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ABSTRACT
Gastric cancer (GC) is one of the deadliest malignancies in the world. Currently, clinical 
treatment decisions are mostly made based on the extent of the tumor and its anatomy, 
such as tumor-node-metastasis staging. Recent advances in genome-wide molecular 
technology have enabled delineation of the molecular characteristics of GC. Based on this, 
efforts have been made to classify GC into molecular subtypes with distinct prognosis and 
therapeutic response. Simplified algorithms based on protein and RNA expressions have 
been proposed to reproduce the GC classification in the clinical field. Furthermore, a recent 
study established a single patient classifier (SPC) predicting the prognosis and chemotherapy 
response of resectable GC patients based on a 4-gene real-time polymerase chain reaction 
assay. GC patient stratification according to SPC will enable personalized therapeutic 
strategies in adjuvant settings. At the same time, patient-derived xenografts and patient-
derived organoids are now emerging as novel preclinical models for the treatment of GC. 
These models recapitulate the complex features of the primary tumor, which is expected to 
facilitate both drug development and clinical therapeutic decision making. An integrated 
approach applying molecular patient stratification and patient-derived models in the clinical 
realm is considered a turning point in precision medicine in GC.

Keywords: Stomach neoplasm; Precision medicine; Tumor biomarkers;  
Adjuvant chemotherapy; Molecular targeted therapy

INTRODUCTION

Gastric cancer (GC) is one of the most common malignancies as well as the leading cause of 
cancer mortality worldwide, with more than 1,000,000 new cases (5th) and 783,000 deaths 
(3rd) reported in 2018 [1]. Korea has the highest incidence rate, with 25,800 new cases and 
7,100 deaths expected in 2018 [2]; since a nation-wide screening program began in 1999, the 
number of early (E)GC cases has increased [3,4]. EGC treatment involves minimally invasive 
surgery including laparoscopic and robotic surgery, and endoscopic resection. The prognosis 
after surgery without additional treatment is excellent, with a 5-year overall survival (OS) 
rate over 90% [5-11]. However, a significant number of patients are diagnosed at an advanced 
stage, which is associated with poor outcome. Over 50% of patients with locally advanced 
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GC experience tumor recurrence in their lifetime, even after radical surgery and adjuvant 
chemotherapy [12].

GC is a heterogeneous disease with various treatment outcomes. Patients with locally 
advanced GC receive postoperative chemotherapy after curative surgery in order to eliminate 
any chances of micrometastasis [13,14]. However, this benefits only a limited number of 
patients, whereas others are overtreated or inappropriately treated. For example, in the 
CLASSIC trial [15], over 50% of patients who did not undergo adjuvant chemotherapy did 
not exhibit relapse and around 70% were still alive after 5 years. On the other hand, around 
30% of patients had relapsed at 5 years and 20% had passed away even after cytotoxic 
chemotherapy. This data suggests that patient stratification based on the biological 
characteristics of the tumor, beyond the anatomical extent of the tumor (tumor-node-
metastasis [TNM] staging), is needed.

GC is classified according to histomorphologic features. The Lauren classification 
categorizes GC into intestinal, diffuse, and mixed types, while the World Health 
Organization divides GC into papillary, tubular, mucinous, and poorly cohesive carcinomas 
[16,17]. Despite its versatility and wide application in the clinic, a histomorphologic 
classification system, unfortunately, has limited utility in GC owing to its weak association 
with clinical parameters such as prognosis or responsiveness to chemotherapy.

Motivated by the lack of clinically relevant classification systems, the latest research on 
GC has focused on elucidating the molecular landscape including the genetics of this 
disease. Recent technological advances have enabled detailed investigation of the molecular 
characteristics of GC. Several GC classifications have been proposed based on the correlation 
between molecular profiles and clinical behavior [18-22]. In addition, simplified patient 
classifiers have been suggested that can potentially help in determining the treatment 
approach, and novel preclinical models that recapitulate cancer in situ such as tumor 
organoids and patient-derived xenografts (PDXs) can bridge the gap between cancer genetics 
and tumor phenotype. This review discusses the molecular classifications of GC, simplified 
algorithms based on these classifications, and patient-derived models that can provide the 
next level of knowledge for implementing precision clinical care strategies for GC.

