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The recent epidemic of type 2 diabetes in Asia differs from that reported in other regions of the world in several key areas: it has 
evolved over a much shorter time, in an earlier stage of life, and in people with lower body mass indices. These phenotypic char-
acteristics of patients strongly suggest that insulin secretory defects may perform a more important function in the development 
and progression of diabetes. A genetic element clearly underlies β-cell dysfunction and insufficient β-cell mass; however, a num-
ber of modifiable factors are also linked to β-cell deterioration, most notably chronic hyperglycemia and elevated free fatty acid 
(FFA) levels. Neither glucose nor FFAs alone cause clinically meaningful β-cell toxicity, especially in patients with normal or im-
paired glucose tolerance. Thus the term “glucolipotoxicity” is perhaps more appropriate in describing the phenomenon. Several 
mechanisms have been proposed to explain glucolipotoxicity-induced β-cell dysfunction and death, but its major factors appear 
to be depression of key transcription factor gene expression by altered intracellular energy metabolism and oxidative stress. There-
fore, stabilization of metabolic changes induced by glucolipotoxicity in β-cells represents a new avenue for the treatment of type 
2 diabetes mellitus.
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INTRODUCTION

The number of people with type 2 diabetes has rapidly and re-
markably increased throughout Asia, and the rate of increase 
shows no signs of slowing. This recent epidemic of type 2 dia-
betes in Asia differs from that reported in other regions of the 
world; it has evolved over a much shorter time, at an earlier 
stage of life, and in people with lower body mass indices [1]. 
Because the degree of obesity, the aging process and environ-
mental influences on the body are closely related to insulin re-
sistance, insulin secretory defects may perform a more impor-
tant function in the development and progression of diabetes 
in our region [2]. Impaired insulin secretion might be induced 
by insufficient β-cell mass, by functional defects within the 
β-cells themselves, or by both of these conditions. Reductions 

in β-cell mass and abnormalities of β-cell function can both 
be demonstrated in patients with type 2 diabetes and individu-
als at increased risk for diabetes [3]. Whether β-cell dysfunc-
tion is caused by reduced β-cell mass or vice-versa remains to 
be determined. A genetic element clearly underlies β-cell dys-
function and insufficient β-cell mass; however, a number of 
modifiable factors are also linked to β-cell deterioration, most 
notably chronic hyperglycemia and elevated free fatty acid 
(FFA) levels [4]. Evidence has also been found for a link be-
tween increased pro-inflammatory cytokines and the impair-
ment of insulin-signaling pathways in the β-cells, as well as the 
potential roles of islet amyloid deposition and fibrotic islet de-
struction [5,6]. In this review, we provide an overview of the 
characteristic features and underlying mechanisms of dys-
functions and death of the β-cells by glucolipotoxicity.
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GLUCO-, LIPO- AND GLUCOLIPOTOXICITY

Glucotoxicity
In type 2 diabetes, chronic hyperglycemia has long been felt to 
have negative consequences on β-cell function. The results of 
several studies have demonstrated that the chronic elevation 
of blood glucose concentration impairs β-cell function and in-
sulin sensitivity, a phenomenon referred to as glucotoxicity 
[7,8]. Glucose has a stimulatory effect on transcription of the 
gene that encodes preproinsulin and also on insulin release. 
Glucose enters the β-cell via facilitated transport through the 
glucose transporter 2 (GLUT2) transporter, and then it is con-
verted to glucose-6-phosphate (G-6-P) by the action of gluco-
kinase (GK). The glycolytic cascade and adenosine triphosphate 
(ATP) production in this process ultimately leads to membrane 
depolarization and exocytosis of insulin granule [9]. It is un-
derstandable that repeated and prolonged exposure to hyper-
glycemia likely leads to β-cell degranulation and eventual ex-
haustion, but the mechanisms underlying this process are be-
lieved to be complex and not readily explicable. Prolonged hy-
perglycemia alters various β-cell-specific genes, including the 
transcription factors Pdx-1, BETA2/NeuroD and MafA, and 
other genes as well, such as insulin, PGC-1α, UCP, and many 
genes related with the glycolytic pathway [10-13]. The reduc-
tion of insulin-gene transcription is thought to be secondary 
to reductions in the transcription or activity of β-cell transcrip-
tion factors such as Pdx1, BETA2/NeuroD and MafA [10-14]. 
Several mechanisms have been proposed to explain the hyper-
glycemia-induced loss of β-cell function, but a major factor 
appears to be alteration of intracellular energy metabolism and 
oxidative stress, as well as mitochondrial dysfunction, which 
will be discussed later. Other pathways linked to hyperglyce-
mia include endoplasmic reticulum (ER) stress and possibly 
hypoxia-induced stress [15,16]. Therefore, glucose toxicity is 
one of the most important mechanisms of β-cell dysfunction 
and loss in diabetic patients. However, it is difficult to explain 
β-cell loss observed in the prediabetic stage [17].

