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controls the expression of genes related to the generation of 
reactive oxygen species (ROS) and prevents oxidative stress 
by reducing the production of ROS [10]. In AD, impaired 
mitochondrial biogenesis in neuronal cells causes synapse 
dysfunction [11] and cellular damage [12] and contributes 
to cognitive decline [13, 14]. Additionally, insulin resistance 
of the AD brain aggravates the rapid progress of AD patho-
physiology [15, 16]. Much research has demonstrated that 
PGC-1a improves mitochondrial function [17] and insulin 
sensitivity [18, 19]. In this review, we summarize recent 
research on the association between PGC-1a and AD and 
provide new insights about PGC-1a’s role in the mechanism 
of AD pathology.

PGC-1a

PGC-1a is highly responsive to numerous forms of envi-
ronmental stress, including temperature and nutritional status 
[4, 5]. PGC-1a also regulates mitochondrial biogenesis in 

Introduction

The incidence of Alzheimer’s disease (AD) is expected 
to increase dramatically as the world population [1-3]. The 
peroxisome proliferator-activated receptor (PPAR)-g coac-
tivator-1 (PGC-1) family of coactivators comprises pro-
teins that mediate responses to environmental stress [4, 
5]. Several studies have reported that the level of PGC-1a 
evidently decreases in the brains of AD patients [6, 7]. In 
the AD brain, oxidative stress has been regarded as the core 
problem, leading to other AD pathologies [8, 9]. PGC-1a 
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response to diverse environmental stimuli [20]. PGC-1a forms 
heteromeric complexes with a variety of transcription factors 
including nuclear respiratory factor (NRF)-1, NRF-2, PPARa, 
PPARd, PPARg, and estrogen-related receptor a [21]. These 
PGC-1a transcriptional activator complexes could displace 
repressor proteins, such as histone deacetylase and its small 
heterodimer partner and thereby induce gene activation [22]. 
PGC-1a is commonly expressed in tissues with a high energy 
demand, including brown adipose tissue, skeletal muscle, and 
the brain [23, 24]. In the brain, impairment of the activity of 
PGC-1a triggers the degeneration of neurons by inducing 
mitochondrial dysfunction [17, 25]. PGC-1a-knockout 
mice display behavioral abnormalities such as frequent limb 
clasping [26]. Moreover, interaction between PGC-1a and 
signal pathways, such as that involving Cre-binding protein 
[27], cGMP-dependent pathways [28], and p38–mitogen 
activated protein kinase pathways [29] plays a critical role in 
the response to oxidative stress in AD [30]. PGC-1a plays 
a central role by influencing the genes that regulate detoxi-
fication of ROS [31]. According to clinical research, PGC-
1a may be key to maintaining brain function in AD, since 
its levels decreased in AD patients in comparison to that 
in normal subjects [6, 7]. Based on this evidence, focusing 
on PGC-1a’s role may lead to a better understanding of the 
mechanisms of AD pathology.

PGC-1a and Oxidative Stress in AD

Salient features of AD include molecular aberrations such 
as oxidative stress [8], inflammation [32]. Of these features, 
oxidative stress appears to be the trigger of free radical-
induced cellular damage, DNA oxidation, and aberration 
in DNA repair [33]. In AD, the primary brain areas where 
neuronal damage due to oxidative stress occurs are the hippo-
campus and the cortex [34]. Compared to control cases, AD 
patients exhibit some aspects of elevated oxidative stress 
including the production of proteins such as cytochrome c 
oxidase [34], increased lipid peroxidation [35]. Therefore, 
the markers of oxidative damage founded in neurons in 
AD are the hallmark of its pathologies and an indication 
of degeneration in the AD brain [36]. In AD, increased 
levels of ROS, including hydrogen peroxide and hydroxyl 
radicals, impede various cellular functions by degrading 
proteins [37]. PGC-1a plays a central role in the regulation 
of ROS detoxifying enzymes, such as superoxide dismutase 
1 and 2, catalase and glutathione peroxidase-1 [17]. It has 

been reported that PGC-1a modulates the expression of 
uncoupling protein 2 [38] and uncoupling protein 3, which 
are both direct regulators of ROS formation [39]. Additionally, 
PGC-1a controls the level of sirtuin1 [40] and sirtuin3 [41] 
which reduce the generation of ROS [10]. Some research 
demonstrates that elevated PGC-1a levels protect neural cells 
from apoptosis due to oxidative stress through the induction 
of antioxidant genes [17]. One study showed that increased 
PGC-1a activity could ameliorate neuronal loss and improve 
neurological symptoms [42]. Taken together, the elevated 
activity of PGC-1a could protect neuronal cells from damage 
by reducing the oxidative stress in AD and subsequently 
alleviate several pathophysiological features of this disorder. 

