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Objectives: The incidence of type 2 diabetes mellitus has increased significantly in recent years. With the development of arti-
ficial intelligence applications in healthcare, they are used for diagnosis, therapeutic decision making, and outcome prediction,
especially in type 2 diabetes mellitus. This study aimed to identify the artificial intelligence (AI) applications for type 2 diabetes
mellitus care. Methods: This is a review conducted in 2018. We searched the PubMed, Web of Science, and Embase scientific
databases, based on a combination of related mesh terms. The article selection process was based on Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA). Finally, 31 articles were selected after inclusion and exclusion criteria
were applied. Data gathering was done by using a data extraction form. Data were summarized and reported based on the study
objectives. Results: The main applications of Al for type 2 diabetes mellitus care were screening and diagnosis in different stages.
Among all of the reviewed AI methods, machine learning methods with 71% (n = 22) were the most commonly applied tech-
niques. Many applications were in multi method forms (23%). Among the machine learning algorithms applications, support
vector machine (21%) and naive Bayesian (19%) were the most commonly used methods. The most important variables that
were used in the selected studies were body mass index, fasting blood sugar, blood pressure, HbAlc, triglycerides, low-density
lipoprotein, high-density lipoprotein, and demographic variables. Conclusions: It is recommended to select optimal algorithms
by testing various techniques. Support vector machine and naive Bayesian might achieve better performance than other applica-
tions due to the type of variables and targets in diabetes-related outcomes classification.
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use insulin effectively. There are various factors that cause
diabetes, such as diet, lifestyle, and genetics [1-6]. Despite
healthcare advances, the prevalence of diabetes is still grow-
ing, and currently, more than 200 million people worldwide
are affected by DM [7-9]. The number of patients with dia-
betes, estimated by the World Health Organization (WHO)
in 2004, was expected to rise from 171 million in 2000 to
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366 million by 2030 [10-12]; however, the recent estimation
by the International Diabetes Federation (IDF) indicates
that the number of diabetic patients will increase to 552 mil-
lion by 2030 [5,13,14]. DM can cause many complications,
such as damage to the heart, blood vessels, eyes, kidneys,
and nerves [5,15]. As a serious health concern, DM has been
declared a global epidemic by the WHO due to its rapidly
increasing incidence. Nowadays, many multidisciplinary
studies are being done to support the prevention and treat-
ment of DM, and it has become a worldwide research prior-
ity [5,16]. Thus, the surveillance, prevention, and control of
diabetes and its complications using two or more disciplines
are becoming increasingly important [3,5,17] As each disci-
pline has its own potential and added value, the combination
of them might be a solution for DM [18].

Artificial intelligence (AI) has been applied in various
medical fields for many purposes. Actually, Al is defined
as “a field of science and engineering concerned with the
computational understanding of what is commonly called
intelligent behavior with the creation of artifacts that exhibit
such behavior” [19-23]. Al algorithms have the potential
to deliver better care especially in combination with recent
technologies [24]. Because modern medicine has faced
challenges regarding a large amount of data acquisition,
analysis, and the application of the obtained knowledge to
solving complex clinical problems, it is necessary to use Al
capabilities for these purposes [19,21,25]. Al is composed
of various intelligent algorithms and techniques, such as
machine learning (ML), natural language processing (NLP),
robotics, fuzzy logic (FL), expert systems (ES), knowledge
base (KB), and the mix of two or more methods (multi-

