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In data analysis, given that various statistical methods assume that the distribution of the population data is normal distribution, 
it is essential to check and test whether or not the data satisfy the normality requirement. Although the analytical methods vary 
depending on whether or not the normality is satisfied, inconsistent results might be obtained depending on the analysis meth-
od used. In many clinical research papers, the results are presented and interpreted without checking or testing normality. 
According to the central limit theorem, the distribution of the sample mean satisfies the normal distribution when the number 
of samples is above 30. However, in many clinical studies, due to cost and time restrictions during data collection, the number 
of samples is frequently lower than 30. In this case, a proper statistical analysis method is required to determine whether or not 
the normality is satisfied by performing a normality test. In this regard, this paper discusses the normality check, several methods 
of normality test, and several statistical analysis methods with or without normality checks. (J Rheum Dis 2019;26:5-11)
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INTRODUCTION

In data analysis, given that various statistical methods 
assume that the distribution of the population data is nor-
mal distribution, it is essential to check and test whether 
or not the data satisfy the normality requirement. For ex-
ample, when comparing the distribution of two in-
dependent groups, two sample t-tests, which is a para-
metric method, are used, if the two population data sat-
isfy the normality requirement, and the Mann-Whitney 
U-test, which is a nonparametric method, if the data do 
not satisfy the normality requirement [1]. The two-sam-
ple t-test assumes normality and the Mann-Whitney 
U-test does not assume normality. If the data satisfy nor-
mality, the distribution of the two groups can be com-
pared using a two-sample t-test using means and stand-
ard deviation. However, if normality is not satisfied, the 
Mann-Whitney U-test is used, which does not use the 
mean and standard deviation and concludes that the two 
groups are similar if the rankings are similar.

Although the analytical method varies depending on 
whether or not the normality requirement is satisfied, in-
consistent results might be obtained depending on the 
analysis method used. Said differently, it can be con-
cluded that two independent groups have the same dis-
tribution, although they are in fact different. On the other 
hand, it can be concluded that the distribution of two in-
dependent groups is the same. In order to solve these 
problems, it is necessary to check and test whether or not 
the normality requirement is satisfied.
In many clinical research papers, results are presented 

and interpreted without checking or testing normality. In 
the case when the reviewer requests the normality check 
or test in the review process of a thesis, the normality test 
is carried out to correct the contents of the submitted 
papers. However, when this lack of the normality check or 
test goes unnoticed, the results are frequently presented 
without a normality test. If the statistical analysis method 
assumes normality, a normality test should be performed 
to check whether or not the normality requirement is 
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satisfied. One of the reasons why normality tests are not 
performed is that the researchers’ understanding of the 
statistical analysis methods is low.
Furthermore, the average of the collected data is the 

sample mean. According to the central limit theorem, the 
distribution of the sample mean satisfies the normal dis-
tribution when the number of samples is larger than 30 
[2]. Therefore, if the number of samples is larger than 30, 
the analysis can be performed on the assumption that the 
normality is satisfied. In clinical studies, however, the 
number of samples is frequently lower than 30. The rea-
sons for this scarcity of samples include cost and time re-
strictions during data collection. In this case, a proper 
statistical analysis method is required to determine 
whether or not the normality requirement is satisfied by 
performing a normality test.
The remainder of this paper is structured as follows. 

First, we introduce the contents of normality check, 
which is followed by the introduction of several methods 
of normality test. In addition, some statistical analysis 
methods that should be used when the normality require-
ment is or is not satisfied are described for the data analy-
sis in clinical studies.

MAIN SUBJECTS

Normality check
There are four methods to check whether or not the col-

lected data satisfy the normality requirement. These 
methods are checking the normality using plot and sev-
eral statistics, such as mean, median, skewness, and 
kurtosis. 

1) Distribution plot
A distribution plot of the collected data is useful to check 

normality of the data. The distribution of the data should 
be checked to determine that it does not deviate too much 
as compared to the normal distribution. 

2) Difference value between mean and median
The mean is a simple arithmetic average of the given set 

of values or quantities. The median is a positional average 
and is defined as the middle number in an ordered list of 
values. In a normal distribution, the graph appears as a 
classical, symmetrical “bell-shaped curve.” The mean, or 
average, and the mode, or maximum point on the curve, 
are equal. Hence, the difference value between the mean 
and the median are close to zero in normal distribution. 

However, when the difference value between the mean 
and the median is big, the distribution is skewed to the 
right or to the left.