MOLECULAR CLASSIFICATION OF GC

The Cancer Genome Atlas (TCGA)
The TCGA Research Network Group [19] classifies GC into 4 molecular subtypes: Epstein-Barr 
virus (EBV), microsatellite instability (MSI), chromosomal instability (CIN), and genomically 
stable (GS). An analysis of 295 GC tissue samples using 6 molecular platforms,— i.e., array-
based somatic copy number analysis, whole-exome sequencing, array-based DNA methylation 
profiling, messenger RNA (mRNA) sequencing, microRNA sequencing, and reverse phase 
protein array— revealed that EBV-associated GC accounted for 9% of the samples and had 
the highest rate of DNA hypermethylation. All EBV GC cases presented CDKN2A promoter 
hypermethylation and showed a clear difference from the MLH1 hypermethylation pattern. 
EBV subtype was strongly associated with mutations in PIK3CA (80%), ARID1A (55%), and 
B cell lymphoma 6 co-repressor (23%). Furthermore, EBV GC shows PD-L1/2 and JAK2 
amplification and upregulation of immune cell signaling pathways. The EBV type is mainly 
observed in males and is typically located in the gastric fundus and body.
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MSI tumors account for 22% of the total analyzed cases and exhibit hypermethylation of 
promoters, such as the MLH1 promoter, as well as high rates of mutation in PIK3CA (42%), 
KRAS/NRAS (25%), JAK2 (11%), human ERBB3 (14%), ERBB2 (5%), and EGFR (5%). Alterations 
in B2M and human leukocyte antigen-B that are 2 major histocompatibility complex class I 
genes, are commonly found in MSI GC, which is also associated with older age at diagnosis 
and female sex.

CIN occurs in 50% of all the GC cases. The CIN subtype is correlated with intestinal-type 
histology and aneuploidy and shows aberrant activation of receptor tyrosine kinase (RTK)/
RAS signaling pathways, focal RTK amplification, and the highest frequency of TP53 
mutation (71%) as well as alterations in other canonical tumor suppressor genes such as 
SMAD 4 and APC. CIN tumors are frequently located at the gastroesophageal junction and 
gastric cardia.

The GS subtype constitutes 20% of GCs and exhibits diffuse histology. Mutations in 
CDH1 (37%) and RhoA (15%) and CLDN18/ GAP gene fusion (15%) are often detected in GS 
tumors, which also show upregulation of cell adhesion and angiogenesis-related pathways. 
Additionally, patients with the GS subtype are generally younger at the time of diagnosis.

TCGA has proposed a comprehensive set of molecular characteristics that define GC. 
Nevertheless, it failed to establish prognostic differences between each subtype. The TCGA 
cohort includes samples treated by different strategies, with only 47.7% of samples analyzed 
due to poor sample quality. Therefore, the clinical significance of TCGA subtypes had 
remained unclear. However, the clinical relevance of the TCGA subtypes was reconsidered in 
a recent study investigating the associations among survival, the benefits of chemotherapy, 
and TCGA subtypes in 2 independent cohorts [23]. The EBV and GS subtypes showed the 
best and worst prognoses, respectively, while the patients with the CIN and GS subtypes 
benefitted the most and least from adjuvant chemotherapy, respectively. Moreover, TCGA risk 
score based on subtype probability was found to be an independent prognostic factor in a 
multivariate analysis and showed a linear correlation with 5-year recurrence rate.

Asian Cancer Research Group (ACRG)
Based on an analysis of mRNA expression level, somatic copy number, and targeted gene 
sequencing in 300 tumors, the ACRG proposed the following 4 GC molecular subtypes: MSI 
(22.7%), microsatellite stable with epithelial-to-mesenchymal transition features (MSS/EMT, 
15.3%), MSS with tumor suppressor p53 (TP53) activity (MSS/TP53, 26.3%), and MSS with 
TP53 functional loss (MSS/TP53−, 35.7%) [20].

MSI exhibited hypermutation, with mutations in KRAS, ALK, ARID1A, and PI3K pathway 
genes. The MSS/EMT subtype was characterized by loss of CDH1 expression and had the 
lowest number of mutation events among the 4 subtypes. MSS/TP53+ GC is often associated 
with EBV infection and is enriched in mutations in APC, ARID1A, KRAS, PIK3CA, and SMAD4 
compared to the MSS/TP53− subtype. On the other hand, the latter has the highest frequency 
of TP53 mutation (60%) and focal amplification of HER2, EGFR, cyclin E1 (CCNE1), CCND1, 
MDM2, Robo2, GATA6, and MYC.

ACRG also characterized the clinical behavior of each GC subtype. MSI showed the best 
prognosis and lowest rate of recurrence, which was mainly hepatic. MSS/TP53+ had the next 
best prognosis, followed by MSS/TP53−. The MSS/EMT subtype had the worst prognosis and 
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highest rate of recurrence, which was mostly peritoneal. MSI tumors predominantly occur 
in the antrum; over 60% of cases are of the Lauren intestinal type and are usually diagnosed 
at early stages (I–II). On the other hand, MSS/EMT GC exhibits diffuse histology and a large 
subset is signet ring cell carcinomas; this subtype is diagnosed at the advanced stages (III–IV) 
and at a younger age.