Table 1. Search strategy of the research

Al Applications in Type 2 Diabetes

methods) [21,23]. ML methods are common with the ability
of conducting these two tasks including either prediction
(when the outcome variable is a value) or classification (when
the outcome variable is a class) [26]. These tasks may also
be applied in DM care for disease probability prediction,
screening, diagnosis, treatment guidance, and complica-
tion management [19,21,27,28]. Several ML methods as a
subcategory of Al have been applied to fulfill these clinical
purposes using their own specific capabilities [29,30]. In de-
tail, they include many techniques, such as artificial neural
networks (ANN), support vector machine (SVM), decision
tree (DT), and naive Bayes (NB), for prediction or classifica-
tion of clinical outcomes. In routine medical practice, Al in
medicine has been linked to the development of programs
to help physicians in formulating diagnoses, making thera-
peutic decisions, and predicting the critical status, such as
an emergency or worsening of a patients condition, in their
everyday duties [17,22,24,29]. Considering the importance
of type 2 diabetes mellitus (T2DM) care as well as assum-
ing that AT applications for diabetes care are effective tools,
also due to a lack of studies to investigate the application of
Al for T2DM care, this study reviewed Al algorithms and
techniques for T2DM care with a specific focus on machine
learning methods.

Il. Methods

1. Research Question

This study aimed to identify AT applications in T2DM care.
We reviewed papers that have reported the methods and
techniques of Al in T2DM care. The study population com-

Search strategy

Database PubMed, Embase, ISI Web of Science (September 10, 2012 to September 10, 2017)
Limits Language (only resources in English), Species (studies on humans)
Data September 10, 2017 to October 10, 2017
#1 “Diabetes Mellitus, Adult-Onset” OR “Diabetes Mellitus, Ketosis-Resistant” OR “Diabetes Mellitus, Maturity-Onset”
OR “Diabetes Mellitus, Non-Insulin Dependent” OR “Diabetes Mellitus, Non-Insulin-Dependent” OR “Diabetes
Mellitus, Noninsulin Dependent” OR “Diabetes Mellitus, Noninsulin-Dependent Diabetes Mellitus, Slow-Onset”
OR “Diabetes Mellitus, Stable” OR “Diabetes Mellitus, Type II” OR “MODY” OR “Maturity-Onset Diabetes” OR
“Maturity-Onset Diabetes Mellitus” OR “NIDDM” OR “Noninsulin-Dependent Diabetes Mellitus” OR “Type 2
Diabetes” OR “Type 2 Diabetes Mellitus”
#2 “Artificial Intelligence” OR “Computer Heuristics” OR “Expert Systems” OR “Fuzzy Logic” OR “Knowledge Bases”
OR “Machine Learning” OR “Natural Language Processing” OR “Neural Networks” OR “Robotics” OR “Prediction
Model”
Search #1 AND #2
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prised people with T2DM, the intervention was using Al for
health-related applications in the area of T2DM; the com-
parison was excluded; outcomes were the identification of
various methods and techniques using AI in T2DM care.

1) Search strategy
This study was a review that was conducted in 2018. Search-
es were done in scientific databases, including PubMed, Web
of Science, and Embase, based on the combination of related
keywords based on mesh terms (Table 1). All steps of search-
es were done based on the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) checklist.
The searches were done by two researchers independently to
prevent possible bias. The search results referred to a third
person who reviewed contradictions, and made decisions in
cases where there were disagreements.

The searches were limited to papers published in the Eng-
lish language and a 5-year period of time (2012-2017).

2) Inclusion and exclusion criteria
The inclusion criteria were original articles, clinical trials,
and meta-analysis reports. Also, those works that had model
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performance evaluation, such as accuracy, sensitivity, speci-
ficity, and area under the curve (AUC) were included. Exclu-
sion criteria were non-English articles, unavailable full text,
other study types except clinical trial, and meta-analysis.
Other article types included review articles, letters to editors,
short communications, etc. Also conference articles were ex-
cluded. Non-human-study papers and papers without model
performance evaluation criteria were removed.

3) Selection process

The process of article selection was based on PRISMA (Fig-
ure 1). Finally, 31 papers were selected. All steps in the selec-
tion and evaluation of the quality of the papers were done
by two researchers. Cases of disagreement were referred to a
third person to make the final decision. The data extraction
form had eight categories, including the author’s name, pub-
lication year, Al methods applied, algorithms used, health
applications for T2DM, clinical variables, optimal algo-
rithms, and the best performance of the model based on the
related indexes. After data extraction, we summarized and
reported the findings in tables and figures according to the
objectives of the study.

