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Obligate or facultative anaerobic bacteria such as Bifidobacterium, Clostridium, 
Salmonella, or Escherichia coli specifically colonize and proliferate inside tumor tis-
sues and inhibit tumor growth. Among them, attenuated Salmonella typhimurium (S. 
typhimurium) has been widely studied in animal cancer models and Phase I clinical 
trials in human patients. S. typhimurium genes are easily manipulated; thus diverse 
attenuated strains of S. typhimurium have been designed and engineered as tu-
mor-targeting therapeutics or drug delivery vehicles that show both an excellent safety 
profile and therapeutic efficacy in mouse models. An attenuated strain of S. typhimu-
rium, VNP20009, successfully targeted human metastatic melanoma and squamous 
cell carcinoma in Phase I clinical trials; however, the efficacy requires further 
refinement. Along with the characteristics of self-targeting, proliferation, and deep tis-
sue penetration, the ease of genetic manipulation allows for the production of more atte-
nuated strains with greater safety profiles and vector systems that deliver designable 
cargo molecules for cancer diagnosis and/or therapy. Here, we discuss recent progress 
in the field of Salmonellae-mediated cancer therapy.
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INTRODUCTION

Bacteria-mediated cancer therapy (BCT) was first in-
troduced in the late 19th century when William B. Coley 
used Streptococcus pyogenes to treat inoperable sarcomas 
and observed tumor shrinkage and increased patient 
survival.1 This is considered the first example of immuno-
therapy. During the next 40 years, Coley’s toxins were giv-
en to over 1,000 cancer patients with excellent results, par-
ticularly in those with bone and soft-tissue sarcoma. 
However, his results were strongly criticized by the medi-
cal community, since his results were rarely repeatable. 
After the advent of radiation therapy and chemotherapy, 
Coley’s toxins gradually disappeared from medical practice. 
However, recent progress in the fields of immunology and 
biotechnology has revived the mechanism underlying the 
activity of Coley’s toxin, meaning that bacteria have re-
turned to the agenda of those undertaking cancer research. 

In the past 20 years, bacterial cancer therapy has again 

become a hot topic, and various kinds of bacteria have been 
the subject of preclinical and clinical research. Solid tu-
mors have universal features, including abnormal blood 
vessels and hypoxic and necrotic regions;2,3 these micro-
environments are suited to colonization by, and facilitate 
proliferation of, obligatory or facultative anaerobic bac-
teria such as Streptococcus,4 Clostridium,5 Bifidobacterium,6 
Salmonella,7-9 Escherichia coli,10-12 and Listeria.13 These 
bacteria specifically accumulate and proliferate inside tu-
mor tissues, which can contain more than 1,000 times the 
number of bacteria found in reticuloendothelial organs like 
the liver or spleen.14 Attenuated Salmonella typhimurium 
(S. typhimurium) has been widely studied in this context 
due to its ready availability and ease of genetic manipu-
lation. Different engineering strategies have been used to 
reduce bacteria-related toxicity, such as inhibiting expre-
ssion of virulent genes. VNP20009, a S. typhimurium mu-
tant strain (msbB−, purI−) harboring modified lipid A, and 
a purine auxotrophic mutation cause significantly less sep-
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tic shock than their non-engineered counterparts and have 
been safely administrated to patients with metastatic mel-
anoma and renal carcinoma in Phase I clinical studies; in-
deed, some bacterial colonization was observed in tumor 
biopsies.15-17 A leucine/arginine auxotrophic strain, A1-R, 
effectively suppressed tumor growth in mouse models of 
cancer.8,18,19 Another avirulent S. typhimurium strain de-
fective in guanosine 5’-diphosphate-3’-diphosphate (ppGpp) 
synthesis, termed ∆ppGpp,20 shows a good safety profile 
and has been used to treat mice bearing different can-
cers.21,22

S. typhimurium can grow under both aerobic and anae-
robic conditions and so can colonize both large and small 
tumors. To increase therapeutic efficacy, bacterial therapy 
strategies were developed in combination with radio-
therapy23 and chemotherapy,24,25 or designed such that the 
bacteria delivered anticancer molecules.21,26,27

KEY FEATURES OF S. TYPHIMURIUM THAT 
MAKE IT SUITABLE FOR CANCER THERAPY

Since the mid-20th century, radiotherapy and chemo-
therapy have developed rapidly and are now the main ther-
apeutic regimens for cancer. However, neither destroys all 
cancer cells and both are toxic to normal tissues. The rea-
sons for these side effects are as follows: (1) incomplete tu-
mor targeting, (2) inadequate tissue penetration, and (3) 
limited toxicity to all cancer cells. These drawbacks limit 
treatment efficacy and are associated with increased mor-
bidity and mortality.28 S. typhimurium have unique prop-
erties that can overcome these limitations: (1) the ability 
to sense and target tumors, (2) preferential growth in a tu-
mor-specific microenvironment, (3) good intratumoral pe-
netration, (4) low cytotoxicity and immunogenicity, and (5) 
versatile programmability.29 Salmonellae can be engineered 
as part of an active therapeutic approach to cancer and have 
multiple advantages over conventional therapies.

