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ABSTRACT

Ovarian cancer is most deadly gynecologic malignancies worldwide. Chemotherapy is the 
mainstay treatment for ovarian cancer. Despite the initial response is promising, frequent 
recurrence in patients with advanced diseases remains a therapeutic challenge. Thus, 
understanding the biology of chemoresistance is of great importance to overcome this 
challenge and will conceivably benefit the survival of ovarian cancer patients. Although 
mechanisms underlying the development of chemoresistance are still ambiguous, 
accumulating evidence has supported an integral role of cancer stem cells (CSCs) in 
recurrence following chemotherapy. Recently, tumor metabolism has gained interest as a 
reason of chemoresistance in tumors and chemotherapeutic drugs in combination with 
metabolism targeting approaches has been found promising in overcoming therapeutic 
resistance. In this review, we will summarize recent studies on CSCs and metabolism in 
ovarian cancer and discuss possible role of CSCs metabolism in chemoresistance.
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BACKGROUND

Ovarian cancer is most deadly gynecologic malignancies worldwide. There were an estimated 
239,000 new cases with 152,000 deaths in 2012 [1]. This high mortality is mainly due to 
late diagnosis with less than 20% of ovarian cancer patients are diagnosed at an early stage 
(International Federation of Gynecology and Obstetrics [FIGO] stage I and II). The 5-year 
survival rate of these patients is over 90%. However, this number is less than 30% in patients 
in an advanced stage (FIGO stage III and IV) as therapies become increasingly ineffective in 
treating metastatic ovarian cancer [2].

Most ovarian cancer patients undergo debulking surgery followed by chemotherapy. 
While approximately 75% of patients initially respond to the platinum/paclitaxel-based 
chemotherapy, most of them relapse with chemoresistance which results in treatment 
failure and causes over 90% of deaths [3]. Thus, understanding the molecular mechanisms 
underlying this drug resistance is important for the development of effective therapies to 
improve ovarian cancer patients' outcome.
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OVARIAN CANCER STEM/TUMOR-INITIATING CELLS

Cancer stem cells (CSCs) is a subpopulation of tumor cells with self-renewal and 
differentiation properties that can sustain tumor growth and recapitulate a heterogeneous 
tumor [4]. CSCs have been identified in hematologic malignancies and various solid tumors 
[5-9]. Experimental evidence for the existence of ovarian CSCs was first reported in 2005, 
when Bapat and colleagues [10] identified a tumorigenic clone from malignant ascites 
of a patient with ovarian cancer through multilayer spheroid culture. Thereafter, ovarian 
CSCs have been isolated in clinical specimens by various methods based on phenotypic 
and functional properties of CSC, such as the capability to form tumor spheroids under 
suspension culture, the efflux capacity of fluorescent dye Hoechst 33258 and stem cell marker 
expression [11-13].

CD44 is a cell-surface glycoprotein of hyaluronate receptor that plays a role in tumor 
stemness, recurrence and drug resistance in ovarian cancer. Paik et al. [14] identified CD44 as 
a marker for fallopian tube epithelial stem-like cells (FTESCs), and further suggested a role of 
FTESC in the initiation of serous tumors. CD44 in combination with other markers, such as 
CD117 [15], MyD88 [16], and CD24 [17] have been extensively used for ovarian CSCs isolation. 
For instance, Zhang et al. [15] isolated CD44+/CD117+ ovarian CSCs that were fully capable 
of re-generating the original tumor phenotype in mice, and were found to exhibit greater 
resistance (3.1–16.1 folds) to cisplatin and paclitaxel as compared to cells cultured under 
differentiating conditions. Several recent studies have shown that CD44 overexpression in 
ovarian cancer is associated with poor prognosis [18-20]. Specifically, Gao et al. [20] reported 
higher expression of CD44 in metastatic/recurrent ovarian cancer tissue samples as compared 
with matched primary tumor samples, and there is a significant association between CD44 
expression and unfavorable prognosis. Further, knocking down of CD44 increased tumor 
cells' sensitivity to paclitaxel, indicating that CD44 up-regulation might be a critical event in 
the development of drug resistance in ovarian cancer [20].

