA has been implicated in the maintenance of the 
homeostasis of neural retinas, in which a subset of neurons 
and Müller glia constitutively express VEGFR2 [60]. Further-
more, VEGFA that is secreted from retinal pigment epithelium 
(RPE) cells is indispensable for maintaining choroidal vessels 
[61,62], raising concerns over the harmful effects of repeat an-
ti-VEGF injections. Nonetheless, new anti-VEGF drugs are 
still being developed to prolong the potency and injection in-
tervals in the treatment of DR. Among them, brolucizumab 
(RTH258), a humanized single-chain antibody fragment 
against VEGFA, is expected to reduce the injection frequency 
because of its small molecular weight and high intravitreal 
concentration [63]. Currently, the KITE (NCT03481660) and 
KESTREL (NCT03481634) phase 3 clinical trials are evaluat-
ing the efficacy and safety of brolucizumab for DME compared 
with aflibercept.

Angiopoietins
Angiopoietin-1 (Ang1) was identified as an agonistic ligand of 
endothelial tyrosine kinase with immunoglobulin-like loops 
and epidermal growth factor homology domains 2 (Tie2) re-
ceptor in 1996 by Regeneron Pharmaceuticals Inc. [64]. The 
binding of Ang1 to Tie2 activates the PI3K/Akt pathway, lead-
ing to the phosphorylation and inactivation of a forkhead box 
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transcription factor, forkhead box O1 (FOXO1), in ECs (Fig. 
2). This signaling stabilizes vessel integrity by promoting EC 
survival, preventing vascular permeability, and suppressing in-
flammatory responses [65]. In 1997, Regeneron reported an-
other ligand, Ang2, that binds Tie2 with similar affinity as 
Ang1 [66]. However, Ang2 weakly activates Tie2 in ECs. Thus, 
Ang2 was assumed to be a natural Tie2 antagonist that coun-
teracts Ang1-mediated vessel stabilization. 

Ang2 renders ECs more sensitive to pro-angiogenic, pro-
permeable, and pro-inflammatory stimuli, such as VEGFA and 
TNF-α [65]. Moreover, Ang2 is upregulated by hypoxia, VEG-
FA, and hyperglycemia [67,68], whereas Ang2-induced activa-
tion of FOXO1 upregulates Ang2, forming a positive feedback 
loop [65]. These findings indicate that Ang2 facilitates angio-
genesis, vascular permeability, and inflammation under cer-
tain disease settings. Ang2 is upregulated in eyes with DR, age-
related macular degeneration, and retinal vein occlusion [69, 
70].

To date, a series of Ang2 blockers and Tie2 activators have 
been developed [71]. Among them, the Tie2 activator AKB-
9778 [72], the anti-Ang2/VEGFA bispecific antibody RG7716 
[69], and the fully human monoclonal anti-Ang2 nesvacumab 
(REGN910) [73] have been evaluated clinically for treating 
DR. The phase 2 RUBY study (NCT02712008) for DME re-
ported no further improvement with the combination of 
aflibercept and nesvacumab compared with aflibercept alone. 
On the other hand, the phase 2 TIME-2 study (NCT02050828) 
of the combination of AKB-9778 and ranibizumab and the 
phase 2 BOULEVARD study (NCT02699450) of RG7716 re-
ported favorable outcomes in the treatment of DME [74]. No-
tably, Ang2 can act as a Tie2 agonist, depending on the envi-
ronment [75,76]. Thus, anti-Ang2 drugs might inhibit the ago-
nistic activity of Ang2 and result in unexpected outcomes.

Breakdown of the blood-retina barrier
To maintain retinal homeostasis, the leakage of plasma into 
neural tissues is regulated tightly by the inner and outer blood-
retina barrier (BRB), sealed by retinal vascular ECs and RPE 
cells, respectively [11-13]. Although dysfunction of the RPE 
can increase the influx of fluid from the underlying choroidal 
vessels in diabetic eyes, the pathogenic role of the breakdown 
of the outer BRB in DME is not fully understood [11,12]. Con-
versely, elevated paracellular and transcellular leakage in reti-
nal ECs causes the inner BRB to break down in DR [11-13]. 
Based on the seminal histopathological observations of human 

diabetic eyes [77], the consensus is that pericyte dropout from 
retinal capillary walls is responsible for breakdown of the inner 
BRB (Fig. 2).

Retinal pericytes originate from the neural crest and regulate 
blood flow by providing mechanical strength to the vessel walls 
[78]. In addition, pericytes are pivotal in maintaining EC in-
tegrity via secretory signals and direct cell-cell contact [78]. In 
developing retinas, EC-derived platelet-derived growth factor 
(PDGF) B promotes the recruitment of PDGF receptor (PDG-
FR) β-expressing pericytes to nascent blood vessels [78]. There-
fore, disruptions in the PDGFB-PDGFRβ signal in postnatal 
mice can deplete pericytes from growing retinal vessels, lead-
ing to vessel enlargement, hyperpermeability, hypoperfusion, 
retinal edema, and hemorrhage [79-81]. Notably, transient in-
hibition of pericyte recruitment during development results in 
persistent EC-pericyte dissociation in adult retinas, with vas-
cular lesions that are characteristic of DR [81]. In pericyte-de-
ficient retinas, the ECs of superficial retinal vessels proliferate 
actively but fail to migrate down into the deeper layers, form-
ing aneurysm-like structures with excess accumulation of ECs 
[81]. In human DR, mitotic ECs are also found in microaneu-
rysms [77], whereas microaneurysms occasionally disappear 
after intravitreal anti-VEGF injection [82]. These findings sug-
gest that the formation of microaneurysms in DR is in part at-
tributed to the over-proliferation of pericyte-deficient ECs in 
response to VEGFA.

