





<sup>2001 2 15 2001 4 6 .</sup> 

MR

| MR             |                   | 가 가               |             | gadoper     | ntetate dim | leglumine    |                | 1:250            | 0            |
|----------------|-------------------|-------------------|-------------|-------------|-------------|--------------|----------------|------------------|--------------|
|                | 8                 | -                 | 7F A        |             |             | MR<br>T      | 6 - 10 ml<br>8 |                  | 8.6 ml<br>MR |
| 가 4            | 32                | 79                | 1 - ,       |             |             |              | T1             | フ                | ŀ            |
| 59 .           | 02                | (Bue              | rger's dis- |             |             |              |                |                  |              |
| ease) 2,       | 2                 | · · ·             | 1,          |             |             |              |                |                  | 8            |
| (;             | atherosclerosis o | bliterance) 1     | ,           | 2           |             |              |                |                  |              |
| 1,             |                   | 1                 |             |             |             | (9           | 9, 13)         |                  |              |
|                |                   |                   |             |             |             |              | (11).          |                  |              |
|                |                   |                   |             | MR          | M           | २            |                |                  |              |
|                |                   |                   |             |             |             |              |                | 3                |              |
| - 70           |                   |                   |             | 가           |             |              |                | 1                | 5            |
| MR             |                   | 24                |             |             |             |              | 가              |                  |              |
| MR 1.          | .5T               | (Magnet           | om Vision,  |             | 5,          | 가            |                |                  |              |
| Siemens, Erlan | igen, Germany)    |                   |             | 4,          |             | _1           |                |                  | 3,           |
| (knee coil)    | •                 |                   |             |             |             | 가            | 2,             |                  |              |
| (dorsif        | lexion) 10°       | - 20 °            |             | 1           | •           |              |                |                  | ,            |
| T1             |                   | ,<br>600/20 mccc) | ,<br>MD     | ,<br>MD     |             | \\/ile       | Novon signod   | IVIR<br>ronk too | .+           |
|                |                   | 3 mm              | IVIIN       | IVIIN       | n           | 0.05         | oxon signed    |                  | ol.          |
| 0.3 mm         | 192 x 256         | 2                 |             |             | Р           | 0.00         |                |                  |              |
| 0.0 1111,      | 120 mm.           | ,<br>220 mm       |             | ·           |             |              |                |                  |              |
| MR             | 120 1111,         | 220 1111          | •           |             |             |              |                |                  |              |
| (pla           | antar flexion)    |                   | (anterior   |             |             |              |                |                  |              |
| tibial tendon) | 24G               |                   | ,           | 8           | 3           |              | 7              | ł                |              |
| ,              |                   |                   | (Ultravist  | . 1         |             | (p           | osterior subt  | alar joint       | )            |
| 300, Schering  | , Germany) 0.5    | ml                |             | 가           |             | 1            |                | (1               | tendon       |
| 가              | 가                 |                   | MR          | sheath of t | he flexor h | allucis tend | lon)           |                  | (ten -       |

:

Table 1. Conventional MR and MR Arthrography Results of Ankle Ligaments in 8 Amputated Specimens