1. Sensing the tumor microenvironment
Hypoxia (＜1% oxygen) is a near-universal feature of 

cancer, which makes it particularly resistant to radio-
therapy and chemotherapy.3 Due to rapid cell proliferation 
and continuous angiogenesis during tumor growth, the 
newly formed blood vessels are premature both in terms of 
the endothelial cell lining and binding ends, resulting in 
sluggish blood flow and insufficient delivery of oxygen and 
nutrients to the tumor tissue. Oxygen is one of the most im-
portant signals used by bacteria to sense the tumor mi-
croenvironment. Low oxygen concentrations favor tu-
mor-specific colonization and proliferation of facultative 
anaerobes such as S. typhimurium. The characteristic of 
hypoxia has been fully utilized to increase tumor-specific 
accumulation of bacteria expressing the essential asd 
(aspartate-semialdehyde dehydrogenase) gene under hy-
poxic conditions,30 or via delivery of therapeutic drugs un-
der the control of hypoxia-inducible promoter-1 (HIP-1),31 
thereby reducing cytotoxicity to normal tissues and in-

creasing target specificity. Bacterial chemotaxis in re-
sponse to small nutrient molecules such as ribose and ami-
no acids, which are released from dying tumor tissues, oc-
curs in tumors both in vitro and in vivo.32,33 Genetically en-
gineered auxotrophic strains of S. typhimurium (such as 
purine, leucine, and arginine auxotrophs) show increased 
tumor-specific accumulation.14,19,34

2. Tumor penetration and proliferation
Attenuated bacteria are metabolically active and able to 

perform specific activities within tumor tissues, which 
make them different from chemical and biological drugs. 
S. typhimurium have properties that enable them to better 
penetrate tissue than chemical drugs. Motility is a key fea-
ture of bacteria that enables them to actively swim away 
from chaotic vasculature and spread throughout tumor 
tissues.35 The motility of attenuated Salmonellae has also 
been harnessed to enable delivery of encapsulated mi-
crobeads to tumors with theranostic molecules.36 In addi-
tional to motility, bacterial metabolism and host macro-
phages also play important roles in the bacterial dis-
tribution and tumor colonization.37 Depletion of macro-
phages resulted in enhanced tumor colonization and in-
creased bacterial upload in spleens, while aromatic amino 
acid biosynthesis-deficient strains showed a higher specif-
icity to tumors. S. typhimurium specifically accumulate 
and proliferate in tumor tissues, resulting in bacterial 
numbers that are over 1,000-fold higher (as high as 1010 
cfu/g tissue) than those in normal tissues such as liver and 
spleen tissue.14,33,38 Bacterial colonization of tumor tissues 
deprives cancer cells of nutrients and activates antitumor 
immunity, leading to tumor cell death.39

3. Immune stimulation
Tumors are immunosuppressive in nature and escape 

immune surveillance by limiting the maturation and in-
filtration of immune cells.39,40 Systemic administration of 
attenuated S. typhimurium activates anticancer immunity, 
leading to tumor regression. Specifically conserved bacte-
rial components, called pathogen-associated molecular pa-
tterns (PAMPs), are recognized by pattern recognition re-
ceptors (PRRs) known as toll-like receptors (TLRs), which 
broadly recognize molecules shared by pathogens, but not 
host cells/tissues. Bacterial components such as flagellin, 
LPS, or CpG sites are strong agonists for TLRs and activate 
TLR signaling pathways to induce innate and adaptive im-
mune responses.7,38 We recently reported that systemic in-
fection by attenuated S. typhimurium also leads to the acti-
vation of inflammasome pathways during the early stages 
of bacterial colonization of cancer tissues through the 
NOD-like receptor (NLR) family.38 IPAF inflammasomes 
recognize cytoplasmic bacterial flagellin injected via bacte-
rial secretion systems,41 whereas NLRP3 inflammasomes 
are activated by endogenous danger signals (damage-asso-
ciated molecular pattern molecules) or PAMPs along with 
increased K＋ efflux.42 Activation of caspase-1 by in-
flammasomes results in the cleavage of pro-IL-1 and 
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FIG. 1. Schematic depiction of Salmonellae-mediated cancer therapy. Attenuated S. typhimurium could be used as a delivery vector
to achieve local expression of cargo molecules for cancer therapy. When bacteria are administrated to tumor-bearing animals, the bacte-
rial components recognized by pattern recognition receptors (PRRs) or endogenous danger signals activate the inflammasome pathway,
resulting in the secretion of proinflammatory cytokines and inducing cancer cell death. DAMPs: damage-associated molecular patterns,
PAMPs: pathogen-associated molecular patterns, TLRs: toll-like receptors.