Singapore–Duke classification
The Singapore–Duke study analyzed the gene expression patterns in 248 gastric tumors 
and identified 3 subtypes (proliferative, metabolic, and mesenchymal) [21]. Proliferative 
GCs were characterized by elevated expression of cell cycle-related genes and frequent 
TP53 mutation, copy number amplification, DNA hypomethylation, and a Lauren intestinal 
type. Oncogenic pathways such as E2F, MYC, and RAS signaling were upregulated in this 
subtype. Metabolic GCs showed upregulation of metabolic and digestion-related genes 
that are expressed in normal gastric mucosa. This subtype also showed hyperactivation of 
the spasmolytic-polypeptide-expressing metaplasia pathway, which is related to gastric 
metaplasia. The mesenchymal subtype was characterized by increased expression of genes 
related to the cell adhesion, extracellular matrix (ECM)–receptor interaction, and focal 
adhesion and activation of EMT and cancer stem cell pathways. The mesenchymal subtype 
was associated with a Lauren diffuse type and low copy number as well as alterations in p53, 
transforming growth factor β, vascular endothelial growth factor (VEGF), nuclear factor κ 
light chain enhancer of activated B cells (NF-κB), mechanistic target of rapamycin (mTOR), 
and sonic hedgehog (Shh) signaling pathways.

The Singapore–Duke study also compared drug responses among GC subtypes. Cell lines 
of the metabolic subtype were more sensitive to 5-fluorouracil (5-FU) than the others, and 
patients with metabolic GC showed greater responsiveness to 5-FU chemotherapy. Metabolic 
GC showed lower expression of thymidylate synthase and dihydropyrimidine dehydrogenase 
proteins, which are related to 5-FU resistance and this might be a possible explanation for 
the higher 5-FU sensitivity. On the other hand, cell lines of the mesenchymal subtype were 
particularly sensitive to PI3K/AKT/mTOR inhibitors, consistent with the high activation of 
the mTOR pathway.

Despite the differences in genomic alteration and drug response, the 3 subtypes showed no 
significant differences in cancer-specific and disease-free survival. Only proliferative GC 
patients showed shorter disease-free survival in the multivariate Cox proportional hazard 
regression analysis, although a correlation between higher TNM stage and worse prognosis 
was noted.

SIMPLIFIED ALGORITHMS WITH CLINICAL 
APPLICABILITY
Newly introduced molecular classifications of GC have provided insight into the heterogeneous 
nature of GC (Table 1). Each subtype is characterized by specific gene mutations and alterations 
in the signaling pathways as well as prognosis and response to chemotherapy. Nonetheless, 
these classifications have limited clinical applicability because they require complex molecular 
analyses that are not feasible in clinical practice. Therefore, simplified classifying algorithms 
based on clinically available diagnostic tools have been proposed.
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Immunohistochemistry (IHC) and in situ hybridization (ISH)
The molecular spectrum of GC can be analyzed by tissue microarray analysis of protein and 
mRNA expression, allowing categorization of GC into subtypes with distinct characteristics 
(Table 2). A study of 438 GC patients treated with palliative chemotherapy using 10 GC 
panels, which included Epstein–Barr encoding region ISH, IHC for mismatch repair proteins, 
RTKs, phosphatase and tensin homolog (PTEN), and p53, revealed a relationship between 
protein/mRNA expression levels and the specific clinical characteristics of EBV-positive GC 
[24]. In an analysis of 244 gastric adenocarcinomas according to EBV positivity, MSI, TP53 
and E-cadherin mutation, and Lauren classification revealed an association between IHC/ISH 
classification and clinicopathologic characteristics such as sex, tumor location, and OS [25].

A number of studies have proposed a GC classification algorithm based on the IHC and 
ISH results. Five subgroups of GC were defined using an algorithm integrating EBV 
positivity, MSI, and aberrant E-cadherin and p53 expression determined by IHC and ISH 
in American and Asian cohorts, respectively [26,27]. These subgroups exhibited different 
clinicopathologic features including prognosis that were in accordance with a previously 
reported molecular classification. In a European cohort, 4 GC types were defined based on 
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Table 1. Molecular classification of gastric cancer
Classification
TCGA

EBV MSI CIN GS
• DNA hypermethylation (CDKN2A)

• PIK3CA mutation

• PD-L1/2 amplification

• Immune signaling pathway activation

• Male

• Gastric fundus and body

• DNA hypermethylation (MLH1)