Lipid toxicity
The term “lipotoxicity” is often applied to the phenomenon in 
which elevated FFA levels in the setting of insulin resistance 
contribute to β-cell dysfunction. In actuality, the effect of FFA 
on β-cell function is much more complex, and it includes both 
beneficial and detrimental effects [18]. Duration of exposure 
to elevated FFA and the coexistence of hyperglycemia influ-

ence the extent to which FFA levels contribute to β-cell func-
tion. Some FFAs and lipoproteins may exert a pro-apoptotic 
effect, whereas others appear to perform a protective function. 
Therefore, long-term exposure to saturated fatty acids (such as 
palmitate) is associated with toxic effects, whereas monoun-
saturated fatty acids (such as oleate) protect against palmitate- 
and glucose-induced β-cell apoptosis [19]. Exposure to FFA in 
the long-term leads to impaired insulin gene transcription, 
impaired glucose-stimulated insulin secretion (GSIS) and 
eventual β-cell apoptosis [20]. Researchers have studied the 
mechanisms by which healthy concentrations of FFA promote 
GSIS, and at least two distinct pathways have emerged. The 
first is through the free fatty acid receptor (Gpr40) [21]. Alqui-
er et al. [22] recently showed that the knockout of GPR40 led 
to impairments in glucose- and FFA-stimulated insulin secre-
tion in islets without affecting intra-islet glucose or palmitate 
metabolism. The second pathway is through intracellular FFA 
metabolism and glycerolipid/FFA cycling [23]. In the aggre-
gate, these mechanisms are believed to maintain GSIS under 
normal circumstances and possibly contribute to the early hy-
persecretion of insulin in the initial stages of high-fat diet-in-
duced obesity [24]. Emerging data additionally implicate a 
possible role for cholesterol metabolism in β-cell lipotoxicity. 
Oxidized low density lipoprotein particles appear to diminish 
insulin gene transcription and promote apoptosis in isolated 
β-cells [25]. Disruption of the ABCA1 reverse cholesterol trans-
porter in mice results in defects in cholesterol efflux from the 
β-cell and subsequent accumulation of intra-islet cholesterol; 
this accumulation leads to impaired GSIS and glucose intoler-
ance [26]. In this regard, recent studies by our group suggest 
that activation of ABCA1 in human islets by LXR agonists 
might be one approach to diminish islet cholesterol burden 
and to improve GSIS [27].