CD133 (prominin-1) is a pentaspan transmembrane protein initially recognized as a marker 
for human hematopoietic stem cells [21]. CD133 has been defined as a CSC marker in 
various tumors, including ovarian cancer. It has been documented that CD133+ ovarian 
cancer cells possessed tumorigenic and aggressive capacity, as well as enhanced resistance 
to chemotherapies compared with CD133− cells [22-24]. In particular, Baba and colleagues 
[24] reported the IC50 value of cisplatin for CD133+ epithelial ovarian cancer cells was higher 
than that for CD133− cells, indicating a greater chemoresistance in CD133+ cells. They further 
demonstrated that mRNA expression of CD133 correlates with chemoresistance capability 
of CD133+ cells. Similarly, lower cisplatin sensitivity and higher breast cancer resistance 
protein (ATP-binding cassette sub-family G member 2 [ABCG2]) gene expression which is 
implicated in drug efflux were detected in C-X-C chemokine receptor type 4 (CXCR4)+CD133+ 
CSCs in comparison with non-CSCs counterparts, suggesting a chemoresistant phenotype in 
CXCR4+CD133+ ovarian CSCs [25]. Moreover, CD133 overexpression is associated with ovarian 
cancer patients' response to treatment and clinical outcome. Zhang et al. [26] reported a 
correlation of CD133 expression with high-grade ovarian serous carcinoma, advanced stage 
disease, ascites levels, lack of response to chemotherapy, shorter overall survival time, and 
reduced disease-free survival. Interestingly, compared with matched primary tumors, the 
percentage of CD133+ cells in recurrent tumors is increased from 6.3% to 34.5% in patients 
with platinum-resistant recurrence [27]. These studies support a clinical significance of 
CD133 in ovarian cancer chemoresistance.
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CD117, also known as stem cell growth factor receptor or c-Kit, is a tyrosine kinase 
oncoprotein. CD117+ ovarian cancer cells isolated from human ovarian serous carcinoma 
tissues and ascites exhibited 100-fold higher tumorigenic capability than CD117− cells, and 
as few as 103 CD117+ cells were sufficient to self-renew and give rise to heterogeneous tumors 
in mice [28]. Besides, it was further found CD117 expression was statistically correlated 
with resistance to platinum-paclitaxel chemotherapy, as only 10% (1/10) CD117+ patients 
were sensitive to chemotherapy while a sensitivity was found in 60% (9/15) CD117− group, 
and correlated with shorter recurrence intervals [28]. These results indicate that CD117+ 
CSCs may escape from conventional chemotherapy, possess the ability to regenerate tumors 
and cause relapse after therapy. Based on an analysis of 56 patients with advanced serous 
ovarian cancer, the expression of CD117 was significantly correlated with worse response to 
first-line chemotherapy, decreased treatment-free interval and shorter overall survival [29], 
further supporting the importance of CD117 in ovarian cancer chemoresistance. Moreover, 
our group demonstrated that ovarian CSCs that showed high CD117 expression exhibited 
chemoresistance to clinically relevant doses of cisplatin and paclitaxel [30]. We further 
illustrated that hypoxia or HIF-1α could upregulate the expression of CD117 which promotes 
chemoresistance through a Wnt/β-catenin pathway. Knockdown or inhibition of CD117 
increased chemosensitivity both in vitro and in vivo [30]. These results support the clinical 
relevance of CD117 in stemness and chemoresistance.

