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Introduction
De novo drug development is an expensive and time-con-

suming process. It is known that the total average development 
cost for a new drug ranges from $2 to $3 billion and the total 
development time takes at least 13–15 years.[1] Further, it suf-
fers from a high attrition rate. Of the drugs entering phase 1 
clinical trials, only 10% are approved, the rest failing due to 
high toxicity or inefficacy.[2] These attritions are mainly due to 
inaccurate identification of the drug target or response. Despite 
rapid advancements in technologies and geometric increases in 
R&D spending, the number of drugs newly approved remains 
the same.[3] Moreover, in the oncology area only 5% of drug 
compounds entering Phase I clinical trials are approved,[4] and 
in the area of orphan drugs, more than 8000 related diseases 
exist, making the de novo drug development impossible for this 
huge number of diseases with the current R&D costs.[5]

Within this context, finding new indications and targets for 
already marketed drugs, an approach called ‘drug repurposing’ 
(or ‘drug repositioning’), which was first discussed by Ashburn 
and Thor in 2004,[2] has begun to fill the gap for the lack of ef-
ficiency of the traditional drug development.[6] The major ad-

vantage of drug-repurposing approaches is that, for an existing 
drug, not only preclinical information but also clinical profiles 
(pharmacokinetic, pharmacodynamic and toxicity) are already 
available, thereby reducing the development risk. Accordingly, 
the drug compound can rapidly enter late-stage clinical trials, 
reducing development cost and time.[7] Therefore, it is not 
surprising that nowadays about 30% of newly approved drugs 
are repositioned drugs in the U.S.[2] Table 1 lists some of the 
repurposed drugs developed so far, and Figure 1 conceptually 
displays de novo drug development and drug repurposing pro-
cesses.

Drug repurposing is performed either experimentally or com-
putationally. The latter approach is also called ‘in silico drug 
repurposing’,[8] which belongs to the area of computational 
pharmacology. In silico drug repurposing is classified into dis-
covering new indications for an existing drug (drug-centric) 
and identifying effective drugs for a disease (disease-centric) 
and has the common strategy of similarity assessment between 
drugs and/or diseases.[9] Various computational repurposing 
approaches were reviewed in Jin and Wong.[10]

The development of in silico drug repurposing and its wide 
use today have been made possible by the following two tech-
nological trends.[8] The first trend is that high-throughput 
data from various sources, including genomics, proteomics, 
chemo-proteomics, and phenomics, have been generated and 
accumulated. As a result, not only data characterizing disease 
phenotypes and drug profiles, but entire pathway maps have 
become available. The second is that, due to the advances in 
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computational and data sciences, it has been possible for repur-
posing algorithms to develop, along with retrospective analysis 
and database maintenance for experimental data.[11]

Drug repurposing strategies

Knowledge-based repurposing
In this repurposing strategy, utilizing the drug-related infor-

mation, including drug targets, chemical structures, pathways, 
adverse effects, etc., models are built to predict unknown tar-
gets, bio-markers or mechanisms for diseases.[12] This strategy 

includes target-based, pathway-based, and target mechanism-
based drug-repurposing.

Target-based drug-repurposing
Given proteins or biomarkers of interest, target-based drug-

repurposing comprises high-throughput and/or high-content 
screening (HTS/HCS) of drug compounds,[13] followed by in 
silico screening of drug compounds from drug libraries, such as 
ligand-based screening or docking.[14] Compared with blinded 
search or screening which does not use biological or pharmaco-
logical information when screening, target-based repurposing 
directly links targets with disease mechanisms and therefore 
the likelihood of drug discovery significantly improves. The ad-
vantage of the target-based approach lies in its ability to screen 
nearly all drug compounds with known chemical structure. 
However, target-based methods cannot identify unknown 
mechanisms beyond the targets already known.

Pathway-based drug-repurposing
Pathway-based drug-repurposing utilizes metabolic pathways, 

signaling pathways, and protein-interaction networks informa-
tion to predict the similarity or connection between disease and 
drug. For example, using omics data processed from human 
patients or animals, disease-specific pathways are reconstructed 
to serve as new targets for repositioned drugs.[15]

Target mechanism-based drug-repurposing
Target mechanism-based drug-repurposing integrates signal-

ing pathway information, treatment omics data, and protein 
interaction networks to discover new mechanisms of action for 
drugs.[16] The necessity of precision medicine, which has been 
increasingly important, motivates such drug-repurposing ap-
proaches. The advantage of these repurposing approaches is that 

Figure 1. Conceptual diagram of de novo drug development and drug 
repurposing; the arrow denotes the initiation time in each scenario and 
the number denotes a period of time in years. In this figure, the objec-
tive of drug repurposing was assumed to be to identify or discover new 
targets for a drug marketed. Note that drug repurposing begins with 
target discovery for an existing drug, directly followed by phase 2 and 
3 clinical trials, while animal and phase 1 clinical studies were not con-
ducted as results for these studies are already available for an existing 
drug.