|                     |               | Conventional MR |               |               | MR arthrography |               |  |  |
|---------------------|---------------|-----------------|---------------|---------------|-----------------|---------------|--|--|
|                     | Axial         | Coronal         | Sagittal      | Axial         | Coronal         | Sagittal      |  |  |
| Lateral Collateral  |               |                 |               |               |                 |               |  |  |
| Ant. Talofibular*   | $4.1 \pm 0.9$ | $2.8 \pm 0.8$   | $2.3 \pm 0.7$ | $4.8 \pm 0.7$ | $4.3 \pm 0.7$   | $3.7 \pm 0.7$ |  |  |
| Post. Talofibular*  | $4.1 \pm 1.1$ | $3.7 \pm 1.0$   | $3.5 \pm 0.9$ | $4.5 \pm 0.9$ | $4.8 \pm 0.3$   | $4.3 \pm 0.5$ |  |  |
| Calcaneofibular     | $2.1 \pm 0.8$ | $3.1 \pm 1.4$   | $1.2 \pm 0.4$ | $2.2 \pm 0.8$ | $3.7 \pm 1.3$   | $1.2 \pm 0.4$ |  |  |
| Medial Collateral   |               |                 |               |               |                 |               |  |  |
| Tibionavicular      | $2.6 \pm 0.7$ | $2.5 \pm 0.5$   | $1.5 \pm 0.7$ | $3.2 \pm 0.7$ | $3.2 \pm 0.7$   | $1.8 \pm 1.4$ |  |  |
| Tibiospring         | $3.6 \pm 0.9$ | $4.7 \pm 0.7$   | $2.3 \pm 0.9$ | $3.6 \pm 0.9$ | $5.0 \pm 0.0$   | $2.5 \pm 1.1$ |  |  |
| Tibiocalcaneal      | $2.5 \pm 0.7$ | $4.2 \pm 1.3$   | $1.3 \pm 0.5$ | $2.5 \pm 0.7$ | $4.3 \pm 1.1$   | $1.3 \pm 0.5$ |  |  |
| Spring              | $4.0 \pm 0.5$ | $4.1 \pm 1.1$   | $3.8 \pm 0.9$ | $4.0 \pm 0.5$ | $4.1 \pm 1.1$   | $4.1 \pm 0.6$ |  |  |
| Ant. Tibiotalar*    | $1.3 \pm 0.7$ | $2.6 \pm 0.9$   | $1.0 \pm 0.0$ | $1.4 \pm 0.7$ | $4.5 \pm 0.7$   | $1.0 \pm 0.0$ |  |  |
| Post. Tibiotalar*   | $3.2 \pm 0.7$ | $3.1 \pm 0.9$   | $2.0 \pm 0.9$ | $4.5 \pm 0.7$ | $4.7 \pm 0.4$   | $2.5 \pm 1.1$ |  |  |
| Distal tibiofibular |               |                 |               |               |                 |               |  |  |
| Ant. Tibiofibular   | $4.0 \pm 0.7$ | $2.8 \pm 1.1$   | $1.6 \pm 0.7$ | $4.2 \pm 0.8$ | $2.8 \pm 1.1$   | $1.6 \pm 0.7$ |  |  |
| Post. Tibiofibular* | $4.0 \pm 0.7$ | $3.3 \pm 1.1$   | $1.5 \pm 0.7$ | $5.0 \pm 0.0$ | $3.5 \pm 1.1$   | $1.5 \pm 0.7$ |  |  |
| Inf. Transverse*    | $4.2 \pm 1.3$ | $3.2 \pm 0.8$   | $3.2 \pm 1.2$ | $4.8 \pm 0.8$ | $4.6 \pm 0.5$   | $3.5 \pm 1.1$ |  |  |

Note. - Numbers are mean ± standard deviation.

Ant. = anterior, Post. = posterior, Inf. = inferior \* - MR arthrography was higher (p < 0.05) than conventional MR on Wilcoxon 's signed rank test.