3) Skewness and kurtosis
Skewness is a measure of the “asymmetry” of the proba-

bility distribution, in which the curve appears distorted or 
skewed either to the left or to the right. In a perfect nor-
mal distribution, the tails on either side of the curve are 
exact mirror images of each other. When a distribution is 
skewed to the left, the tail on the curve's left-hand side is 
longer than that on the right-hand side, and the mean is 
less than the mode. This situation is also referred to as 
negative skewness. When a distribution is skewed to the 
right, the tail on the curve's right-hand side is longer than 
the tail on the left-hand side, and the mean is greater than 
the mode. This situation is also referred to as positive 
skewness.
Kurtosis is a measure of the “tailedness” of the proba-

bility distribution, in which the tails asymptotically ap-
proach zero or not. Distributions with zero excess kurto-
sis are called mesokurtic or mesokurtotic. The most 
prominent example of a mesokurtic distribution is nor-
mal distribution. A distribution with a positive excess 
kurtosis is called leptokurtic or leptokurtotic. In terms of 
shape, a leptokurtic distribution has fatter tails. Examples 
of leptokurtic distributions include the Student's t-dis-
tribution, exponential distribution, Poisson distribution, 
and the logistic distribution. A distribution with a neg-
ative excess kurtosis is called platykurtic or platykurtotic. 
Examples of platykurtic distributions include the con-
tinuous or discrete uniform distributions and the raised 
cosine distribution. The most platykurtic distribution is 
the Bernoulli distribution.

4) Q–Q plot
A Q–Q plot is a plot of the quantiles of two distributions 

against each other, or a plot based on the estimates of the 
quantiles. The pattern of points in the plot is used to com-
pare the two distributions. The main step in constructing 
a Q–Q plot is calculating or estimating the quantiles to be 
plotted. If one or both of the axes in a Q–Q plot is based 
on a theoretical distribution with a continuous cumu-
lative distribution function (CDF), all quantiles are 
uniquely defined and can be obtained by inverting the 
CDF. If a theoretical probability distribution with a dis-
continuous CDF is one of the two compared dis-
tributions, some quantiles may not be defined, so an in-
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terpolated quantile may be plotted. If the Q–Q plot is 
based on the data, there are multiple quantile estimators 
in use. The rules for forming Q–Q plots when quantiles 
must be estimated or interpolated are called plotting 
positions.
A simple case is when there are two data sets of the same 

size. In that case, to make the Q–Q plot, each set is or-
dered in the increasing order, then paired off, and the cor-
responding values are plotted. A more complicated con-
struction is the case where two data sets of different sizes 
are being compared. To construct the Q–Q plot in this 
case, it is necessary to use an interpolated quantile esti-
mate so that quantiles corresponding to the same under-
lying probability can be constructed.
The points plotted in a Q–Q plot are always non-decreas-

ing when viewed from the left to the right. If the two com-
pared distributions are identical, the Q–Q plot follows the 
45° line y=x. If the two distributions agree after linearly 
transforming the values in one of the distributions, then 
the Q–Q plot follows some line, but not necessarily the 
line y=x. If the general trend of the Q–Q plot is flatter 
than the line y=x, the distribution plotted on the horizon-
tal axis is more dispersed than the distribution plotted on 
the vertical axis. Conversely, if the general trend of the Q–
Q plot is steeper than the line y=x, the distribution plot-
ted on the vertical axis is more dispersed than the dis-
tribution plotted on the horizontal axis. Q–Q plots are fre-
quently arced, or “S” shaped, indicating that one of the 
distributions is more skewed than the other one, or that 
one of the distributions has heavier tails than the other 
one. Although a Q–Q plot is based on quantiles, in a 
standard Q–Q plot, it cannot be determined which point 
in the Q–Q plot determines a given quantile. For example, 
it is not possible to determine the median of either of the 
two compared distributions b by inspecting the Q–Q plot. 
Some Q–Q plots indicate the deciles to enable determi-
nations of this type.
Q–Q plots are commonly used to compare the dis-

tribution of a sample to a theoretical distribution, such as 
the standard normal distribution N(0,1), as in a normal 
probability plot. As in the case of comparing two data 
samples, one orders the data (formally, computes the or-
der statistics) and then plots them against certain quan-
tiles of the theoretical distribution.