Table 1. Examples of repositioned drugs (selected)

Drug Original indication New indication

Allopurinol Cancer Gout

Aspirin Inflammation, Pain Antiplatelet

Bromocriptine Parkinson’s disease Diabetes mellitus

Bupropion Depression Smoking cessation

Duloxetine Depression Stress urinary incontinence

Finasteride Benign prostatic hyperplasia Hair loss

Gabapentin Epilepsy Neuropathic pain

Gemcitabine Antiviral Cancer

Methotrexate Cancer Rheumatoid arthritis

Propranolol Hypertension Migraine headache

Raloxifene Osteoporosis Breast cancer

Sildenafil Angina Erectile dysfunction

Thalidomide Sedation, Morning sickness Leprosy, Multiple myeloma

Zidovudine Cancer AIDS
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they aim to discover the mechanisms related not only to dis-
eases or drugs but also to drug treatments to specific diseases.

Signature-based repurposing
In signature-based repurposing, gene signatures information 

obtained from disease omics data[17] is used to discover new 
off-targets or mechanisms of disease. This approach searches 
inverse drug–disease relationships by comparing gene expres-
sion profiles between drug and disease. In the work by Dudley 
et al.,[20] potential drug–disease pairs were investigated for 
inflammatory bowel disease (IBD), where gene expression pro-
files obtained from the gene expression omnibus database[18] 
were compared with gene expression profiles comprising 164 
drug compounds obtained from the connectivity map.[19] As a 
result, unknown drug–disease pairs were discovered, with one 
pair validated in preclinical models. 

The advantage of these approaches is that they identify new 
mechanisms of action for drugs. Also, unlike knowledge-based 
methods, more molecular- and/or genetic-level mechanisms are 
involved in these methods.

Phenotype-based repurposing
The phenotypic information has become available as a new 

source of drug repositioning. In recent years, this type of in-
formation has been increasingly used by systems approaches 
to detect genetic traits associated with human diseases.[21] 
Natural language processing skills applied to electronic health 
records (EHRs) can reveal additional adverse drug events which 
were not observed during drug development.[22] For example, 
mining EHRs helped in identifying that metformin can be re-
purposed for cancer treatment.[23] 

Methods for computational drug repurposing

Machine learning
Machine learning (ML) techniques that have been applied 

for drug repositioning include logistic regression, support vec-
tor machine (SVM), random forest, neural network (NN), and 
deep learning (DL). 

For logistic regression, PREDICT, a similarity-based ML 
framework, has been reported where drug-drug similarity was 
integrated with disease-disease similarity and integrated simi-
larity values were used as features in predicting similar drugs for 
similar diseases using logistic regression.[24] SPACE, another 
similarity-based ML method, also used logistic regression to 
predict the therapeutic chemical class of a drug by integrating 
multiple sources of data.[25]

For SVM, Napolitano et al.[26] predicted drug therapeutic 
class by a SVM approach based on molecular target, drug 
chemical structure, and gene expression similarity. In their 
work, these features were merged into a single drug similarity 
matrix to be used as a kernel for SVM classification. Similarly, 
Wang et al.[27] proposed a SVM model incorporating molecu-

lar activity, drug chemical structure, and side effect. Three types 
of data were then integrated to construct a kernel function of 
SVM classifier, and their method showed higher efficiency than 
other methods.

For NN, Menden et al. [28] developed a NN-based prediction 
model for cancer cell line response to drug treatment, parame-
terized by IC50. In their model, genomic (e.g., microsatellite sta-
tus and mutation status of 77 oncogenes) and chemical features 
(e.g., structural fingerprint) of cancer cell lines were analyzed to 
build a perceptron NN and random forest regression.

DL, when compared to shallow learning, is capable of dis-
covering latent and complex structure in large datasets and, by 
using backpropagation algorithms, allows adjusting connecting 
weights as well, enabling to compute the representation of each 
layer based on that of the previous layer.[29] Aliper and Plis[30] 
analyzed gene expression profile data using a DL approach to 
predict therapeutic categories of drugs and found deep neural 
networks (DNN) surpassed SVM, suggesting evidence for ap-
plying DL to drug development as a useful tool. Additional 
reports suggested that by multi-task learning DL-based ap-
proaches outperform traditional ML algorithms in predicting 
the toxicity.[31]