Glucolipotoxicity
This finding is consistent with the glucolipotoxicity hypothe-
sis, which states that neither glucose nor FFAs alone cause 
clinically meaningful β-cell toxicity [3]. The term “glucolipo-
toxicity” is perhaps more appropriate in describing the phe-
nomenon. The effect of glucose on FFA toxicity in the β-cell 
has been suggested to be secondary to a partitioning effect on 
lipid metabolism [28]. Several mechanisms have been pro-
posed to explain the chronic effects of FFA on GSIS and β-cell 
apoptosis. Prolonged exposure to palmitic acid diminishes in-
sulin gene transcription and GSIS in isolated rat islets, and it is 
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accompanied by attenuated binding of the β-cell-specific tran-
scription factors Pdx1 and MafA [29]. Other mechanisms of 
glucolipotoxicity include palmitic acid-induced synthesis of 
ceramides, which inhibits the anti-apoptotic protein Bcl-2 and 
downregulates IRS-1/2 signaling [19,30]; FFA-induced up reg-
ulation of UCP2 and reduction of glucose-stimulated ATP 
generation [31,32]; and activation of the oxidative stress [33] 
and the unfolded protein response [34] pathways. Elevated 
glucose concentration alone is not toxic to islet tissue in nor-
mal or prediabetic stages. The β-cell adapts via changes in gene 
expression, such as glycolytic and anaplerotic genes induction 
[35,36]. These results induce GSIS and glucose detoxification 
in the pancreatic β-cell [37]. Elevated fatty acids alone also are 
nontoxic because FFAs will be oxidized in the β-cell at low glu-
cose and in the absence of increased malonyl-CoA levels, re-
sulting in lipid detoxification [38]. However, prolonged expo-
sure to high glucose and FFAs would subsequently result from 
the progressive accumulation of FFA-derived long-chain acyl-
CoA esters (FACoAs) and various lipid-signaling molecules in 
the β-cell. These factors may cause impaired glucose-induced 
insulin secretion and biosynthesis and promote apoptotic cell 

death (Fig. 1). Recently, our laboratory also demonstrated the 
depression of important pancreas key transcription factors by 
glucolipotoxicity. Kim et al. [13] reported that PGC-1α inhib-
its insulin and BETA2/NeuroD transcription levels and that 
attenuating PGC-1α overexpression protects against glucoli-
potoxicity-induced β-cell dysfunction. Although the basal 
PGC-1α expression level was very low in fresh, isolated rat is-
lets in our study, it increased gradually with time under gluco-
lipotoxic conditions. After three days of exposure to such high 
glucose concentrations, insulin and BETA2/NeuroD gene ex-
pression levels were downregulated significantly. An even more 
interesting finding was that the suppression of the Pdx-1 gene 
needed more time after exposure to glucolipotoxic conditions, 
and then it gradually decreased. We suggest that PGC-1α 
played important key roles in intracellular fuel regulation and 
could herald in a new era in the treatment of patients with 
type 2 diabetes mellitus by providing protection from glucoli-
potoxicity, which is an important cause of the development 
and progression of the disease (Fig. 2).

STAGES OF GLUCOLIPOTOXICITY

We viewed the changes that occurred in β-cells during the 
progression from the normal state to severe diabetes as con-
sisting of three stages (Fig. 3). We cited much of stages of glu-
colipotoxicity in a similar manner as those referenced in Weir 

Fig. 1.  Mechanism of pancreatic β-cell glucolipotoxicity. Nor-
mal laboratory ranges of glucose and fatty acids are not toxic 
to β-cells. The problems arise when β-cells experience pro-
longed exposure of sustained elevation of hyperglycemia to-
gether with elevated hyperlipidemia. Chronic high glucose 
levels exert a significant effect on β-cell lipid metabolism via 
altered enzyme activity and expression of key transcription 
factors. The consequent change in cellular energy metabolism 
results in glucolipotoxicity, which induces β-cell apoptotic cell 
death and promotes type 2 diabetes. FFA, free fatty acid; 
LCFACoA, long-chain fatty acyl-CoA; DAG, diacylglycerol; 
TG, triglyceride; PL, phospholipid.

Fig. 2.  Progression from the normal state to severe diabetes. 
This panel shows the changes that occur in β-cells during the 
three-stage progression from the normal state to severe diabe-
tes. GSIS, glucose-stimulated insulin secretion; GLUT2, glu-
cose transporter2; GK, glucokinase; IAPP, islet amyloid poly-
peptide; ER, endoplasmic reticulum.
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et al. [39].

Stage 1: mild decompensation
In this stage, there is a specific loss of GSIS, whereas insulin 
secretion to other secretagogues, such as arginin, IBMX and 
GLP-1, is preserved. Insulin stores in the β-cells are well pre-
served, suggesting that secretory mechanisms (including chan-
nel activities, membrane docking of insulin granules and mi-
tochondrial ATP production) are more severely affected than 
those of insulin synthesis [40]. A loss of β-cell differentiation 
can be found at this stage, but insulin mRNA levels are pro-
tected, which probably allows insulin production to be reason-
ably well maintained for the degree of β-cell deficiency.