pro-IL-18 to yield active IL-1 and IL-18, respectively (Fig. 
1).7,38 In summary, systemic administration of attenuated 
S. typhimurium induces the production of proinflam-
matory cytokines such as IL-1, IL-18, TNF-, and IFN-, 
resulting in recruitment and activation of immune cells, in-
cluding dendritic cells, macrophages, and T cells, that con-
vert the tumor microenvironment from immunosuppressive 
to immunocompetent.7,38

4. Programmability
Attenuated bacteria were have been used as a delivery 

vehicle to express cargo molecules, such as cytotoxic ag-
ents,21,22,30,31,43-45 cytokines,46-51 RNA interference,52-57 and 
prodrug enzymes,17,58-63 in tumors to enhance BCT (Fig. 1). 
The expression of cargo molecules could be precisely regu-
lated by external signals to reduce unwanted expression 
in normal tissues. To date, two categories of gene-triggering 
systems have been investigated in attenuated S. typhimu-
rium-mediated cancer therapy: 1) external trigger systems 
such as the L-arabinose-inducible pBAD promoter,21,64 tet-
racycline- or doxycycline-inducible pTet promoter22, and 
-irradiation-inducible pRecA promoter;23 and 2) environ-
mental sensing systems including the hypoxia-inducible 
fumarate and nitrate reduction regulator,31,65 and the quo-
rum-sensing system, which turns on transgene expression 
at high bacterial densities that are usually observed in tu-
mor tissues.66 We previously showed that early induction 
of therapeutic gene expression from the moment of bacte-
rial injection may damage normal organs, including the liv-

er and spleen (as identified by clinical chemistry parame-
ters). We evaluated systemic toxicity by administration of 
doxycycline on the day of (0 dpi) and 3 days (3 dpi) after bac-
terial infection, when the tumor was colonized by S. typhi-
murium expressing cytolysin A (ClyA) under the control of 
the pTet promoter. The results showed that improper in-
duction of ClyA (0 dpi) induced high levels of alanine amino-
transferase and aspartate aminotransferase, indicating 
injury to reticuloendothelial organs. However, proper in-
duction of ClyA (at 3 dpi) prevented hepato- and sple-
no-toxicity.22 To increase tumor-specific targeting capa-
bilities, bacteria were genetically engineered to display tu-
mor-targeting moieties on the cell surface. Attenuated S. 
typhimurium displaying a single-domain from an antibody 
against tumor-associated antigen (CD20) specifically in-
fected CD20-positive lymphoma cells, with few nonspecific 
effects.67 The non-invasive S. typhimurium strain ∆ppGpp, 
which is engineered to express the RGD peptide on its sur-
face, selectively targeted and killed xenograft cancer cells 
overexpressing v3 integrin, and is considered a novel 
and promising approach to the development of bacte-
ria-mediated delivery systems.68

ATTENUATED STRAINS FOR CANCER THERAPY

Various S. typhimurium mutant strains have been stud-
ied from the perspective of cancer treatment; these are 
summarized in Table 1. Different strategies have been 
used to engineer bacteria to reduce cytotoxic effects in nor-
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TABLE 1. Candidate attenuated S. typhimurium strains for targeted cancer therapy

Strains Genotype Description Refs

VNP20009 ∆msb, ∆purI Lipid A-modified to reduce septic shock induction; purine-dependent 9,15-17,69
A1-R leucine and arginine 

auxotrophs
Leucine/arginine-dependent 18,19,34,70-72

∆ppGpp ∆relA, ∆spoT Defective in ppGpp synthesis; non-invasive to mammalian cells 7,21,22
SL7207 ∆aroA Aromatic amino acids synthesis depends on p-aminobenzoate and 2,3-dihy-

droxybenzoate 
30,57,83,85

LH340 ∆phoP, ∆phoQ Cytoplasmic transcriptional regulator (PhoP) and membrane-associated 
sensor kinase (PhoQ)

53,77 

SL3261 ∆aroA Blocked in aromatic synthesis 86,89
BRD509 ∆aroA, ∆aroD Aromatic compound-dependent 47,75 
SA186 ∆znuABC Deletion of the whole znuABC operon, which encodes the high-affinity zinc

transporter
98

LVR01 ∆aroC Auxotrophic for certain aromatic compounds 99
YB1 ∆aroA Engineered to express the essential asd gene under the control of a hypo-

xia-inducible promoter
76

RE88 ∆aroA, ∆dam Defective in DNA adenine methylase; fails to secrete the protein; non-in-
vasive to mammalian cells

27,50,91

SB824 ∆aroA, ∆sptP Reduction of virulence gene expression 78
MvP728 ∆purD, ∆htrA Adenine-dependent; unable to survive in macrophages 52,84

mal organs and increase specific colonization of tumors. 