• Elevated mutation rate

• MHC I related gene mutation

• Older age

• Female

• Lauren intestinal type

• �RTK/RAS signaling pathway 
activation

• RTK amplification

• TP53 mutation

• �Gastroesophageal junction and 
cardia

• Lauren diffuse type

• CDH1 mutation

• RHOA mutation

• CLDN18/ARHGAP gene fusion

• �Cell adhesion and angiogenesis 
pathway activation

• Younger age
ACRG

MSI MSS/TP53+ MSS/TP53− MSS/EMT
• Lauren intestinal type

• Gastric antrum

• Hypermutation

• Good prognosis

• Hepatic recurrence

• Earlier stage

• EBV infection

• �APC, ARID1A, KRAS, PIK3CA, and 
SMAD4 mutation

• Intermediate prognosis

• TP53 mutation

• Focal amplification RTK

• Intermediate prognosis

• Lauren diffuse type

• Signet ring cell carcinoma

• CDH1 loss of expression

• Less mutation

• Bad prognosis

• Peritoneal recurrence

• Later stage

• Younger age
Singapore-Duke

Proliferative Metabolic Mesenchymal
• Upregulated cell cycle-related genes

• DNA hypomethylation

• Copy number amplification

• TP53 mutation

• Lauren intestinal type

• �High metabolic, digestion-related 
genes

• �Normal gastric mucosa 
characteristics

• �Spasmolytic polypeptide-expressing 
metaplasia pathway activation

• Sensitive to 5-FU

• �High cell adhesion, extracellular 
matrix receptor interaction focal 
adhesion-related genes

• �Elevated p53, TGF-β, VEGF, NF-κB, 
mTOR, sonic hedgehog pathway

• �Activation of EMT pathway and 
cancer stem cell features

• Lauren diffuse type

• �Sensitive to PI3K-AKT-mTOR 
inhibitors

TCGA = The Cancer Genome Atlas; EBV = Epstein-Barr virus; MSI = microsatellite instability; CIN = chromosomal instability; GS = genomically stable;  
PD-L1 = programmed death-ligand 1; MHC = major histocompatibility complex; RTK = receptor tyrosine kinase; ACRG = Asian Cancer Research Group; MSS = 
microsatellite stable; EMT = epithelial-mesenchymal transition; TGF = transforming growth factor; 5-FU = 5-fluorouracil; VEGF = vascular endothelial growth 
factor; NF-κB = nuclear factor κ light chain enhancer of activated B; mTOR = mechanistic target of rapamycin; TP53 = tumor suppressor p53.
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microsatellite stability and E-cadherin and p53 expression that showed differences in the 
survival, recurrence rate, and other clinical characteristics such as macroscopic morphology 
and Lauren classification [28]. Another study divided GC into 4 subgroups corresponding to 
TCGA classification based on EBV, MSI status, and p53 expression that differed in terms of 
survival probability and human epidermal growth factor receptor 2 (HER2) positivity [29]. A 
histo-molecular classification predicting patient survival based on Lauren classification, IHC, 
and silver-enhanced ISH has been established. These investigators also suggested a screening 
protocol for RTK-amplified GC, which has unique clinicopathologic features [30].

Single-patient classifier (SPC) based on 4-gene real-time polymerase chain 
reaction (RT-PCR)
An SPC predicting prognosis and response to adjuvant chemotherapy in patients with stage 
II–III resectable GC was developed [22]. The classifier is based on RT-PCR detection of the 
expression levels of 4 genes in formalin-fixed paraffin-embedded tumor tissue (FFPET). 
The 4 classifying genes—namely, GZMB, WARS, SFRP4, and CDX1—were identified from a 
transcriptome dataset consisting of 1,259 GC tumor specimens that were previously used in 
part to establish a molecular classification for GC. Unlike other molecular subtyping criteria 
for GC that are population-directed and heavily dependent on the composition of the dataset, 
and therefore not directly applicable to individual patients, the investigators first identified 
5 molecularly distinct subclasses of GC with different clinical outcomes and selected 3 
clinically actionable subtypes with specific gene modules (Table 3). They then evaluated the 
subtype-specific genes in various tissue types (fresh tissue vs. FFPET) using different assays 
(array or RNA sequencing vs. quantitative RT-PCR) to identify clinically useful biomarkers 
that can assign individual patients to a certain subtype. The patient classifier consists of a 
2 rule-based, 2-tier classifying algorithm first characterizing the immune subtype and then 
the stem-like subtype for risk stratification, or the epithelial subtype for patient stratification 
based on the chemotherapy response. This approach was evaluated in a cohort of 307 
patients and validated using an independent cohort consisting of patients (n=625) from the 
CLASSIC trial.