1 I 1
: : Searched by key :
! i words in ISI !
| ! Web of Science |
1 1
1 I 1

Total papers = 99

_______ Papers excluded = 170
A 4

_______ Papers excluded = 72
A 4

_______ Papers excluded = 4
4

Papers meeting
general criteria
(recent 5 years,
full text, humans,
English, journal article,
clinical trials and
meta analysis)
included = 30

A 4

Papers excluded = 13

Papers were
non same to
Medline or Embase
included =17

Papers excluded = 6

Papers were relevant
(by title and abstract)
to subject included = 11

A 4

Papers excluded = 8

Papers had
performance
assessment criteria
included = 3

T 1 1 1
S 1 1 1
‘g 1 Searched by key 1 1 Searched by key
= 1 words in 1 1 words in
E 1 PubMed 1 1 Embase
o 1 1 1
L= b ! e __
(o))
£
§ Total papers = 100 Total papers = 791
3
——————— Papers excluded = 56 F-—==--=
— A\ 4 A 4
Papers meeting Papers meeting
general criteria general criteria
(recent 5 years, (recent 5 years,
full text, humans, full text, humans,
English, journal article, English, journal article,
clinical trials and clinical trials and
meta analysis) meta analysis)
included = 44 included = 253
2 - Papers excluded = 11
E A 4
2 Papers were
[ relevant (by title and Egﬁesr:r&etrg
abstract) to subject L _
included = 33 Medline included = 83
——————— Papers excluded = 12
Papers were relevant
(by title and abstract)
to subject included = 11
y
o Papers had Papers had
g performance performance
2 assessment criteria assessment criteria
i= included = 21 included =7
L v
I =31 <

r] n= n

Figure 1. Process of PRISMA for data collection.
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I1l. Results

According to the study search terms, 31 papers were re-
viewed in details. Table 2 showed the breakdown of articles
categories. Most of the papers (n = 9) were published in
2016. Table 2 presents information about the selected stud-
ies.

In this study a variety of variables were considered, as
shown in Table 2. They comprised the following: (1) Al
methods (ML, KB, ANN, FL, ES, NLP, and robotic); (2) in
case that the applied AI method was ML, we analyzed the
algorithms of ML (ANN, SVM, NB, etc.); (3) we also studied
the AI applications of health aspects for T2DM (risk factor
analysis, screening and diagnosis, treatment, nephropathy,
neuropathy, diabetic foot, etc.); (4) clinical variables were
clinical features which were applied to be analyzed by using
AT methods; and (5) the best performance values of math-
ematics models were listed and compared. For this purpose,
we only studied those papers with reported performance
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Figure 2. Frequency (percentage) of artificial intelligence meth-
ods used in type 2 diabetes mellitus. ML: machine
learning, FL: fuzzy logic, ES: expert system, KB: knowl-
edge base, NLP: natural language processing.

Table 3. Frequency of Al methods when multiple methods were
applied

Al methods uses in multi methods Frequency (%)

Machine learning 5(31.25)
Fuzzy logic 4 (25.00)
Expert systems 4 (25.00)
Knowledge base systems 3(18.75)
Total 16 (100)

AT artificial intelligence.
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values as inclusion criteria.

As shown in Figure 2, 71% of papers applied ML, 23% used
multiple methods, and just 6% of them used the KB method.
Results show other methods, such as FL, ES, NLP and ro-
botic, have not been applied to T2DM separately.

Table 3 shows the frequency of AI methods used when
multiple methods were used. In 16 articles, two or more Al
methods were used for T2DM concurrently. ML (n = 5) was
the most frequently used method together with other Al
techniques.

Figure 3 shows the frequency of algorithms applied specifi-
cally in ML. In 51 cases, ML algorithms were used for T2DM
care. As seen in Figure 3, SVM was the most frequently used
algorithm. NB was the second most commonly used algo-
rithm. Moreover, the results show that logistic regression,
which is one of the most famous statistical algorithms was
applied in 13 cases in the reviewed research.