In mouse retinas, a deficiency in pericytes induces endothe-
lial inflammation and perivascular macrophage infiltration 
[80,81]. In this setting, macrophage-derived VEGFA activates 
endothelial VEGFR2, whereas VEGFA and PlGF activate 
VEGFR1 in macrophages in an autocrine manner. Moreover, 
pericyte-free ECs upregulate Ang2 and undergo FOXO1 nu-
clear translocation, especially in microaneurysms, forming an 
Ang2-FOXO1-based positive feedback loop [80,81]. These ex-
perimental results indicate that pericyte deficiency in growing 
retinal vessels elicits a cycle of damage due to EC-macrophage 
interactions, leading to sustained inflammation and irrevers-
ible breakdown of the BRB [83]. Unexpectedly, however, strip-
ping pericytes from adult retinas sensitizes ECs to VEGFA but 
is insufficient to induce alterations in vessel structure and 
function [80]. Moreover, the PDGFB-PDGFRβ signal is dis-
pensable for maintaining EC-pericyte associations in adult ret-
inas [80]. Thus, further investigation is required to determine 
the causes and consequences of pericyte dropout in the patho-
physiology of DR. 
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Retinal neovascularization
During development, intra-retinal growth of new blood vessels 
delivers oxygen to neural tissues efficiently [84,85], in contrast 
to extra-retinal vascular outgrowth, which fails to resolve the 
tissue hypoxia in PDR (Fig. 2). Comparative analyses of physi-
ological and pathological angiogenesis in mouse retinas have 
provided mechanistic insights into vessel guidance. In postna-
tal mouse retinas, the ECs of developing blood vessels migrate 
over the extracellular matrix scaffolds that are formed by the 
preexisting astrocyte network [84-86]. Retinal astrocytes fur-
ther establish the concentration gradients of matrix-binding 
VEGFA that is secreted by them or by neurons, promoting in-
tra-retinal projections of endothelial filopodia from the sprout-
ing vascular tips [87]. Concurrently, chemorepulsive signals, 
such as neuron-derived semaphorin 3E (Sema3E), which 
binds to endothelial PlexinD1 receptor, retract disoriented en-
dothelial filopodia, thereby rectifying angiogenic directions 
[88,89]. 

Conversely, in an oxygen-induced retinopathy (OIR) mouse 
model, retinal ischemia that follows vessel regression under 
hyperoxia (75% O2 from postnatal day 7 to 12) evokes centrip-
etal vascular regrowth, which gives rise to extra-retinal vascu-
lar tufts [90]. In this setting, degenerative astrocytes fail to 
form extracellular fibronectin matrices, whereas retinal neu-
rons, but not astrocytes, predominantly express VEGFA [88]. 
Thus, defective physical scaffolds for EC migration and dis-
rupted spatial distribution of VEGFA proteins may be respon-
sible for the extra-retinal neoangiogenesis. Notably, the ECs of 
extra-retinal vessels prominently express PlexinD1, and intra-
vitreal Sema3E injections selectively suppress disoriented an-
giogenesis without affecting retinal vascular regeneration in 
the OIR model [88]. Given the decreased levels of aqueous 
Sema3E in human eyes with PDR [91], supplementation with 
intravitreal Sema3E should have clinical benefit in preventing 
aberrant neoangiogenesis. To facilitate vascular regeneration 
in ischemic retinas, new modalities that restore the pro-angio-
genic activities of retinal astrocytes should be developed.

In the formation of fibrovascular membranes that are associ-
ated with extra-retinal neoangiogenesis, a series of pro-fibrotic 
signals, such as transforming growth factor β, PDGF, and con-
nective tissue growth factor, have been implicated in the trans-
differentiation, proliferation, and migration of myofibroblasts 
and their production of contractile matrix [22,92]. Neverthe-
less, the origins of retinal myofibroblasts remain unknown in 
PDR [22]. Conversely, cell-fate mapping analyses in mouse 

models of fibrosis have demonstrated the potential of pericytes 
and perivascular mesenchymal cells to transdifferentiate into 
myofibroblasts in various tissues and organs [93]. Given the 
rapid development or progression of tractional retinal detach-
ment after injections of anti-VEGF drugs into PDR eyes [94], 
it is postulated that the remaining pericytes after EC ablation 
from retinal neovascularization constitute a source of myofi-
broblasts, which should be validated experimentally in future 
studies.

CONCLUSIONS

Complementary clinical and experimental evidence has in-
creased our understanding of the pathophysiology of DR. 
However, the molecular backgrounds that are responsible for 
retinal vascular abnormalities may vary in individual eyes with 
DR, as evidenced by their differential responses to anti-VEGF 
drugs and corticosteroids. Moreover, a substantial question re-
mains unanswere d as to why the retina is preferentially affect-
ed in diabetic patients. To determine the common and retina-
specific mechanisms underlying diabetic microvascular com-
plications, the broad areas of biomedical research, including 
ophthalmology, diabetology, neuroscience, immunology, and 
vascular biology, will need to be integrated. These efforts will 
optimize personalized medicine by combining drugs with dis-
tinct modes of action in the future treatment of DR.
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