Normality test
In the previous section, we described the methods for 

normality check. However, these methods do not allow us 

to draw conclusions whether or not the collected data sat-
isfy the normality requirement. Only a rough guess can be 
made as in this respect. Therefore, to the definite answer, 
we have to consider a statistical test for normality. There 
are several methods to perform a normality test. The 
Kolmogorov-Smirnov test, the Shapiro-Wilk test, and the 
Anderson-Darling test are among the most popular 
methods. Specifically, the Kolmogorov-Smirnov test and 
the Shapiro-Wilk test are supported by IBM SPSS. All 
these tests follow the same procedure; 1) hypothesis 
set-up; 2) significance level determination; 3) test sta-
tistic calculation; 4) p-value calculation; 5) conclusion. 

1) Hypothesis set-up
In general, all statistical tests have a statistical hypothesis. 

A statistical hypothesis is an assumption about a pop-
ulation parameter. This assumption may or may not be 
true. A researcher might conduct a statistical experiment 
to test the validity of this hypothesis. The hypotheses typ-
ically include the null hypothesis and the alternative 
hypothesis. The distribution of population assumes the 
normal distribution in all data set. Hence, the null hy-
pothesis (H0) and alternative hypothesis (Ha) are follows;

H0: The data are normally distributed.
Ha: The data are not normally distributed.

2) Significance level determination
The significance level α is the probability of making the 

wrong decision when the null hypothesis is true. Alpha 
levels (sometimes called simply “significance levels”) are 
used in hypothesis tests. An alpha level is the probability 
of a type I error, or you reject the null hypothesis when it 
is true. Usually, these tests are run with an alpha level of 
0.05 (5%); other commonly used levels are 0.01 and 0.10. 

3) Test statistic calculation
Next, the test statistic for the normality test should be 

calculated. The calculation of the test statistic differs ac-
cording to which of the normality test methods is used. 
The formulas for calculating the test statistic according to 
each statistical method are as follows.

(1) Shapiro-Wilk test statistic

The Shapiro-Wilk test tests the null hypothesis that a 
sample x1,⋯,xn comes from a normally distributed 
population. The test statistic is as follows (see Eq. (1)):
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where x(i)  (with parentheses enclosing the subscript in-
dex i; not to be confused with xi) is the i-th order statistic, 
i.e., the i-th smallest number in the sample, the sample 

mean   is given by Eq. (2).



⋯  (2)

and the constants ai are given by Eq. (3)

⋯  


(3)

where m=(m1,⋯,mn)T and m1,⋯,mn  are the expected 
values of the order statistics of independent and identi-
cally distributed random variables sampled from the 
standard normal distribution, and V is the covariance ma-
trix of those order statistics.

(2) Kolmogorov–Smirnov test statistic

The Kolmogorov–Smirnov statistic for a given cumu-
lative distribution function F(x) is computed using Eq. (4).

Dn=supx|Fn(x)−F(x)| (4)

where supx is the supremum function of the set of dis-
tances and Fn is the empirical distribution function for n 
i.i.d. (independent and identically distributed) in ordered 
observations Xi defined as shown in Eq. (5).

  

∑  
 ∞   (5)

where I[−∞,x]  is the indicator function, equal to 1 if Xi≤x 
and to 0 otherwise. By the Glivenko–Cantelli theorem, if 
the sample comes from distribution F(x), then Dn con-
verges to 0 almost surely in the limit when n goes to 
infinity. Kolmogorov strengthened this result by effec-
tively providing the rate of this convergence.

(3) Anderson-Darling test statistic

The Anderson–Darling test assesses whether a sample 
comes from a specified distribution. It makes use of the 
fact that, when given a hypothesized underlying dis-
tribution and assuming the data do arise from this dis-
tribution, the CDF of the data can be assumed to follow a 
uniform distribution. The data can be then tested for uni-
formity with a distance test (Shapiro 1980). The formula 

for the test statistic A to assess if data {Y1＜⋯＜Yn} (note 
that the data must be put in order) come from a CDF Φ 

is shown in Eq. (6).

A2=−n−S (6)

where S ∑  



 
 

The test statistic can then be compared against the crit-
ical values of the theoretical distribution. Note that, in 
this case, no parameters are estimated in relation to the 
distribution function, Φ.

4) p-value calculation
Next, the significance value (p-value) should be calcu-

lated using the test statistic of the regularity test calcu-
lated in step 3). The significance value is the probability 
that a statistical value equal to or more extreme than the 
observed statistical value of the sample is observed, as-
suming that the null hypothesis is true. Said differently, 
the significance value is the probability of rejecting the 
null hypothesis despite the null hypothesis being true. 
Therefore the p-value is the degree of support for the null 
hypothesis. Since it is a probability value, it is calculated 
as a value between zero and one.

5) Conclusions
Finally, in order to draw conclusions of the normality 

test, we compare the significance level value set in step 2) 
and the calculated significance value (p-value) in step 4) 
and make the following conclusions.