## 2001;44:513 - 522

| don | sheath  | of the fle | xor digitorun   | n longus tendo   | on)    |     | MR           |          |            |           |        | ( <i>p</i> <0.0 | 01).   |
|-----|---------|------------|-----------------|------------------|--------|-----|--------------|----------|------------|-----------|--------|-----------------|--------|
|     | 가       |            |                 | 가                | フ      | F 1 |              |          |            |           |        | . M             | IR     |
|     |         |            | (os subfib      | ulale)           |        |     |              |          | 가          |           |        |                 | 가      |
|     |         |            | 2 mr            | n                |        |     | 2            |          |            | (Fig. 2). | . 2    | 1               |        |
|     | 가       | 가.         | 6               |                  |        |     |              |          |            |           |        |                 |        |
|     |         | (synovial  | recess)         | 가                | . 1    | MR  |              |          |            |           |        |                 |        |
|     | MR      |            |                 |                  | Та     | ble |              | 가        |            |           |        |                 | (Fig.  |
| 1   |         |            |                 |                  |        |     | 2D).         |          |            |           |        |                 |        |
|     |         |            |                 |                  |        |     | (            | (calcane | ofibular I | igament)  |        |                 |        |
|     |         | (Lateral C | ollateral Ligar | nent)            |        |     |              |          |            |           |        |                 |        |
|     |         | (anterior  | talofibular li  | gament)          |        |     | (peroneus    | brevis   | tendon)    |           |        | (peroneus       | longus |
|     |         |            |                 |                  |        |     | tendon)      |          |            |           |        |                 |        |
|     |         |            |                 |                  |        |     |              | MR       | MF         | R         |        |                 |        |
|     |         |            | MR              |                  | 가      |     |              |          |            |           |        |                 |        |
|     |         | MR         |                 |                  |        |     |              |          |            |           | 가      |                 |        |
|     |         |            |                 |                  |        |     |              |          |            |           |        |                 | (Table |
| (p< | 0.001)( | Fig. 1).   |                 |                  |        |     | 2).          |          |            |           |        |                 |        |
|     |         | (postorio  | r talofibular l | icomont)         |        | •   |              | (Modia   | Collators  | lliannont | )      |                 |        |
|     |         | (posterio  |                 | igament <i>)</i> |        |     |              | (IVIEUIA |            | ligamont  | /<br>\ |                 |        |
|     |         | (tubercle  | ·) ,            | ,                | MR     |     | (colliculue) | נוטוטו   | avicuidi   | nyament   | )      |                 | MP     |
|     |         |            | ')              | •                | IVII V |     | (coniculus)  |          |            |           |        | •               | IVIL   |

Table 2. Appearance of the Lateral Collateral Ligament on T1-weighted Spin-Echo Images

| Ligament                                      | Best Imaging Plane      | Width         | Multiple Fascicles | Signal Intensity Pattern   | Comments                       |
|-----------------------------------------------|-------------------------|---------------|--------------------|----------------------------|--------------------------------|
| Anterior talofibular<br>Posterior talofibular | Axial<br>Axial, Coronal | Thin<br>Thick | No<br>Yes          | Homogenous<br>Inhomogenous | Con. MR < MRA<br>Con. MR < MRA |
| Calcaneofibular                               | Coronal                 | Thin          | No                 | Homogenous                 | Con. MR = MRA                  |

Con. MR : Conventional T1-weighted spin-echo MR image. MRA : MR arthrography



**Fig. 1.** Anterior talofibular ligament **A.** Axial T1-weighted image before injection of contrast media into the joint shows the anterior talofibular ligament. Central portion of the ligament (arrow) appears to be thickened

**B.** Axial T1-weighted image after injection of contrast media into the joint shows the anterior talofibular ligament (arrow). Note the disappearance of thickening of the ligament due to the bulging of the ankle joint.

MR (*p*<0.011). 가 가 MR 가 (Fig. 3). (tibiocalcaneal ligament) 1 mm (posterior tibiotalar ligament) 가 (sustentac -MR ulum tali) MR MR . MR 가 (p<0.017). (tibiospring ligament) 2 가 2 가 가 가 가 MR (Fig. 4). MR , spring ligament, plantar calca -( neonavicular ligament) (anterior tibiotalar ligament) 가 MR MR MR MR





Fig. 2. Posterior talofibular ligament

A. Conventional coronal T1-weighted MR image at the level of posterior talofibular ligament reveals heterogeneous signal intensity in the ligament (arrow).

:

B. T1-weighted MR image after administration of the contrast media into the joint shows intravasation of the contrast material into the ligament (arrow).

C. Fat-suppressed MR image also shows intravasation of the contrast media into the ligament (arrow).

D. Photograph of the posterior talofibular ligament demonstrates separation of the fascicles of the ligament due to the tendon degeneration (H & E stain,  $\times 40$ ).

2001;44:513 - 522





**Fig. 3.** Anterior tibiotalar ligament **A.** Conventional coronal T1-weighted image shows the anterior tibiotalar ligament (arrow). But differentiation of the anterior tibiotalar ligament from the joint capsule is not possible.