PGC-1a, Mitochondrial Dysfunction, and 
Cogni tive Dysfunction in AD

In AD, neurodegeneration and synaptic degradation are 
caused by impaired mitochondrial biogenesis [12]. Mito-
chondria play a crucial role in the process of neuronal apop-
tosis in the AD brain [43] and are the pivotal organelle for the 
generation of ROS [44]. Mitochondrial dysfunction has been 
considered as one of the central cytopathologies of AD [45] and 
is known to contribute to cognitive decline through various 
pathways. In AD neurons, mitochondria are sites of amyloid 
beta accumulation, and these amyloid beta accumulations 
in mitochondria finally result in the death of the cell [46]. 
Impaired mitochondrial function leads to a severe loss in 
energy metabolism and ATP generation [47], and also to a 
deficiency in the scavenging of free radicals which triggers 
excessive oxidative damage in the AD brain [48, 49]. An 
association between mitochondrial dysfunction and memory 
dysfunction has been demonstrated in several human and 
animal studies [50, 51]. In AD, mitochondrial dysfunction, 
including an increase in oxidative stress [52] and defective 
mitochondrial biogenesis [53] occurs in neurodegeneration 
[54]. In the aged brain, PGC-1a regulates the expression 
of sirtuin 3, which is a factor related to the aging process 
[53]. It has been observed that in the brains of patients with 
neurodegenerative diseases, low levels of PGC-1a lead to 
mitochondrial dysfunction and oxidative stress [55, 56]. PGC-
1a regulates mitochondrial density in neurons [57] and PGC-
1a–knockout mice showed an increased sensitivity to the 
degeneration of dopaminergic and glutamatergic neurons in 
the brain [17]. Moreover, another study demonstrated that 
the reduction of mitochondrial gene expression in PGC-1a–
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knockout mice finally leads to neuronal dysfunction [26]. 
PGC-1a stimulates expression of GA-binding protein a, a 
known regulator of cognitive function, in a cell culture study 
[58]. Given that PGC-1a plays a crucial role in neuronal 
function [59] and regulates mitochondrial function, PGC-
1a could ameliorate mitochondrial dysfunction and improve 
cognitive function in AD.

PGC-1a, Insulin Resistance, and Cognitive Dys-
function in AD

Insulin modulates neurotransmitter release [60], neuronal 
cell survival [61], and synaptic plasticity [62] and it improves 
cognition and memory function in the brain[63, 64]. Insulin 
resistance in the brain is defined as decreased uptake of in-
sulin into the brain, leading to the dysregulation of amyloid 
beta level and inflammation [65]. In AD, insulin resistance 
in the brain is an important issue since it contributes to the 
progress of the disease [66]. Recent research demonstrated 
that patients with AD have defective insulin signaling [67] in 
the brain, as well as reduced insulin receptor sensitivity [68]. 
The PGC-1a gene is expressed at high levels in obese animals 
[69] and diabetic mice [70] compared to that in normal 
animals. PGC-1a is a transcriptional coactivator involved in 
the mitochondrial biogenic response that counteracts insulin 
resistance [71]. In a study conducted with PGC-1a–knockout 
mice, the mice exhibited insulin sensitivity by comparison 
with normal controls in spite of a high fat diet [26]. Moreover, 
PGC-1a improves glucose tolerance, insulin sensitivity and 
gluconeogenesis [18]. Considering that PGC-1a alleviates 
insulin resistance [72], it could reduce cognitive impairment 
related to insulin resistance in the AD brain.

Conclusion

In this review, we summarized recent evidence indicating 
that PGC-1a can contribute to the improvement of AD 
pathophysiology. Here, we highlight four points: (1) PGC-
1a could protect against oxidative stress in AD and thereby 
prevent neuronal cell damage, (2) PGC-1a could improve 
mitochondrial dysfunction in AD, (3) PGC-1a could reduce 
insulin resistance in AD, and (4) finally, PGC-1a could 
ameliorate cognitive impairment caused by AD. Thus, this 
review raises the possibility that PGC-1a could be used as a 
therapeutic agent in the treatment of AD. 
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