The aldehyde dehydrogenase (ALDH) superfamily comprises 19 isozymes that catalyze the 
oxidation of aldehyde. ALDH1A1, a major isoform in CSCs, has been described as a candidate 
ovarian CSC marker and is associated with chemoresistance [31,32]. Landen and colleagues first 
identified ALDH1A1+ cells possessing CSC phenotype in ovarian cancer cell lines. High ALDH 
expression was significantly associated with poor progression-free survival in ovarian cancer 
patients, and knockdown of ALDH1A1 sensitized ALDH1A1+ cells to taxane and platinum [32]. 
Silva et al. [31] found that the percentage of ALDH+ in SKOV-3 cells increased with an increase 
in the cisplatin dose, and these isolated ALDH+ showed greater viability and faster recovery 
after cisplatin treatment than ALDH− cells, indicating greater chemoresistance in ALDH+ than 
ALDH− cells. They further isolated ALDH+CD133+ cells that were able to initiate xenograft 
tumors with only 11 cells and found that the presence of ALDH+CD133+ cells in primary ovarian 
tumors predicts worse outcome in patients [31]. These findings indicate a role for ALDH1+ 
CSCs in drug resistance and may be a chemotherapy target for ovarian cancer.

CD24 and epithelial cell adhesion molecule (EpCAM) are putative ovarian CSCs markers, 
which also play a role in chemoresistance. CD24 is a glycosylphosphatidylinositol-linked 
cell surface adhesion molecule that is frequently detected in invasive ovarian carcinomas 
while usually absent in normal ovarian surface epithelium and adenomas [33]. High 
cytoplasmic CD24 expression in the invasive ovarian carcinomas predicts shorter overall 
survival (37 months vs. 98 months) [33]. CD24+ cells isolated from human ovarian tumors 
were relatively more resistant to cisplatin than the CD24− counterpart [34]. Donahoe group 
isolated CD44+CD24+EpCAM+ E-cad− subpopulation that possesses CSC characteristics 
with enhanced tumorigenic capacity in vivo and chemoresistance to doxorubicin, cisplatin, 
and paclitaxel therapeutics [35]. These CSCs could be stimulated by doxorubicin and 
preferentially inhibited by Müllerian inhibiting substance [35]. Tayama et al. [36] found an 
elevated expression of EpCAM in ovarian tumor tissues in patients after receiving platinum-
based chemotherapy compared with that in corresponding tissues before chemotherapy, and 
patients with high EpCAM expression are less likely to respond to first-line platinum-based 
chemotherapy and are associated with poor survival [36].
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The mechanisms underlying chemoresistance of CSCs are unclear. Drug efflux through 
ATP-binding cassette (ABC) transporters has been described as one of the reasons (Fig. 1). 
The up-regulation of 2 ABC transporters, P-glycoprotein (P-gp or ABCB1) and ABCG2, were 
frequently observed in ovarian CSCs [12,30]. The quiescent state of CSCs, which is essential 
for preserving the self-renewal function of stem cells, is also a critical factor in the drug 
resistance. Unlike the rapidly dividing cells, the relatively quiescent CSCs are insensitive 
to most of the chemotherapeutic drugs [37]. Indeed, quiescent CSCs that display high 
chemoresistant capability have been identified in ovarian cancer cells lines [38] and tumor 
tissue specimens [34]. In addition, DNA repair and autophagy are also implicated in the 
chemoresistance of ovarian CSCs. For example, polymerase η (Pol η) enhanced cisplatin-
induced apoptosis and blocked the cisplatin-induced enrichment of ovarian CSCs, suggesting 
that an increase in expression of DNA Pol η in CD44+/CD117+ contributes to drug resistance 
[39]. Similarly, CD44+/CD117+ ovarian CSCs have higher autophagy levels than non-CSCs 
counterparts, and inhibition of autophagy impairs the ability of ovarian CSCs to resist 
chemotherapy in vitro and in vivo [40].