If α≥p-value, then the null hypothesis has to be rejected.
If α＜p-value, then the null hypothesis is not rejected

If the null hypothesis is rejected because the significance 
value is smaller than the significance level value, the hy-
pothesis that the data sample satisfies the normality re-
quirement is rejected, and it can be said that it does not 
satisfy the normality requirement. If we set the proba-
bility of rejecting the null hypothesis to be 5%, we can 
conclude that the data sample does not satisfy the nor-
mality at the 5% significance level. Conversely, if the sig-
nificance value is greater than the significance level, and 
the null hypothesis is not rejected, the conclusion can be 
drawn that “the data of the sample satisfies the normality 
requirement at the 5% significance level”.
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Table 1. Example data set

No. Uric acid No. Uric acid No. Uric acid No. Uric acid No. Uric acid

1 3.8 6 8.1 11 5.0 16 5.8 21 6.8
2 2.8 7 7.7 12 6.2 17 5.6 22 4.8
3 9.5 8 6.1 13 5.9 18 5.4 23 5.6
4 8.0 9 7.0 14 6.0 19 5.3 24 4.9
5 7.4 10 6.2 15 6.5 20 5.0 25 7.3

Figure 2. Q–Q plot for example data set.Figure 1. Histogram with normal distribution curve.

Example for normality check and normality test
In this section, we illustrate the process of checking nor-

mality and testing normality using the IBM SPSS software 
21.0 (IBM Co., Armonk, NY, USA) with uric acid (mg/dL) 
data (Table 1). First, we draw the histogram of the dis-
tribution plot with the normal distribution curve (Figure 
1). The distribution plot is not much deviated from the 
normal distribution curve, so it can be assumed that it 
satisfies the normality. Second, the mean and the median 
are computed (6.11 and 6.00, respectively). The two val-
ues are not largely different, so it can be guessed that the 
data sample satisfies the normality requirement. 
Furthermore, the skewness and kurtosis are 0.09 and 
0.68, respectively. Since both values are close to 0, the 
shape of the distribution can be seen as mesokurtic dis-
tribution without a shift to the left or right. Finally, we 
draw a Q–Q plot (Figure 2). In the Q–Q plot, the dots do 
not deviate much from the line, so it can be guessed that 
it satisfies the normality requirement.
Next, we test whether the uric acid (mg/dL) data for 25 

patients satisfy the normality requirement using the 
Shapiro-Wilk test method and the Kolmogorov-Smirnov 
test method. First, we set up the hypotheses. The null hy-
pothesis (H0) is that the uric acid data are normally dis-
tributed, and the alternative hypothesis (Ha) is that the 

no uric acid data are not normally distributed. Secondly, 
we set the significance level to 0.05. Third, the test sta-
tistic is calculated. The test statistic according to the 
Shapiro-Wilk test method is 0.984, while the test statistic 
according to the Kolmogorov-Smirnov test method is 
0.115. Fourth, we calculate the p-value. The p-value ac-
cording to the Shapiro-Wilk test method is 0.949, and the 
p-value according to the Kolmogorov-Smirnov test meth-
od is 0.200. Finally, we and interpret the results and draw 
conclusions. Since the p-values according to the two nor-
mality test methods are greater than the significance level 
of 0.05, the null hypothesis (the uric acid data is normal 
distribution) is not rejected. Therefore, the uric acid data 
for 25 patients is considered to satisfy the normality at the 
5% significance level.

Statistical analysis methods with or without nor-
mality
In selecting and using statistical analysis methods, there 

is a need to fully understand what statistical analysis 
methods are used. When establishing a hypothesis in a 
clinical study and analyzing collected data to test it, the 
most appropriate statistical analysis method should be 
selected and used to solve the given problem. The stat-
istical analysis method is determined according to the 
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number of cases, such as the number of dependent varia-
bles, kind of dependent variable, number of independent 
variables, and kind of independent variable. In addition, 
each statistical analysis method is based on various as-
sumptions such as normality, linearity, independence, 
and so on. Therefore, before using a statistical analysis 
method, it should be first checked whether it satisfies the 
assumptions of the statistical analysis method to be used; 
then, the selected statistical analysis method can be used. 
That is, if the assumption is not satisfied, the statistical 
analysis method could not be used. For example, when 
trying to compare the quantitative variables of two in-
dependent groups, the two independent t-tests that are 
commonly used assume normality. Therefore, an in-
dependent two-group t-test can be used only if the nor-
mality test is satisfied. If the normality is not satisfied, the 
Mann Whitney U-test, a statistical method other than the 
independent two-group t-test, should be used.
In this section, we introduce some statistical analysis 

methods are widely used in clinical research which as-
sume normality. The section concludes with a discussion 
of statistical analysis methods that should be used when 
the normality requirement is not satisfied.