1. VNP20009
This is an attenuated S. typhimurium strain that has 

been widely studied in animal cancer models and tested in 
Phase I clinical studies involving human cancer patients. 
VNP20009 is a genetically modified S. typhimurium strain 
possessing an excellent safety profile, with a 10-fold reduc-
tion in TNF- production compared to wild type. The msbB 
mutant strain showed greatly reduction of TNF--induced 
septic shock.33 To improve tumor-specific colonization, 
VNP20009 was further genetically engineered by deplet-
ing the purI gene. Because the growth of VNP20009 de-
pends on the level of purine, they are more likely to colonize 
and proliferate in purine rich regions, such as tumor 
tissues. VNP20009 was examined in various murine can-
cer models, including melanoma,9 breast cancer,23 and colon 
cancer,46 and in a canine model of spontaneous neoplasia.69

2. A1-R
The A1-R strain was developed using nitrosoguanidine 

mutagenesis. This leucine and arginine auxotrophic strain 
grew more strongly in neoplastic tissues than in normal or-
gans, and the colonizing bacteria could be re-isolated from 
tumor tissue.34 A1-R inhibited the growth of different can-
cers in mouse models of prostate cancer,18 breast cancer,19 
cervical cancer,24 and glioma;70 it also inhibited meta-
stasis.8,71 The attenuated strain also “tricked” quiescent 
cancer cells into the cell cycle from G0/G1 to S/G2/M, there-
by increasing the sensitivity to chemotherapy.72 Alteration 
of the cell cycle is a novel strategy for combinational cancer 
therapy.

3. ∆ppGpp
Another avirulent S. typhimurium strain, ∆ppGpp, was 

engineered by regulating endotoxin gene expression. A 
double mutant Salmonella strain (relA−, spoT−) defective 
in ppGpp synthesis, resulting in downregulation of endo-
toxin gene expression, is avirulent in mice after systemic 
infection, showing an approximately 105-6-fold increase in 
the LD50 values when compared with the wild type after oral 
administration or intraperitoneal inoculation.73 ∆ppGpp 
achieved excellent tumor suppression by activating the in-
flammasome pathway, as observed by upregulated expre-
ssion of genes encoding inflammasome-related NLRP3, 
IPAF, and tumor inhibitory cytokines (IL-1 and IL-18, 
TNF-), thereby suppressing the proliferation of CT26 and 
MC38 colon cancer models in mice.7,38 The ∆ppGpp strain 
is also a good vector for the tumor-specific delivery and ex-
pression of therapeutic molecules. The engineered bac-
teria can also express imaging reporter genes such as firefly 
luciferase and renilla luciferase,22,74 or tumoricidal agents 
such as cytolysin21,22 and the mitochondrial-targeting do-
main (MTD) of Noxa.26

4. Other strains
The three strains described above represent attenuated S. 
typhimurium, which has been well studied with respect to 
cancer. Three basic mechanisms are involved in the crea-
tion of mutant strains. First, modification of bacterial com-
ponents to reduce the induction of inflammation, e.g., re-
moval of lipid A from VNP20009 (msbB−, purI−);14,33,46,69 
second, creation of nutrient auxotrophs by depleting cer-
tain genes to enable the bacteria to survive and proliferate 
in tumor tissues (e.g., leucine and arginine auxotrophic 
A1-R (Leu−, Arg−),18,19,70-72 aromatic compound-dependent 
BRD509 (aroA−, aroD−),47,75 adenine-dependent MvP728 
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TABLE 2. Strategies for attenuated S. typhimurium-mediated cancer therapy

Category Strategy Description Refs

Native cytotoxicity 7-9,34,70-72
Combinational therapy 25,79,80
Cytotoxic agents ClyA Cytolysin A/Hly E 21,22,31

DT-A Diphtheria toxin A chain 30
Apoptin Induces cancer cell apoptosis 43
FasL Proapoptotic cytokine Fas ligand 44
TRAIL Tumor necrosis factor-related apoptosis-inducing ligand 45

Cytokines IL-2 Signaling molecule regulates the activities of lymphocytes 47,48
IL-18 Enhances T and NK cell proliferation and cytokine production 49
CCL21 Chemokine controls the migration of lymphocytes, dendritic cells, 

T, NK cells
46,50

LIGHT Homologous to lymphotoxin, a TNF family cytokine 51
Regulators SPYR RTK signal pathway inhibitor 81

p53 Regulates the cell cycle and function as a tumor suppressor 54,82
GRIM-19 A growth suppressive gene product in the IFN and retinoic 

acid-induced cell death pathway
55

MTD Mitochondrial-targeting domain of Noxa 26
Endostatin Angiogenesis inhibitor 56,77
ENDO-VEGI 151 Inhibits angiogenesis 57