Figure 4 shows the frequency of Al applications to health
aspects of T2DM. The results showed that the most common
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Figure 3. Frequency of machine learning algorithms used for
type 2 diabetes mellitus care. SVM: support vector ma-
chine, ANN: artificial neural network, NB: naive Bayes,
DT: decision tree, RF: random forest, CART: classifica-
tion and regression trees, KNN: k-nearest neighbor.
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Figure 4. Frequency of artificial intelligence applications for
health aspects of type 2 diabetes mellitus.
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medical application of Al for T2DM care was in screening
and diagnosis, with a 45% frequency. Then, complication
diagnosis was the next most frequent application of AI (26%).

IV. Discussion

According to the results, the main Al applications are related
to ML use for knowledge production and model develop-
ment, which has been widely used in many healthcare ap-
plications [9]. It is a key technology to transform biomedical
datasets into actionable knowledge that is useful for the ad-
vancement of clinical practice and healthcare through rules
developed by medical experts, statistical methods, and ML
algorithms with the ability of self-improvement [9,30,61].
Actually, ML methods often achieve high accuracy due to
looser assumptions regarding data distribution in compari-
son to other methods [8,10,11,17,30]. The results of this
study indicate that main clinical variables in running and
designing ML models and systems for type 2 diabetes care,
were body mass index (BMI), fasting blood sugar (FBS),
blood pressure (systolic and diastolic), HbAlc, triglycerides
(TG), low-density lipoprotein (LDL), high-density lipopro-
tein (HDL), family history, and demographic variables (Table
2). This study supports the evidence from previous reports
that have identified some important clinical variables that
are used in data mining methods in diabetes research [29].
According to the results of this study, models based on
ML algorithms in T2DM care have been mainly focused on
pre-diabetes screening and diagnostic outcomes, risk factor
analysis, treatment, and complication categorization. That
is, ML algorithms have been mainly used to classify diabetic
prone cases for pre-diabetes, diabetes, and advanced diabetes
based on the patients’ HbAlc level. They are used to ana-
lyze T2DM risk factors in various populations to determine
which categories of patients may require more attention to
prevent (1) disease occurrence, (2) progress to worse stages,
and (3) advancing to complications [29,51]. This study re-
vealed that there has been limited research on estimating the
probability of these outcomes rather than classifying patients
based on their disease outcomes in the given three catego-
ries. According to previous classification experiments, SVM,
which has been widely used for diabetic data analysis has
outperformed other algorithms. This may be attributed to its
capability to apply hyperlinks to separate classes in a three-
dimensional space [61,62]. Also, NB, which has been used in
several cases for the purpose of determining diabetes-related
outcomes is usually applied for prediction task only for small
datasets [29]. Using this algorithm, the probability of spe-
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cific outcome occurrence, such as pre-diabetes occurrence
probability, can be calculated; while by using the algorithm
of NB the probability of specific outcome occurrence such as
pre-diabetes occurrence can be calculated, there is no report
of conducting this work in practice. Generally, ANN, and
DT in the frame of C5, CART, and RF have been applied for
both classification and prediction purposes [63,64]; how-
ever, there has been no report of applying these algorithms
for diabetes-related outcome prediction using big data, even
with a satisfactory and generalization level.

The performance of Al techniques and its models applied
to T2DM care are shown in the eighth and ninth columns of
Table 2. Regarding the best performance of ML techniques,
it is obvious that there are no particular best techniques for
every condition. For example, decision trees that classify
cases by sorting them based on feature values show varying
performance in different studies. It has been reported that
there is a relationship between the performance of applied
techniques and the following subjects, including the type
of issues analyzed, the type of input data (discrete or con-
tinuous), and finally, the emerging overlapping in outcome
classes [65-67].