The prognosticSPC divided patients into low-risk (immune), intermediate-risk (non-
immune, non-stem-like), and high-risk (stem-like) groups, with 5-year OS rates of 83.2%, 
74.8%, and 66%, respectively. The predictive SPC identified patients who will (epithelial 
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Table 2. GC classification algorithm based on immunohistochemistry and in-situ hybridization
Sample size Markers Findings References
438 GC patients EBER, MLH1, PMS2, MSH2, MSH6, HER2, EGFR, 

MET, PTEN, TP53
Relationship between protein/RNA expression levels and unique 
clinical characteristics

Kim et al. [24]

244 GC patients EBER, MLH1, MSH2, MSH6, PMS2, TP53, 
E-cadherin, EGFR, HER2, Lauren classification

Association of molecular markers and clinicopathological 
characteristics including sex, tumor location, and overall survival

Birkman et al. [25]

146 GC patients EBER, MLH1, PMS2, MSH2, MSH6, TP53, 
E-cadherin

Clinicopathologic features including significant differences in 
prognosis corresponding to earlier molecular classification

Setia et al. [26]

349 GC patients EBER, MLH1, E-cadherin, TP53, HER2 Clinicopathologic features including significant differences in 
prognosis corresponding to earlier molecular classification

Ahn et al. [27]

206 GC patients MLH1, PMS2, MSH2, MSH6, TP53, E-cadherin, Subtypes associated with survival, recurrence rate, and other 
clinical characteristics corresponding to TCGA classification

Díaz Del Arco et al. [28]

104 GC patients ERER, MLH1, TP53 Subtypes associated with survival and HER2 overexpression 
comparable to TCGA classification

Gonzalez et al. [29]

993 GC patients EBER, TP53, EGFR, HER2, MET, Lauren 
classification

Survival predicting histo-molecular classification and screening 
protocol for RTK amplified GCs

Park et al. [30]

GC = gastric cancer; EBER = Epstein–Barr encoding region; MLH1 = mutL homolog 1; TP53 = tumor suppressor p53; PMS2 = PMS1 homolog 2; MET =mesenchymal 
epithelial transtion; PTEN = phosphatase and tensin homologue deleted on chromosome 10; HER2 = human epidermal growth factor receptor 2; EGFR = 
epidermal growth factor receptor; TCGA = The Cancer Genomic Atlas; RTK = receptor tyrosine kinase; MSH = mutS homologue.
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type) from those who will not (immune or non-immune/non-epithelial type) benefit from 
chemotherapy. The former was responsive to adjuvant chemotherapy; the 5-year OS of these 
patients who underwent postoperative chemotherapy was higher than that of patients who 
had undergone only surgery (80%; 95% confidence interval [CI], 73.5–87.1 vs. 64.5%; 95% 
CI, 56.8–73.3). Whereas, no difference was observed between the treatment strategies in 
the latter. A subsequent study confirmed that the prognostic value of modified TNM staging 
based on the SPC was superior to that of conventional TNM staging [31].

Cheong et al. recommended applying their SPC for the stratification of the patients with 
localized resectable GC after surgery in order to facilitate the therapeutic decision-making 
[22]. Immune subtype patients may not need adjuvant chemotherapy after surgery as they 
generally have favorable prognosis, and additional chemotherapy does not improve their OS. 
On the other hand, it is recommended that the epithelial subtype patients undergo adjuvant 
chemotherapy after surgery, which seems to improve the survival in this group. These authors 
also highlighted the need for novel treatment options for the stem-like subtype, which has the 
worst prognosis and overlaps significantly with the chemotherapy no-benefit group [22].

Clinical implications of GC subtypes by SPC and relationship with other 
molecular subtyping schemes
The immune subtype in the SPC comprises of MSI and EBV, and largely overlaps with these 
TCGA subclasses as well as with the ACRG MSI subtype and with a part of MSS/TP53 subtype. 
The stem-like subtype largely overlaps with TCGA GS, ACRG MSS/EMT, and the Singapore–
Duke mesenchymal subtypes, and has the poorest prognosis. The epithelial subtype overlaps 
with TCGA CIN, ACRG MSS/TP53−, and the Singapore–Duke metabolic subtypes. Notably, of 
the 3 representative molecular GC subtyping schemes preceding the SPC, only the Singapore–
Duke study addressed the relationship between molecular subtype and response to standard 
chemotherapy. Only the metabolic subtype showed a correlation with 5-FU chemotherapy 
response. Given that the proliferative subtype shares molecular characteristics with TCGA CIN 
and that the latter benefits from chemotherapy, the findings of the Singapore–Duke group cannot 
be readily explained. The metabolic subtype also expresses mucin 5AC, which is a gastric protein 
that is also detected in some forms of intestinal metaplasia [22]. Intriguingly, the epithelial 
subtype described by Cheong et al., [22] which is the only molecular subtype whose predictive 
value has been demonstrated in randomized controlled CLASSIC trial samples, is characterized by 
high expression of CDX1, a marker for intestinal metaplasia. Although this unexpected association 
between the Singapore–Duke metabolic and SPC epithelial subtypes based on intestinal 
metaplasia warrants further investigation, it seems plausible that the biological properties related 
to intestinal metaplasia can enhance responsiveness to 5-FU-based standard chemotherapy in GC.
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Table 3. GC classification by single patient classifier
Subtypes Classifier genes Biological characteristics Clinicopathological 