Vaccine vectors Survivin Induces CD8 T cell-mediated antitumor activity 50,83,84
Endoglin (CD105) DNA vaccine against endoglin; inhibits endothelial cell proliferation 

in tumor microenvironment
27,85

4-1 BBL 4-1BB ligand; enhances T cell immunity and inhibits tumor growth 86
flk1 VEGF receptor-2; anti-vasculature effect 87,88
HPV16 E7 Human papillomavirus 16 E7 antigen 75
CEA Carcinoembryonic antigen/antibody-specific chain 89,90
CD20-targeting Ab Antibody directed to the tumor-associated antigen (CD20) 67
MTDH/AEG-1 Suppresses metastasis and enhances chemosensitivity 91
gp100 Glycoprotein; elicits protective immunity 92
mtHSP70 Elicits both cellular and humoral immunity 93

RNA interference Stat3 Inhibits signal transduction and transcription 52,53,56,94
IDO Targets the immunosuppressive molecule IDO 95,96
Survivin Reduces tumor growth 55,57
MDR1 Targets the multidrug-resistant gene 97
mdm2 Rescues p53 activity by silencing murine double minute 2 (MDM2) 54

Enzymes ePNR Activates prodrugs 58-60
CPG2 Activates prodrugs 61
CD Converts 5-FC to 5-FU 17
HSV1-tk Diagnostic imaging with radiopharmaceutical (FIAU) 62,63

CD: E.coli cytosine deaminase, CPG2: carboxypeptidase G2, ePNR: E. coli purine nucleoside phosphorylase, flk1: fetal liver kinase 1,
gp100: glycoprotein 100, GRIM-19: gene associated with retinoid-interferon-induced mortality-19, HSV1-tk: herpes simplex virus type
1 thymidine kinase, IDO: indoleamine 2,3-dioxygenase, mdm2: murine double minute 2, MDR1: multidrug-resistance gene, MTD: mi-
tochondrial-targeting domain, MTDH/AEG-1: metadherin/astrocyte elevated gene-1, mtHSP70: mycobacterium tuberculosis heat 
shock protein 70, p53: tumor protein p53, SPYR: sprouty proteins, Stat3: signal transducer and activator of transcription 3.

(purD−, htrA−),52 and strains derived from SL7207 (aroA−) 
that express the essential asd gene under hypoxic con-
ditions30,76); third, creation of strains by inactivating or 
downregulating expression of endotoxin-related genes 
(including ∆ppGpp (relA−, spoT−),7,21,73 LH340 (phoP−, 
phoQ−),53,77 and SB824 (aroA−, sptP−)).78 To engineer such 
bacteria with better performance, we usually combine dif-
ferent strategies, for example, to yield the lipid A mutant 
VNP20009 that is defective in purine synthesis. Also, nu-
trient auxotrophs always show downregulated expression 

of endotoxin genes.

STRATEGIES FOR S. TYPHIMURIUM-MEDIATED 
CANCER THERAPY

Attenuated S. typhimurium suppress various cancers in 
mouse models. Different strategies have been developed to 
increase their effectiveness, including combinational ther-
apy with radiation or chemical drugs and genetic engineer-
ing of bacteria to express therapeutics such as cytotoxic 
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proteins, cytokines, prodrug enzymes, regulators, and ge-
netic materials used for DNA vaccine or gene silencing 
(Table 2).

1. Native cytotoxicity and combinational therapy
Attenuated S. typhimurium effectively inhibits tumor 

growth.7-9,34,70-72 Native bacterial cytotoxicity is mediated 
by activation of the host immune system and by depriving 
cancer cells of nutrients.39 Bacterial components (such as 
LPS, flagellin, and CpG) and signals/molecules released 
from damaged cancer cells activate the TLR and NLR sig-
naling pathways, resulting in the production of proin-
flammatory cytokines (IL-1, TNF-, and IL-18), which 
mediate an antitumor immune response. In addition, rap-
idly proliferating bacteria deprive tumors of nutrients, re-
sulting in cancer cell starvation and death. Administration 
of attenuated S. typhimurium, VNP20009, to 41 dogs with 
spontaneous neoplasia resulted in tumor colonization in 
42% cases (as demonstrated by tissue culture). Moreover, 
15% of dogs mounted a strong antitumor response (four 
showed a complete response and two a partial responses).69 
Bacteria have been used in combination with other regi-
mens to generate synergistic antitumor effects by increas-
ing the sensitivity of cancer cells to other therapies and by 
reducing toxicity. Bevacizumab (Avastin, BEV) is a human-
ized monoclonal antibody that targets the vascular endo-
thelial growth factor (VEGF) receptor, thereby inhibiting 
angiogenesis; this antibody is widely used to treat cancer 
patients, although many tumors acquire resistance after 
a short period of response.79 Combined treatment of nude 
mice harboring orthotopic human pancreatic tumors with 
BEV and an attenuated A1-R strain led to a reduction in 
tumor weight.80 The administration of a traditional Chinese 
herbal mixture along with A1-R enabled bacterial admin-
istration at large doses, which increased antitumor efficacy 
and reduced toxicity when compared with monotherapy 
with bacteria alone.25 We recently reported that therapy 
with engineered E. coli led to a significant improvement in 
the results achieved by radiotherapy, and that this combi-
nation produced a better treatment outcome with only 1/3–
1/2 of the conventional radiation dose.10 While hypoxic cells 
within malignant tumors are often resistant to radio-
therapy, facultative anaerobic bacteria proliferate in hy-
poxic areas and kill cancer cells. Thus, a combination of ra-
diotherapy and bacteriotherapy may make up for the weak-
nesses of each therapeutic modality alone.