**B.** Coronal MR arthrogram shows the well-demarcated inner margin of the tibiotalar ligament (arrow) by contrast media.



Α



**Fig. 4.** Posterior tibiotalar ligament **A.** Conventional coronal T1-weighted image demonstrates heterogeneous signal intensity of the posterior tibiotalar ligament (arrow).

**B.** Coronal MR arthrogram shows welldemarcated inner margin of the ligament by contrast media (arrow).

| 가            |                               |          | 6                                | 가         |
|--------------|-------------------------------|----------|----------------------------------|-----------|
|              | . 5                           |          |                                  | 가         |
|              |                               |          |                                  | (Fig. 5). |
|              | (wavy appearance)             | )        | (posterior inferior tibiofibular | ligament) |
| (Table 3).   |                               |          |                                  |           |
|              |                               |          |                                  |           |
| (Distal Tib  | iofibular Syndesmosis)        |          | (inferior transverse ligament)   | •         |
| (Anterior in | ferior tibiofibular ligament) | MR       | 가                                |           |
| М            | R MR                          | (Fig. 6) | MR                               | 71-       |

| 11                   | 0                  |       | 0 1                | 0                        |               |
|----------------------|--------------------|-------|--------------------|--------------------------|---------------|
| Ligament             | Best Imaging Plane | Width | Multiple Fascicles | Signal Intensity Pattern | Comments      |
| Anterior tibiotalar  | Coronal            | Thin  | No                 | Homogenous               | Con. MR < MRA |
| Posterior tibiotalar | Axial, Coronal     | Thick | Yes                | Inhomogenous             | Con. MR < MRA |
| Tibionavicular       | Axial              | Thin  | No                 | Homogenous               | Con. MR = MRA |
| Tibiocalcaneal       | Coronal            | Thin  | No                 | Homogenous               | Con. MR = MRA |
| Tibiospring          | Coronal            | Thick | No                 | Homogenous               | Con. MR = MRA |
| Spring               | Axial, Sagittal    | Thick | Yes                | Inhomogenous             | Con. MR = MRA |

Table 3. Appearance of the Medial Collateral Ligament on T1-weighted Spin-Echo MR Images

Con. MR : Conventional T1-weighted spin-echo MR image. MRA : MR arthrography.



**Fig. 5.** Anterior tibiofibular ligament **A.** Conventional axial MR image at the level of the talar dome shows heterogeneous signal intensity of the anterior tibiofibular ligament (arrow).

**B.** Axial MR arthrogram shows well-demarcated inner and outer margins of the anterior inferior tibiofibular ligament by contrast media (arrow).

**Fig. 6.** Posterior tibiofibular and inferior transverse ligaments

**A.** Conventional axial T1-weighted image demonstrates the thick posterior tibiofibular ligament (arrow).

**B.** Axial MR arthrogram shows two ligaments and intervening high signal intensity. Thin superficial portion is the posterior tibiofibular ligament (long arrow) and thick deep portion is the inferior transverse ligament (short arrow).

518

В

A

|        | . MR                   | 2                   | 1980             | MR              |                |
|--------|------------------------|---------------------|------------------|-----------------|----------------|
|        | 가                      |                     |                  |                 | 가              |
|        | (Table 4).             |                     | (6 - 19). Anzilo | tti (29)        | MR             |
|        | (posterior intermalled | plar ligament)      | 47%              |                 | 34%            |
|        | (fibular malleolar for | ssa)                | MR               | 가               |                |
|        | · ·                    |                     |                  |                 | . Chandnani    |
|        | 가                      | . MR                | (20)             |                 | MR             |
| 1      | MR                     | 7 (88%)             | 50%,             |                 | 83 - 100%      |
|        | (Fig. 7). 가            |                     | Kreitner         | (30) 92%        |                |
|        |                        |                     |                  | MR              | MR             |
| 1-2 mm |                        |                     | MR               |                 |                |
|        |                        |                     |                  | 가               | 가              |
|        |                        |                     |                  | (3, 20-22). (   | Chandnani (20) |
|        |                        |                     |                  |                 | 가 82-100%      |
|        |                        | 가                   |                  |                 |                |
|        |                        | (23 - 27). Van Dijk |                  |                 | 가              |
| (28)   |                        | 가 71%,              |                  |                 |                |
| 96%    |                        |                     | MR               |                 |                |
|        |                        |                     |                  | (3, 24). Haller | (24) 20%       |
|        |                        | 가                   |                  |                 | 가              |
|        |                        |                     |                  | 가               |                |
|        |                        |                     |                  |                 |                |