characteristics
Clinical significance

Immune GZMB Immune/inflammatory 
gene signature

• EBV GC predominant • Favorable prognosis
WARS • Intestinal type • Unresponsive to CTx

• Older age
Epithelial CDX1 Proliferative gene 

signature
• EBV negative GC • Responsive to CTx
• MSS/MSI-L
• Younger age

Stem-like SFRP4 Stem-ness/stromal gene 
signature

• TCGA GS predominant • Unfavorable prognosis
• Diffuse type
• Younger age

EBV = Epstein-Barr virus; GC = gastric cancer; CTx = chemotherapy; MSS = microsatellite stable; MSI-L = 
microsatellite instability-low; TCGA = The Cancer Genome Atlas; GS = genomically stable.
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PRECLINICAL MODELS IN GC

The paucity of useful preclinical models has impeded the development of targeted anti-
cancer drugs [32,33]. Cancer cell lines and cell line-derived xenograft mouse models have 
been used for preclinical studies in cancer research. However, these approaches cannot 
reproduce the biological complexity of cancer such as the tumor microenvironment and 
cancer cell heterogeneity. Moreover, most established cell lines are susceptible to genetic 
alterations owing to prolonged in vitro culture [34,35]. Therefore, there is a need for novel 
preclinical models for GC [36-38].

PDXs
PDXs are promising platforms for translational cancer research [32,39-41]. They are 
established by implanting patient tumor tissue into immune-compromised mice, and 
then directly transferring the resultant tumor from mouse to mouse. The implanted 
tumor fragments contain not only heterogeneous cancer cells but also part of the tumor 
microenvironment, thereby recapitulating the key characteristics of the parental tumor. PDX 
models are becoming an increasingly integral part of basic and translational research and are 
expected to improve the development of more effective novel therapeutics.

GC PDX models and key factors for successful engraftment have been reported by several 
groups. In one such study, 15 PDX models were established from surgical specimens of 
62 GC patients that retained the histologic and genetic profiles of the original tumor over 
many passages [42]. A diffuse histologic type, low tumor cell percentage, and longer ex vivo 
and processing times were negatively correlated with success rate. Similarly, another group 
established 63 PDX models from 185 gastric adenocarcinoma biopsy specimens in which the 
pathological features, HER2 expression, somatic genetic alterations, and chemosensitivity 
were comparable to those of the primary tumors [43]. Chemotherapy prior to biopsy was 
associated with lower engraftment success rates. In 17 PDXs derived from 54 surgically 
resected GC samples, histomorphology and key protein expression were similar to those of 
the patients' cancer tissue. It was also found that the tumor growth and survival rate in the 
mice increased from generation to generation [44]. A high incidence of lymphomagenesis 
was observed in 25 GC PDX models from 126 tumor tissues, which was associated with 
inflammation of the primary tumor [45]. It was suggested that treating the mice with 
rituximab treatment for a short period can prevent lymphoma formation without impeding 
engraftment [46].

GC PDX models are useful for evaluating novel therapeutic strategies. For instance, they have 
been used to confirm the anti-cancer efficacy of agents targeting cMET, maternal embryonic 
leucine zipper kinase, fibroblast growth factor receptor 2, HER2, epidermal growth factor 
receptor, and other molecules [47-50] as well as the synergistic effects of combination 
therapy with 2 different drugs [51-55]; and demonstrate that inhibiting the dual specificity 
phosphatase 6 could overcome cisplatin resistance [51]. PDX models can also be used to 
assess the efficacy of immunotherapy. Treatment with a combination of urelumab (anti-
human cluster of differentiation [CD] 137) and nivolumab (anti-human programmed death 
protein 1) suppressed tumor growth in PDX models generated using patient peripheral blood 
mononuclear cells [56]. Engineered CLDN18.2-specific chimeric antigen receptor-expressing 
T cells infiltrated into tumor tissue and eliminated cancer cells in CLDN18.2-positive GC 
PDX models [57]. Moreover, PDX models can facilitate the development of diagnostic tools. 
For example, 64Cu-2-(p-thiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid-
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trastuzumab was used to non-invasively detect the HER2 expressed due to GC in a PDX model 
[58], and near-infrared fluorescence-based heptamethine carbocyanine dyes were shown to 
be useful for tumor-specific imaging [59]. Additionally, CD44 and aldehyde dehydrogenase 
were found to be highly specific biomarkers for detecting chemoresistant GC stem cells in 37 
GC PDX models [60].