In the area of AI application for T2DM care, there have
been some scattered observational studies which need more
trials to be applied in routine care. For example, a study
presented a patient-level sequential modeling approach to
implementing personalized prescription. In this approach,
previous records of a patient were applied to the prediction
of future prescriptions to improve accuracy. The effective-
ness of this method was tested by implementing prediction
models based on recurrent neural networks (RNN) [68].
Another study performed a literature review of efforts to use
artificial intelligence techniques for diabetes management.
The results demonstrate that AI methods are not only suit-
able for use in clinical practice but also self-management of
diabetes. Also, these methods have the potential for improv-
ing patients’ quality of life [24]. The present study focused
on ML techniques to predict T2DM outcomes. The frequen-
cies of various types of applications, as well as health aspects
of T2DM care, were studied. Other AI methods may provide
additional powerful tools to support diabetes care.

Furthermore, an experiment used the Q-learning algo-
rithm in the area of reinforcement learning of AI to develop
personalized treatment plans based on glucose level to pro-
vide different basal dose levels automatically for the treat-
ment of each diabetes patient. This approach is a model free
of reinforcement learning technique, which is used to deter-
mine the optimal treatment policy from a patient’s treatment
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history and related laboratory results. The results reveal that
this approach is an effective tool for personalized diabetes
management [69].

As seen in Table 2, there have been several reports of
multiple-method applications in T2DM care. Most of the
ML algorithms have been used with FL, KB, and ES to cre-
ate multiple-method-based systems for users in the area of
diabetes control, including patients, physicians/nurses, man-
agers, and policymakers. In the frame of these systems, ML
applications for T2DM data analysis are used for knowledge
production to enrich the system’s knowledge base incremen-
tally. They use diabetes patients’ real data collected in a data
repository over time to create a rich knowledge base. The
knowledge base might also include experts’ knowledge. The
fuzzy method can either use real data or experts’ knowledge
to enrich the knowledge base [70].

Similarly, robotics technologies learn from humans and
from the environment [71]. Despite many applications of ML
in the framework of an indirect ES or direct ES, according to
our inclusion criteria, there have been no reports of studies
using robotics and NLP technology to support T2DM care
that have evaluated model performance at the same time.

There have been reports on other areas of DM research us-
ing robotics, such as using a robot for pancreas transplanta-
tion, pancreatectomy surgery, and monitoring and training
to improve the care of elderly with dementia [72-74]. Also,
the management of type 1 diabetes in children is improved
by robots. Robots can keep track of individuals’ performance
and can offer tailored lessons to enhance learning [75].

One of the most interesting findings of this study was that
AT has often shown success in the prediction of related issues
in T2DM. For example, in treatment, a study predicted DPP-
IV inhibitors with ML approaches with 87.2% accuracy [31].
In screening and diagnosis, another investigation predicted
hypoglycemia using ML models with 97% accuracy [40]. In
the diagnosis of complications (nephropathy), a study pre-
dicted microalbuminuria using multiple AI methods (ML,
FL, ES) with 92% accuracy [45]. In risk factor analysis, an-
other study predicted the risk of type 2 diabetes, hyperten-
sion, and comorbidity using ML models with 85% accuracy
[58].

The results of this study may support researchers and de-
velopers of Al-based systems and models in the care of pa-
tients with T2DM in choosing methods, models, algorithms,
and efficient and optimal systems. It is suggested that ML,
specifically SVM and NB, algorithms are considered by de-
signers and developers of patterns and systems. The present
study also identified the most important clinical variables
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used in the design and development of artificial intelligence
systems and models for the care of patients with T2DM. This
can provide insights for choosing key variables in T2DM,
and in data analysis and system development using AI-based
methods.

One of the limitations of this study was the number of da-
tabases that were reviewed. In this work, PubMed, Embase,
and Web of Science were reviewed. In fact, the focus of this
review was clinical databases; therefore, more technical da-
tabases, such as IEEE and Scopus should be considered for
further reviews. Future investigation should focus on the ef-
fect of Al on clinical outcomes and its impact.
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