2. Cytotoxic proteins
Attenuated S. typhimurium can be used as a vector to de-

liver and express tumor-specific cytotoxic agents to retard 
tumor growth. However, expression of toxic genes must be 
tightly regulated by inducible or tumor-specific promoters 
to avoid unintended damage in normal tissues.21,22,30,31 
Cytolysin A (ClyA, HlyE) is a native bacterial toxin pro-
duced by E. coli, Salmonella enterica serovar Typhi, and 
Paratyphi A, and is cytotoxic to cultured mammalian cells 
due to its pore-forming activity. A ∆ppGpp strain engi-

neered to produce ClyA effectively suppressesed the tumor 
growth in various cancer models.21,22,30 Proapoptotic ligands 
such as Apoptin,43 Fas ligand, and TNF-related apopto-
sis-inducing ligand (TRAIL) selectively induced apoptosis 
via death receptor pathways, resulting in tumor sup-
pression and prolonged survival.44,45

3. Cytokines
Attenuated S. typhimurium have been engineered to de-

liver immunocompetent cytokines such as IL-2, IL-18, CCL21, 
and LIGHT for targeted cancer immunotherapy.46-51 Tu-
mor-specific cytokines produced by bacteria kill cancer 
cells by triggering the host immune system via upregula-
tion of immune cell activation, proliferation, and migration. 
IL-2 is a signaling molecule that regulates lymphocyte 
activity. IL-2-induced tumor suppression correlates with 
reduced angiogenesis and increased necrosis within tumor 
tissues.47 IL-18 (also known as IFN--inducing factor) in-
creases the cytolytic activity of T cells and NK cells, along 
with cytokine production.49 Furthermore, IL-18 upregu-
lates MHC class I antigen expression and drives the differ-
entiation of CD4＋ helper T cells into Th1 cells, and sup-
presses angiogenesis by inhibiting the proliferation of en-
dothelial cells, thereby amplifying the antitumor effects 
mediated by NK cells, macrophages, and CD8＋ T cells.49 
CCL21 controls the migration of lymphocytes, dendritic 
cells, and NK cells.46,50 LIGHT (also known as TNFSF14 or 
HVEM-L) is a TNF family cytokine that is homologous to 
lymphotoxin and binds both the lymphotoxin- receptor 
(LTR), which is expressed on epithelial cancers, and her-
pes virus entry mediator (HVEM), which is expressed by 
T lymphocytes. Attenuated S. typhimurium encoding 
LIGHT showed promising antitumor effects in immuno-
competent mice bearing syngeneic tumors.51

4. Regulators
Certain cargo molecules were designed to regulate tu-

mor cell growth or inhibit angiogenesis in tumor tissues. 
Sprouty (SPRY1/2) proteins are endogenous negative reg-
ulators of receptor tyrosine kinase (RTK) signaling path-
ways. Activation of RTK signaling pathways often corre-
lates with cancer cell proliferation, angiogenesis, and pro-
gression. Delivery of SPYR to tumor tissues via engineered 
VNP20009 significantly inhibited melanoma growth in 
vivo; tumor suppression was mainly mediated via inhibi-
tion of ERK1/2 phosphorylation.81

p53 is crucial for apoptosis, genomic stability, and in-
hibition of angiogenesis and carcinogenesis. The activity 
of p53 is negatively regulated by mdm2 (murine double mi-
nute 2) and by ubiquitin-mediated degradation.82 Activa-
tion of p53 induces expression of downstream target genes 
related to cell cycle arrest and apoptosis. The E6 viral onco-
protein binds to wild-type p53 (wt-p53) in the host cell and 
disrupts its function; thus gene silencing of E6 in HPV-pos-
itive cervical cancer restores p53 function with respect to 
cell cycle arrest and apoptosis, leading to cancer suppre-
ssion both in vitro and in vivo.82 Also, engineered Salmonella 
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co-expressing p53 and mdm2 siRNA increased the ther-
apeutic effect of cisplatin against prostate cancer.54 A ∆
ppGpp strain expressing the MTD of Noxa induced cell 
death by increasing cytosolic calcium concentrations and 
mitochondrial permeability.26 Also, angiogenesis inhibitors 
such as endostatin and ENDO-VEGI115 inhibit tumor an-
giogenesis when expressed locally by attenuated Salmo-
nella.56,57,77