Patient-derived organoids (PDOs)
PDOs are relatively new concepts in translational cancer research. These 3-dimensional 
culture systems are established by embedding tumor cells into ECM proteins, followed by 
treatment with appropriate factors. PDOs generated from various cancer types retain the 
genetic and histologic features of the original tumor, including their microarchitecture and 
physiology [61-69]. PDOs are relatively low-cost, have short doubling time, and are more 
suitable for genetic manipulation than PDX, thereby enabling large-scale drug screening and 
molecular analysis [70-73].

Recent studies have described the establishment of a GC organoids (GCOs) that can simulate 
the disease characteristics. Exome and transcriptome datasets derived from a PDO biobank 
comprising of 63 organoids from 32 patients showed that they retained morphology, protein 
expression, genetic features, and molecular subtypes of the original tumors. Moreover, the 
clinical efficacy of recently introduced drugs such as napabucasin, abemaciclib, and the 
ataxia telangiectasia and Rad3-related kinase inhibitor VE-822 was demonstrated using 
GCOs [74]. Another study investigated the niche factor independency of organoid lines, 
optimized the culture conditions, and revealed the genotype-phenotype relationships in 37 
GC PDO lines exhibiting molecular and histological diversity. The authors also demonstrated 
the efficacy of Wnt-targeted therapy for a subset of GCs by testing porcupine inhibitor in 
a patient-derived GCO xenograft model [75]. Moreover, silencing C8orf76 was shown to 
suppress tumor growth in GCOs [76], and the Hedgehog/Gli inhibitor GANT-61 decreased 
programmed death-ligand 1 expression and cell proliferation in GCOs [77].

Numerous studies have highlighted the clinical utility of patient-derived GCOs. Organoids 
established from surgically resected GC specimens and treated with epirubicin, oxaliplatin, 
and 5-FU showed response comparable to that seen after the patients received chemotherapy 
[78]. GCOs derived from endoscopic biopsies maintained the genomic profile of the primary 
tumor including response to cytotoxic chemotherapy [79]. Finally, GCOs exhibiting variable 
morphology, mutation profile, and chemotherapy response express the same proteins as the 
original tumor, suggesting that these organoids can be used as viable preclinical models to 
test the efficacy of trastuzumab or palbociclib [80].

Clinical perspectives of patient-derived model systems in precision medicine
Patient-derived models are expected to contribute to the development of novel targeted 
drugs for personalized cancer treatment and bridge the gap between bench and bedside by 
reproducing the interpatient and intratumor heterogeneity of cancer (Fig. 1). PDOs and PDXs 
can be frozen and stored in tumor biobanks after cataloging their molecular phenotypes. 
Such biobanks that reflect the patient population can be used for large-scale high-throughput 
drug screening and identification of biomarkers for consecutive clinical trials [32,64,81-85]. 
Co-clinical trials—i.e., the clinical trials conducted on both patients and models derived 
from them—can further accelerate drug development [62,73,86,87] by facilitating molecular, 
cellular, and clinical analyses to validate clinical outcome data and investigating the response 
and resistance to therapeutics. In clinical settings, patient-based ‘avatar’ models established 
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from resected tumor tissue or circulating tumor cells and representing individual patients 
will assist clinicians in optimizing individualized cancer treatment through drug screening 
and validation [32,73,88-91].

Although it is clear that patient-derived models will play an important role in future research 
and clinical practice, there still remains some challenges. Firstly, the heterogeneous nature 
of cancer makes it difficult to establish a standard protocol for generating and maintaining 
patient-derived models. For example, patient-derived GCOs have different culture 
requirements depending on the factors in the natural tumor microenvironment [73,75,92]. 
Secondly, certain types of GC, such as diffuse type GC, have a high failure rate during PDX 
engraftment [42,93-95]. Thirdly, patient-derived models do not exhibit all the features of the 
parent tumor. For instance, PDOs lack blood vessels, stromal components, and an immune 
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regulatory system, which will affect the response to treatment. Fourthly, human stroma is 
replaced by murine stroma in PDX models after 3 to 5 passages, and tumor fragments can 
only be implanted into an immunodeficient mouse [32]. Finally, it is important to continually 
examine the retention of key molecular characteristics of organoids and PDXs in sequential 
passages as genetic drift and clonal selection have been reported [32,81,96-99]. Additional 
studies addressing these critical points can improve the utility of preclinical models in 
translational cancer research.