OVARIAN CANCER METABOLISM

Metabolic reprogramming was first seen as a consequence of oncogene activation. 
Later, loss-of-function mutations of metabolic enzymes have also been observed in the 
pathogenesis of several hereditary forms of cancer such as ovarian cancer and breast cancer. 
These data also suggest that metabolic reprogramming could be the cause, rather than the 
consequence, of tumor transformation [41]. Glycolysis is a coordinated series of chemical 
reactions that convert one molecule of glucose into lactate, and generate 2 molecules of ATP 
[42], which are the major source of energy of cancer cells [43]. Unlike normal tissues, tumor 
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Fig. 1. Schematic representation of CSCs in ovarian cancer chemoresistance. Chemotherapeutics fail to eliminate CSCs which can regenerate the entire tumor 
and ultimately result in a relapse. Ovarian CSCs are resistant to chemotherapy due to several mechanisms including increased drug efflux, quiescence, enhanced 
DNA repair, autophagy, etc. 
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cells preferentially metabolize glucose by glycolysis instead of oxidative phosphorylation 
(OXPHOS), even in the presence of oxygen. The so called “Warburg effect” is one of the key 
steps of cancer development [44,45]. This up-regulation of glycolysis will generate more 
lactate via lactate dehydrogenase. The acidity in the microenvironment is known to facilitate 
tumor invasion and metastasis [46,47]. Furthermore, the accelerated glycolysis in tumors 
also contributes to chemoresistance [48-52]. While the underlying mechanisms of action 
remain unclear, it has been shown that downregulation of glycolytic enzymes could improve 
or even overcome drug resistance [53,54].

Many glycolytic inhibitors are currently under preclinical or clinical development (Fig. 2). 
Hexokinase 2 (HK2) is a key glycolytic enzyme that phosphorylates glucose into glucose-
6-phosphate (G6P). In ovarian cancer, HK2 is highly expressed in epithelial ovarian cancer 
tissues, especially the serous subtype, but is scanty in normal, benign, and borderline ovarian 
tumors. Also, HK2 expression is strongly linked to chemoresistance [55,56]. Collectively, 
HK2 may be a promising target for ovarian cancer treatment. Lonidamine, a HK2 inhibitor, 
has been used for cancer treatment in clinics in Europe [57]. Lonidamine has been shown to 
revert the resistance to cisplatin and paclitaxel in advanced ovarian cancer [58].

Phosphofructokinase-1 (PFK-1) catalyzes the conversion of fructose 6-phosphate and ATP 
to fructose 1,6-bisphosphate and ADP. PFK-1 regulates the highly exergonic and irreversible 
step of glycolysis regardless of the cancer type. It has been demonstrated that loss of 
6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase 3/4 (PFKFB3/4), the key enzyme 
regulating PFK-1 activity, can increase caspase 3/7 activity and reactive oxygen species (ROS) 
levels, thus enhancing mitotic cell death via phosphoinositide 3-kinase (PI3K)/Akt pathway 
when combined with paclitaxel treatment in mitotically arrested ovarian cancer [59]. The 
3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO) is an inhibitor of PFKFB3, which has been 
demonstrated to suppress glycolysis and tumor growth [60].

The 3-phosphoinositide-dependent protein kinase-1 (PDK1) is a kinase enzyme which acts 
to inactivate the enzyme pyruvate dehydrogenase by phosphorylation, resulting in the 

5/11https://ejgo.org https://doi.org/10.3802/jgo.2018.29.e32

Ovarian CSCs and chemoresistance

Glucose

Reverse cisplatin and paclitaxel
resistance in advanced ovarian cancer

Combined with paclitaxel in treating
mitotically arrested ovarian cancer

Lonidamine

3PO

DIC

HK2

PFK-1

PDK1

FASN

G6P

F6P

F-1,6-BP

Pyruvate

LDH
PDH

Citrate

Acetyl-CoA

Fatty acid

Lactate

Fig. 2. Schematic of key glycolysis and lipogenesis enzymes and inhibitors. 
3PO, 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one; DIC, dicumarol; F-1,6-BP, fructose 1,6-bisphosphate; F6P, 
fructose-6-phosphate; FASN, fatty acid synthase; G6P, glucose-6-phosphate; HK2, hexokinase 2; LDH, lactate 
dehydrogenase; PDH, phosphate dehydrogenase; PDK1, 3-phosphoinositide-dependent protein kinase-1; PFK-1, 
phosphofructokinase-1.

https://ejgo.org


suppression of OXPHOS in mitochondria [48]. PDK1 is almost absent in normal ovaries, 
and 60% of benign ovarian tumors. Overexpression of PDK1 was evident in borderline and 
low- to high-grade ovarian tumors and correlates with survival in high-grade tumors [61,62]. 
PDK1 is also highly expressed in chemoresistant ovarian cancer cells [63]. Dicumarol could 
inhibit PDK1 activity, shifting the glucose metabolism from aerobic glycolysis to OXPHOS, 
increasing ROS levels, and inducing apoptosis in vitro and in vivo in ovarian cancer [64].