Table 4. Appearance of the Distal Tibiofibular Syndesmosis on T1-weighted Spin-Echo Images

| Ligament               | Best Imaging Plane | Width | Multiple Fascicles | Signal Intensity Pattern | Comments        |
|------------------------|--------------------|-------|--------------------|--------------------------|-----------------|
| Anterior tibiofibular  | Axial              | Thin  | No                 | Inhomogenous             | Con. $MR = MRA$ |
| Posterior tibiofibular | Axial, Coronal     | Thin  | No                 | Inhomogenous             | Con. MR < MRA   |
| Inferior transverse    | Axial, Coronal     | Thick | Yes                | Homogenous               | Con. MR < MRA   |

Con. MR : Conventional T1-weighted spin-echo MR image. MRA : MR arthrography



Fig. 7. Posterior intermalleolar ligament

**A.** The posterior intermalleolar ligament is not shown on conventional coronal T1-weighted image.

**B.** Coronal MR arthrogram demonstrates the intermalleolar ligament (short arrows) interposed between the inferior transverse ligament (arrowhead) and posterior talofibular ligament (long arrow).



:

56%

가

MR

가

가

520

- Schneck CD, Mesgarzadeh M, Bonakdarpour A. MR imaging of the most commonly injured ankle ligaments. Part II. Ligament injuries. *Radiology* 1992;184(2):507-512
- Muhle C, Frank LR, Rand T, et al. Collateral ligaments of the ankle: high-resolution MR imaging with a local gradient coil and anatomic correlation in cadavers. *Radiographics* 1999;19:673-683
- Rubin DA, Towers JD, Britton CA. MR imaging of the foot: utility of complex oblique imaging planes. *AJR Am J Roentgenol* 1996;166: 1079-1084
- Rosenberg ZS, Cheung YY, Beltran J, Sheskier S, Leong M, Jahss M. Posterior intermalleolar ligament of the ankle: normal anatomy and MR imaging features. *AJR Am J Roentgenol* 1995;165:387-390
- Erickson SJ, Smith JW, Ruiz ME, et al. MR imaging of the lateral collateral ligament of the ankle. *AJR Am J Roentgenol* 1991;156:131-136
- Klein MA. MR imaging of the ankle: normal and abnormal findings in the medial collateral ligament. AJR Am J Roentgenol 1994; 162:377-383
- Rubin DA, Tishkoff NW, Britton CA, Conti SF, Towers JD. Anterolateral soft-tissue impingement in the ankle: diagnosis using MR imaging. AJR Am J Roentgenol 1997;169:829-835
- Farooki S, Yao L, Seeger LL. Anterolateral impingement of the ankle: effectiveness of MR imaging. *Radiology* 1998;207:357-360
- Chandnani VP, Harper MT, Ficke JR, et al. Chronic ankle instability: evaluation with MR arthrography, MR imaging, and stress radiography. *Radiology* 1994;192:189-194
- Mayer DP, Jay RM, Schoenhaus H, Ruiz S. Magnetic resonance arthrography of the ankle. J Foot Surg 1992;31(6):584-587
- 22. Lee SH, Jacobson J, Trudell D, Resnick D. Ligaments of the ankle:

normal anatomy with MR arthrography. J Comput Assist Tomogr 1998;22:807-813

- Dory MA. Arthrography of the ankle joint in chronic instability. Skeletal Radiol 1986;15(4):291-294
- 24. Haller J, Resnick D, Sartoris D, et al: Arthrography, tenography, and bursography of the ankle and foot. *Clin Podiatr Med Surg* 1988; 5:893-909
- Bleichrodt RP, Kingma LM, Binnendijk B, Klein JP. Injuries of the lateral ankle ligaments: classification with tenography and arthrography. *Radiology* 1989;173(2):347-349
- Raatikainen T, Putkonen M, Puranen J. Arthrography, clinical examination, and stress radiograph in the diagnosis of acute injury to the lateral ligaments of the ankle. *Am J Sports Med* 1992;20(1):2-6
- van Dijk CN, Bossuyt PM, Marti RK. Medial ankle pain after lateral ligament rupture. J Bone Joint Surg Br 1996;78(4):562-56728.
- Anzilotti K Jr, Schweitzer ME, Hecht P, Wapner K, Kahn M, Ross M. Effect of foot and ankle MR imaging on clinical decision making. *Radiology* 1996; 201:515-517
- 30. Kreitner KF, Ferber A, Grebe P, Runkel M, Berger S, Thelen M. Injuries of the lateral collateral ligaments of the ankle: assessment with MR imaging. *Eur Radiol* 1999; 9:519-524
- Hasegawa A, Kimura M, Tomizawa S, Shirakura K. Separated ossicles of the lateral malleolus. *Clin Orthop* 1996;330:157-6531
- Miller CD, Shelton WR, Barrett GR, Savoie FH, Dukes. Deltoid and syndesmosis ligament injury of the ankle without fracture. *Am* J Sports Med 1995;23(6):746-750

:

## Ankle Ligaments: Comparison of MR Arthrography with Conventional MR Imaging in Amputated Feet<sup>1</sup>

Jae Sung Yoo, M.D., Sang Yong Lee, M.D., Jeong Min Lee, M.D., Young Min Han, M.D., Kyung Ho Chung, M.D., Chong Soo Kim, M.D.

<sup>1</sup>Department of Diagnostic Radiology, Chonbuk National University Hospital

**Purpose:** To compare magnetic resonance (MR) arthrography with conventional MR imaging in the evaluation of ankle ligaments.

**Materials and Methods:** Eight freshly amputated human feet underwent conventional MR imaging and MR arthrography. For the former, 1.5-T magnets in the axial, coronal and sagittal planes were used, and T1-weighted sequences were obtained. Following the injection of 6 - 10 ml of diluted contrast media (Gd-DTPA 1:250), T1-weighted images were obtained in the same positions as conventional MR images. Paired conventional MR imaging and MR arthrography of each ankle ligament were rated on a five-point scale, and to reflect inter-group differences a Wilcoxon singed-rank test was used to compare the different measurements (p < 0.05). In two ankles, MR images of the ligaments were correlated with ankle dissection.

**Results:** Anterior and posterior talofibular ligaments were more clearly revealed by MR arthrography than by conventional MR imaging, while calcaneofibular ligaments showed no difference between these two modalities. With regard to deltoid ligaments, visualization of the anterior and posterior tibiotalar ligament was much improved when contrast material was used to outline the ligament's articular aspect. Visualization of the posterior tibiofibular ligament and inferior transverse ligament were also improved when the use of contrast material provided delineation of the articular side of the ligaments and separated them from adjacent bone. In addition, MR arthrography was very useful for identification of the posterior intermalleolar ligament, though its use did not enhance visualization of the calcaneofibular, tibiocalcaneal, spring or tibiospring ligaments.

**Conclusion:** MR arthrography accurately revealed the anatomic details of ankle ligaments, and may therefore be more useful than conventional MR imaging for evaluation of these structures.

Index words : Ankle, anatomy Ankle, MR Ankle, arthrography

Address reprint requests to : Sang Yong Lee, M.D., Department of Diagnostic Radiology, Chonbuk National University Hospital,

634-18 Keumam-dong, Chonju-shi, Chon Buk, 561-712, Korea. Tel. 82-63-250-1152 Fax. 82-63-272-0481