FUTURE PERSPECTIVES ON IMPLEMENTING PRECISION 
CARE OF GC PATIENTS
Current clinical decision-making in GC depends on anatomical TNM staging. Although 
standardized guidelines for GC are based on evidence from large randomized controlled 
trials, they overlook the heterogeneous nature of cancer and recommend treatment based 
on the characteristics of an average population. Although efforts have been made to clarify 
the molecular basis for the diversity of tumor phenotypes and identify biomarkers and 
therapeutic targets, precision medicine for GC is still in its infancy and can be utilized only 
upon metastasis or recurrence.

An SPC was established for predicting the prognosis and chemotherapy response based on 
tissue samples from GC patients who underwent curative resection [22]. We believe that 
this approach is a turning point for individualized therapy in GC (Fig. 2) [100]. Subsets of 
patients with favorable prognosis without additional intervention after surgery can avoid 
unnecessary chemotherapy, whereas those who are responsive to chemotherapy will benefit 
from adjuvant treatment, and additional targeted drugs can be administered without delay 
to patients with unfavorable prognosis who are also identified as being chemotherapy 
resistant. Integrating clinicopathologic data, TNM staging, and SPC classification will assist 
clinicians in evaluating high-risk patients who have a higher probability of cancer recurrence. 
Furthermore, drug screening can be conducted on ‘avatar models’ of high-risk patients, 
proposing potential targeted drugs or rational combinations for treating cancer recurrence. 
By using this approach, physicians will be able to provide precision medicine to GC patients 
in both adjuvant and recurrent settings.

Further investigations are needed to assess the clinical value of stratifying GC patients in 
an adjuvant setting. The applicability of this approach must be tested in different patient 
populations, such as, in GC patients in Europe where neoadjuvant chemotherapy is the 
preferred treatment or in American patients who have a less favorable clinical outcome 
than those in Asia. It is imperative to determine how to combine patient classifiers with 
conventional TNM staging system and treatment modalities such as targeted agents or 
immunotherapy. Randomized controlled trials using patient classifiers will validate this 
approach, whereas research using endoscopic biopsy samples will broaden its usage.

Patients who do not respond to chemotherapy and have unfavorable prognosis remain 
a challenge in GC treatment. These tumors are associated with diffuse histology, stem 
cell-like features, and EMT [21,22,101]. In addition, they also have a low frequency of 
genetic alterations and are consequently less responsive to targeted therapeutics and 
immunotherapy. This type of GC is characterized by slow tumor cell proliferation, high 
stem cell activity, mitochondria-centric metabolism, and high reactive oxygen species 
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detoxification activity, as well as a novel synthetic metabolic vulnerability owing to nicotinic 
acid phosphoribosyl transferase deficiency [18,102-108]. Novel drugs targeting these features 
warrant further examination.

Till date, only 2 targeted therapeutics, trastuzumab and ramucirumab (for anti-HER2 and 
VEGF2 antibodies, respectively), have been approved for the treatment of GC. Multiple 
clinical trials have failed to demonstrate the efficacy of other targeted agents. Most of these 
studies were conducted in an unselected patient population without considering the genomic 
characteristics of GC. Recent studies have suggested that certain agents are more effective 
against a specific subtype of GC [109,110]. Therefore, future clinical trials should consider 
enrolling patients based on the presence of the target mutation.
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Patient-derived models recapitulating the characteristic features of parent tumor can 
promote anti-cancer drug development as they serve as more precise models for preclinical 
efficacy tests and potential therapeutic target validation. Co-clinical trials conducted 
using models derived from enrolled patients will encourage researchers to develop novel 
strategies to potentiate the response to treatment and overcome drug resistance, while PDOs 
and xenografts established from resected tumor samples can function as drug validation 
platforms to facilitate clinical decision-making in precision medicine.

CONCLUSIONS

GC is a genetically heterogeneous disease and each case of GC exhibits certain unique 
features. Elucidating the molecular characteristics of GC provides a basis for developing 
novel therapeutic strategies based on patient stratification. Clinical trials designed according 
to the molecular profiles and data from patient-derived preclinical models can lead to more 
personalized precision treatment for patients and better outcomes.
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