5. Vaccine vectors
Attenuated S. typhimurium is widely used as a DNA vac-

cine vector. Bacteria-mediated delivery of cancer-specific 
antigens or antibodies, growth factor-targeting domains, 
and anti-apoptosis or tumor-associated macrophage-ta-
rgeting proteins can stimulate the immune system, pro-
mote inflammation, and increase antigen presentation to 
T cells. Most DNA vaccines are orally administered and 
have the potential to inhibit or prevent tumor growth when 
given in multiple doses. Survivin, which is highly regulated 
and optimally expressed during the G2/M phase of the cell 
cycle, is essential for anti-apoptotic function. A DNA vac-
cine encoding survivin could induce CD8 T cell-mediated 
anticancer activity.50,83,84 Endoglin (CD105) is a coreceptor 
for the TGF- receptor complex and is overexpressed on 
proliferating endothelial cells; thus it is an attractive tar-
get for antiangiogenesis-mediated cancer therapy.27,85 A 
4-1BB ligand (4-1BBL) DNA-based vaccine effectively sup-
pressed colorectal cancer development in rats by increas-
ing T cell-mediated immunity.86 Oral vaccines encoding 
murine VEGF receptor-2 (flk1) inhibited angiogenesis and 
showed antitumor effects.87,88 Cancer-specific antigens 
such as the carcinoembryonic antigen (CEA), the human 
papillomavirus antigen (HPV16 E7), and cancer anti-
gen-specific antibody domains, such as including a CEA an-
tibody-specific chain and a tumor-associated antigen 
CD20-targeting antibody, have been expressed and shown 
antitumor activity.67,75,89,90 A DNA vaccine against 
MTDH/AGE-1 (astrocyte elevated gene-1, which is overex-
pressed in ＞40% of breast cancer patients and is known 
as metadherin (MTDH) in mice) significantly suppre-
ssesed lung metastasis of breast cancer and increased che-
mosensitivity to doxorubicin treatment.91 Immunostim-
ulating molecules such as glycoprotein (gp100) or heat 
shock protein (M. tuberculosis heat shock protein 70) elicit 
host-derived protective immunity to suppress tumor 
development.92,93

6. RNA interference
Engineered bacteria have been used to transfer genetic 

material for the targeted silencing of certain genes to in-
hibit tumor growth and increase sensitivity to therapy. 
Gene-specific small hairpin RNAs (shRNAs) delivered by 
S. typhimurium are processed by the enzyme dicer to yield 
small interfering RNAs (siRNAs) that trigger degradation 
of the target RNA.53 The signal transducer and activator 
of transcription (Stat3), a factor that inhibits apoptosis and 
promotes cell growth and is overexpressed in many kinds 

of cancer, is an attractive target for shRNA-mediated gene 
silencing and has been widely studied with respect to the 
prevention of metastasis and inhibition of tumor 
growth.52,53,56,94 S. typhimurium transformed with an im-
munosuppressive molecule (indoleamine 2,3-dioxygenase; 
IDO)-targeting shRNA suppresses the growth of pancre-
atic cancer and melanoma in mouse models.95,96 Targeting 
survivin or multidrug-resistant gene (MDR1) may sig-
nificantly inhibit tumor growth and increase sensitivity to 
chemotherapy.55,57,97 Silencing of mdm2 rescues the activ-
ity of p53 to regulate cell cycle and function, thereby sup-
pressing tumor growth.54

7. Enzymes
Enzymatic proteins expressed by engineered S. typhi-

murium can convert nontoxic prodrugs into toxic anti-
cancer drugs in cancer tissues, thereby minimizing sys-
temic toxicity. Administration of attenuated S. typhimu-
rium expressing E. coli purine nucleoside phosphorylase 
(ePNR) converts two prodrugs, 6-methylpurine 2’-deoxyri-
boside (MePdR) and 6-methoxypurine 2’-deoxyriboside 
(MoPdR), into toxic substances named 6-methylpurine 
(MeP) and 6-methoxypurine (MoP), leading to tumor-specific 
cell killing.58-60 The prodrug activation enzyme, carbox-
ypeptidase G2 (CPG2), activates different prodrugs and in-
duces cytotoxicity in human tumor cells, but not in the host 
bacterium.61 Attenuated VNP20009 expressing E.coli cy-
tosine deaminase (CD) have been injected directly into the 
tumors of cancer patients; this enzyme converts 5-fluo-
rocytosine (5-FC), an antifungal agent with limited sys-
temic toxicity, into 5-fluorouracil (5-FU), a cytotoxic anti-
cancer drug commonly used in the clinic to treat head and 
neck, gastric, colorectal, pancreatic, and breast cancers. 
The tumor to plasma ratio of 5-FU was 3.0, whereas that of 
noncolonized tumors was less than 1.0.17 Bacteria harboring 
enzymes are also used for positron emission tomography 
(PET)-based reporter gene imaging. The VNP20009 encod-
ing herpes simplex virus thymidine kinase (HSV1-tk) selec-
tively colonized tumor xenografts and effectively seques-
tered a radiolabeled nucleoside analogue, 2’-fluoro-1-- 
D-arabino-furanosyl-5-iodouracil (FIAU), thereby facili-
tating BCT and diagnostic imaging.62,63