Stage 2: severe decompensation
β-cells are degranulated, which coincides with a decrease in 
insulin mRNA, pointing to decreased insulin synthesis. In this 
situation, β-cell differentiation is grossly deranged, with altera-
tions of metabolic genes and key transcription factors (Pdx-1, 
BETA2/NeuroD, and MafA), as well as increased expression of 
several important stress genes (A20 and Heme oxygenase-1). 

Stage 3: decompensation with structural damage and death 
of β-cells 
Islets can transition from having a relatively normal structure 
with abnormal function to a stage of obvious structural dam-
age. Amyloid formation in human type 2 diabetes is a striking 

abnormality. Amyloid fibrils can have a destructive effect on 
β-cells, but we know little about the mechanisms responsible 
for their formation. Lipid droplets are sometimes found in 
β-cells, which raises questions about lipotoxicity. Islet fibrosis 
can also be found. Although it is tempting to suggest that an 
increased rate of apoptosis must be important for the develop-
ment of human type 2 diabetes, it is possible that limitations of 
islet neogenesis and β-cell replication are at least as important. 
Severe β-cell ER stress leading to strong activation of the UPR 
might cause apoptosis, which is mediated by stress kinases and 
transcription factors, such as Jun N-terminal kinase (JNK) and 
C/Ebp-homologous protein (CHOP). Importantly, disruption 
of the CHOP gene was shown to inhibit β-cell apoptosis, ex-
pand β-cell mass and improve glycemic control in mouse mod-
els of diabetes, which suggests that the UPR plays an impor-
tant role in mediating the β-cell dysfunction of diabetes. We 
found that glucose moderately stimulates ER stress; however, 
high glucose levels synergize with fatty acids to stimulate UPR 
and JNK with β-cell apoptosis as a consequence. Chronic ex-
posure to high glucose is expected to increase the metabolic 
flux in mitochondria and lead to excess production of reactive 
oxygen species (ROS) through the hexosamine pathway. The 
level of oxidative stress exerted on the β-cell depends on its ca-
pacity to scavenge ROS and other free radicals generated un-
der conditions of glucolipotoxicity. Oxidative stress and/or ac-
tivation of the JNK pathway suppresses insulin gene expression, 
which is accompanied by reduction of PDX-1 [41]. Interesting-

Fig. 3.  Working hypothesis in glucolipotoxicity-induced β-cell 
dysfunction. PGC-1α inhibits insulin and BETA2/NeuroD 
transcription levels, and attenuating PGC-1α overexpression 
protects against glucolipotoxicity-induced β-cell dysfunction 
[13].

Fig. 4.  β-cell dysfunction by glucolipotoxicity. Under glucoli-
potoxic conditions, oxidative stress is induced and the JNK 
pathway is activated. PDX-1 is translocated pathogenically 
from the nucleus to the cytoplasm by JNK activation and fi-
nally induces suppression of insulin secretion [41]. 



448

Kim J-W, et al.

Diabetes Metab J 2011;35:444-450 http://e-dmj.org

ly, elevation of PGC-1α by glucolipotoxicity might promote or 
enhance the harmful effects of the JNK pathway (Fig. 4).

SUMMARY AND CONCLUSION

Progressive loss of β-cell function and mass with aging are ob-
served in type 2 diabetic patients and even in people with nor-
mal glucose tolerance. A genetic element clearly underlies 
β-cell dysfunction and insufficient β-cell mass; however, a 
number of modifiable factors are also linked to β-cell deterio-
ration, most notably chronic hyperglycemia and elevated FFA 
levels. Pancreatic β-cells exposed to high glucose and lipid 
concentrations display altered gene expression, function, sur-
vival, and growth that may contribute to the slow deteriora-
tion of the functional β-cell mass in type 2 diabetes. These glu-
colipotoxic alterations may result from various types of stress, 
including oxidative stress, ER stress, cytokine-induced apop-
tosis, and hypoxia. A clearer understanding about the differ-
ences of energy metabolism between normal and pathologic 
conditions and related alterations of important genes expres-
sion in β-cells should help explain the mechanism of glucoli-
potoxicity in β-cells. 
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