Network models
In these models, network nodes represent drug, disease, or 

gene products while edges represent interactions or relation-
ships between nodes. Networks are knowledge-based or com-
putationally inferred from multiple data sources and represent 
various interactions, including drug-drug, drug-target, drug-
disease, disease-disease, disease-gene, and protein-protein 
interactions, and transcriptional and signaling networks.[32] 
Based on the ‘guilt-by-association’ principle, by integrating het-
erogeneous data, the method can discover unknown or hidden 
drug-disease relationships. According to this principle, drugs 
provoking similar transcriptional responses could have a similar 
mode of action.[33] 

Using a bi-partite network, Cheng and Liu[34] compared 
similarities between drug-based, target-based, and network-
based interactions and used them in predicting drug-target in-
teraction, finding that network-based inference showed the best 
performance as compared by the area under receiver operating 
curve (AUROC). Also, using a drug–disease heterogeneous 
network model, Wu et al.[35] identified closely connected mod-
ules of drugs and diseases, so as to extract the information on 
potential drug–disease pair candidates for drug repositioning. 
Jin et al.[17] proposed a repurposing method for cancer drugs 
by leveraging potential off-target effects on cancer cell signaling 
pathways. 

Text mining and semantic inference 
The biomedical and pharmaceutical literature contains a huge 

amount of information available for drugs and diseases, from 
which potential indications for existing drugs can be detected 



Vol. 27, No.2, Jun 30, 2019
62

TCP 
Transl Clin Pharmacol

Drug repurposing

through text mining schemes.[36] One basis for this scheme is 
biological ontology, which enables to compare and analyze bio-
logical information from various sources. Several text mining 
approaches for drug repurposing are summarized in a recent 
study[37]; for example, if nutrition B deficiency was found to 
cause disease A in one study while another study found drug 
C to be an activator of nutrition B in another disease, then text 
mining would recommend repurposing drug C for disease A.

Semantic inference involves technologies such as topic 
modeling that facilitate the discovery of drug indications by 
integrating various data sources. For instance, Bisgin et al.,[38] 
proposed Latent Dirichlet Allocation based drug repositioning 
incorporating a topic model to process the phenome informa-
tion for drug side effects. Also, by modeling relations between 
breast cancer drugs approved by FDA and associated genes, 
pathways, SNPs and diseases, Zhu et al.,[39] developed an 
ontology-based knowledge tool to predict potential disease-
drug pairs in breast cancer. Chen et al.,[40] proposed a semantic 
linked network-based approach to assess drug–target associa-
tions, which comprised drugs, protein targets, chemical com-
pounds, diseases, pathways, side effects, and their relations. In 
their model, the topology and semantics were represented by 
the subgraph between a drug and a target, where drug–target 
pairs located in different disease areas in the model but showing 
the similarity were associated with a potential repositioning op-
portunity.

Validation for computational repurposing 
Validation of repurposing results can be done computationally 

and experimentally. For computational validation, a straight-
forward way is to assess AUROC values as well as specificity, 
sensitivity and positive predictive value (PPV).[41] In addition, 
recall and precision can be computed to obtain the precision-
recall curve (PRC),[42] followed by the area under this curve 
(AUPRC).[43] In addition, the validity can be assessed by com-
paring predicted targets in PubMed, ClinicalTrials or EHRs. 
For example, EHRs were used to validate the metformin effects 
associated with cancer mortality.[24]

For experimental validation, cell-based targeted assays (in vi-
tro and in vivo) and animal experiments need to be performed. 
For example, atorvastatin’s beneficial effect on graft survival was 
observed in a single-center cohort of 2,515 patients receiving 
renal transplantation by retrospective analysis of EHRs followed 
for up to 22 years, which was validated in a meta-analysis using 
public microarray datasets where atorvastatin was also found to 
be beneficial for organ transplantation.[44] 

Discussion 
Computational drug repurposing greatly reduces drug devel-

opment costs and time by discovering new indications for exist-
ing drugs. This method enables the joint analysis of different 
sources of data, including genomic, biomedical and pharmaco-
logical data, which improves drug repositioning efficiency. 

In this review, available repositioning methods were described 
according to the source of data and information used. With the 
increased importance of precision medicine and personalized 
drug, mechanism-based repurposing approaches are expected 
to be extended to finding new indications for individual patients 
as these repurposing approaches can take into account patients 
heterogeneity and complexity, reducing the risk of drug toxicity 
or inefficacy caused by inter-patient variability.[45]

A few issues to consider in computational repurposing are 
as follows. First, repurposing results are sensitive to datasets 
used, more reliable results obtained with more sources of data. 
Second, although more studies are needed, previous works 
show DNN-based repurposing methods outperform other ML-
based methods such as SVM or random forest. Given that DL 
methods have a good performance in pattern recognition such 
as image and configuration, it may be possible to use recursive 
or convolutional neural networks to assess the potential toxic-
ity of drug compounds based on raw structures.[46] DL-based 
methods have been reported to be effective for assessing drug 
toxicity.[32]
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