PREVIOUS CLINICAL STUDIES

Despite the fact that Coley’s toxins were used to treat 
cancer patients over 100 years ago, the application of S. ty-
phimurium for cancer treatment was first reported after 
the year 2000. Used in abundant preclinical studies in ani-
mal models ranging from mice to monkeys, VNP20009 was 
designed by Vion Pharmaceutics Inc. and tested in 25 hu-
man patients (24 with metastatic melanoma and one with 
metastatic renal carcinoma).15 The maximum-tolerated 
dose (MTD) was estimated as 3.0×108 cfu/m2. Dose-related 
toxicity was due to increased systemic production of proin-
flammatory cytokines, including IL-1, TNF-, IL-6, and 
IL-12. Focal bacterial colonization of tumors was observed 
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in two patients receiving 1.0×109 cfu/m2 and in one patient 
receiving 3.0×108 cfu/m2. However, no objective tumor re-
gression was observed, even in patients with colonized 
tumors. Further clinical studies involved four additional 
metastatic melanoma patients.16 VNP20009 was given at 
a MTD of 3.0×108 cfu/m2, resulting in minor and transient 
side effects during therapy. Only one colony was detected 
in an excisional tumor biopsy obtained within 2 weeks of 
therapy. One month after therapy, two patients showed 
significant disease progression and were thus treated with 
other therapeutic regimens. The third patient was free of 
disease after surgery and was still disease free at the 3 
month follow-up appointment. While the fourth patient 
showed initial tumor suppression (both in terms of tumor 
size and the number of subcutaneous lesions) the disease 
progressed in the next 2 months.

To improve the therapeutic efficacy, another preclinical 
study used a modified strategy in that attenuated VNP20009 
expressing E. coli CD were injected directly into tumors.17 
CD converts 5-FC to toxic 5-FU. Three patients with squ-
amous carcinoma and adenocarcinoma were treated by in-
tratumoral injection of these bacteria (doses ranged from 
3×106 to 3×107 cfu/m2 once every 28 days as long as no dis-
ease progression or intolerable toxicity was observed). No 
adverse reaction was noted after six cycles of treatment. 
Two patients showed bacterial colonization in tumors for 
at least 15 days after initial administration. The con-
version of 5-FC into 5-FU (tumor to plasma 5-FU ratio) in 
the two colonized patients was 3.0, whereas that in the non-
colonized patient was less than 1.0. The results suggest 
that attenuated S. typhimurium can deliver therapeutic 
genes to malignant tissues at safe doses.

CONCLUSION AND FUTURE PERSPECTIVES

Engineering of attenuated bacteria for targeted cancer 
therapy has been tested in animal models and promotes 
significant tumor suppression and prolonged survival. 
Facultative anaerobic BCT have some advantages over 
other therapies, including self-propulsion, self-proliferation, 
environmental sensing, external detection, and conveni-
ence in gene modification.29 These characteristics make 
bacteria an ideal and novel strategy for targeted cancer 
therapy. Various bacteria have been evaluated; among 
them, S. typhimurium is one of the most promising and the 
first-in-human studies to suggest the possibility of clinical 
translation.

Attenuated S. typhimurium reduced endotoxin expre-
ssion and increased tumor-specific colonization, enabling 
administration of bacteria at relatively high doses to ach-
ieve tumor suppression. Systemic infection by attenuated 
bacteria results in a greater than 1,000-fold increase in the 
number of bacteria in the tumor tissue relative to that in 
normal organs such as the liver and spleen. Different strat-
egies have been used to engineer bacteria to express tu-
mor-inhibiting proteins,21,74 transfer eukaryotic expression 
vectors to infected cancer cells,30,58 and deliver targeted 

gene silencing.52,57

Phase I clinical studies of VNP20009 in cancer patients 
have shown that tumor targeting is a major obstacle to fur-
ther development. Future studies should focus on improv-
ing bacterial-targeting efficiency. Such studies may go in 
two possible directions: one is to use tumor-amplified pro-
tein expression therapy (TAPETTM) to maximize the bene-
fits derived from bacterial cancer therapy;17,62 the other is 
bacterial surface engineering to display cancer-targeting 
domains. For example, the RGD peptide binds to v3, 
which is overexpressed by various cancers, thereby increa-
sing tumor-specific colonization.68

Optimal bacterial strains should be selected for different 
strategies. For example, non-invasive bacteria would bet-
ter trigger cell surface receptors or PRRs, while invasive 
bacteria would be better for delivery of cancer-specific anti-
gens to immune cells. The target cell is also of great impor-
tance because immune cell-targeting bacteria and cancer 
cell-targeting bacteria may have different roles. Moreover, 
the development of BCT requires multidisciplinary collab-
oration among those working in the fields of microbiology, 
immunology, cancer biology, chemical engineering, medi-
cal imaging, radiation oncology, and clinical oncology.
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