Lipid is strongly associated with ovarian cancer progression. Several specific lipids 
are increased in ovarian cancer patients [65]. Fatty acid synthase (FASN) is one of the 
most important biosynthetic enzymes in lipogenesis. It has been reported that FASN 
expression significantly correlates with tumor grade and FIGO staging. Patients with FASN 
overexpression tend to have a worse overall survival rate [66]. Ovarian tumors overexpressed 
FASN can be inhibited by FASN blockers, whereas normal tissues are FASN negative [67]. 
ERBB-PI3K-mechanistic target of rapamycin complex 1 (mTORC1) up-regulates FASN 
through the activation of the transcription factor sterol regulatory element-binding protein 
(SREBP)-1c [68]. FASN in turn can stimulate PI3K-mTORC1 signaling [69,70]. Furthermore, 
inhibition of FASN can induce apoptosis in platinum-resistant ovarian cancer cells and may 
reverse cisplatin resistance [71].

Epidemiological and clinical studies have suggested that polyunsaturated fatty acids 
(PUFAs) could have health benefits and therapeutic effects in cancer treatment. A recent 
study demonstrated that ω-3 and ω-6 PUFAs could induce cell death in ovarian cancer cell 
lines through ROS-dependent MAP kinase activation [72]. Moreover, Li et al. [73] showed 
that ovarian CSCs identified as ALDH+/CD133+ population have higher levels of unsaturated 
fatty acids (UFAs) and stearoyl-CoA desaturase-1 (SCD1, an enzyme produces mono-UFAs) 
compared to non-CSCs (ALDH−/CD133−). Knockdown or inhibition of SCD1 could reduce 
CSC markers ALDH1A1, Sox2, Nanog, and Oct-4 expression in ovarian CSCs and patients 
derived CSCs. Furthermore, inhibition of lipid desaturation reduces the nuclear factor (NF)-
κB activity in ovarian CSCs [73].

CSC METABOLISM AND CHEMORESISTANCE

Several studies have indicated distinct metabolic features exist in CSCs. Some studies have 
shown that CSCs bear more active glycolytic activity than differentiated tumor cells [74-77]. 
For example, by comparing metabolite profiles of ovarian CSC-like spheroids and parental 
cells, it is found that spheroid cells mainly relied on anaerobic glycolysis and involved direct 
glucose oxidation in the pentose cycle [78]. Similarly, more active glycolysis was observed 
in CSCs isolated in rodent ovarian surface epithelium compared with parental cells [79]. 
This distinct glycolytic metabolism profile in CSCs indicates that CSCs are endowed with 
the capacity to survive under stress conditions, in particular hypoxia, and may contribute 
to chemoresistance [78]. In the contrary, CD44+CD117+ ovarian CSCs showed an elevated 
expression of enzymes associated with OXPHOS with higher mitochondrial ROS production, 
suggesting that the mitochondria electron respiratory chain is preferentially utilized [80]. 
Mitochondrial metabolism is also described in lung [81] and pancreatic CSCs, and that this 
OXPHOS-dependent metabolic phenotype seems to be associated with a selective advantage 
to survive in nutrient starvation and other environmental stress conditions [80,82,83]. It is 
still controversial regarding if CSCs use glycolytic or mitochondrial respiration pathway in 
comparison with non-CSCs [77,84,85]. However, it is noted that the metabolic plasticity that 
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CSCs may alter metabolic phenotypes in adaptation to microenvironmental fluctuations 
[83,86]. Moreover, elevated fatty acid β-oxidation (FAO) activity was found in ovarian CSCs in 
comparison with non-CSC counterpart [80]. In breast cancer, an elevated FAO is responsible 
for self-renewal and chemoresistance of the CSCs [87]. These biochemical characteristics 
suggest a possibility that the metabolism in CSCs may be vulnerable to therapeutic 
intervention.
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