1) Two sample t-test
Two sample t-test is a statistical analysis method used to 

compare the means of two independent variables. For ex-
ample, statistical analysis is used to compare the mean of 
serum uric acid concentrations in a group taking steroids 
and a group taking placebo. Two sample t-test assumes 
normality. Therefore, it can be used when the normality is 
satisfied through the normality test. In this case, the nor-
mality test should be performed for each group, and it can 
be said that the normality is satisfied when the normality 
is satisfied in both groups. Alternatively, the Mann 
Whitney U-test should be used [1]. The Mann Whitney 
U-test tests whether or not the distributions of the d data 
collected from two independent groups are the same; it 
does not compare the mean of the quantitative variables 
of the two independent groups.

2) Paired t-test
The paired t-test is a statistical analysis method used to 

compare whether or not the difference of the quantitative 
variables measured twice for each subject in the depend-
ent two groups is 0 or not. This is a statistical analysis 
method that examines whether there is a change between 
two measurements. For instance, this analysis method 

can be used to compare the uric acid concentration in the 
blood measured before taking the steroid with the uric 
acid concentration in the blood measured after taking the 
steroid. Paired t-test assumes normality. Therefore, it can 
be used when normality is established through the nor-
mality test. In this case, the normality test should be car-
ried out by calculating the difference between before and 
after the difference. If the normality is not satisfied, the 
Wilcoxon signed rank test should be used [3]. The 
Wilcoxon signed rank test tests whether or not the me-
dian of the quantitative variables differences is zero in the 
two dependent groups, rather than whether or not the 
mean of the quantitative variable differences is zero in the 
two dependent groups.

3) One-way ANOVA
One-way ANOVA is a statistical analysis method used to 

compare the means of quantitative variables over three 
independent groups. For example, statistical analysis is 
used to compare the mean of serum uric acid concen-
trations in a group taking steroids, a group taking ste-
roids+vitamins, and a group taking vitamins. One-way 
ANOVA assumes normality. Therefore, it can be used 
when the regularity is satisfied through the regularity 
test. In this case, the normality test should be performed 
for each group, and it can be said that the normality re-
quirement is satisfied when it is satisfied in all three 
groups. Alternatively, the Kruskal-Wallis test should be 
used [4]. The Kruskal-Wallis test does not compare the 
means of the quantitative variables over the independent 
three or more groups, but tests whether or not the dis-
tributions of data collected over the independent three or 
more groups are the same. One-way ANOVA also as-
sumes homoscedasticity, i.e., equal dispersion. Therefore, 
it can be used when the homoscedasticity is satisfied 
through the homoscedasticity test. If the homosceda-
sticity is not satisfied, a Brown-Forsythe test or Welch 
test should be used.

4) Repeated measure one-factor analysis
Repeated measure one-factor analysis is a statistical 

analysis method used to repeatedly compare whether or 
not there is a change in the mean value of the measured 
quantitative variables for each subject in more than three 
dependent groups. This statistical analysis method exam-
ines whether or not there is a change between three or 
more measurements. For example, this method can be 
used to compare the uric acid concentration in the blood 
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measured before taking the steroid, 1 day after taking the 
steroid, and 3 days after taking the steroid. Repeated 
measure one-factor analysis assumes normality. Therefore, 
it can be used when the normality is satisfied through the 
normality test. In this case, the normality test should be 
carried out by calculating the difference between before 
and after each measurement point. If the regularity re-
quirement is not satisfied, the Friedman test [5] should 
be used. The Friedman test tests whether or not there is 
a difference in the median of the quantitative variables in 
the dependent group, rather than compares the mean val-
ue of the quantitative variables in the dependent group.

5) Linear regression
Linear regression is a statistical analysis method used to 

calculate the relationship between the quantitative de-
pendent variable and the various explanatory variables 
and coefficients, as well as to examine the explanatory 
power of the data with the estimated regression model. 
For example, this method can be used to examine the fac-
tors affecting the uric acid concentration in the blood. As 
for the factors, qualitative and quantitative variables can 
be set and analyzed in various ways. The regression model 
of linear regression assumes normality for error terms 
[6]. Therefore, it can be used when the normality is sat-
isfied through the normality test. In this case, the normal-
ity test should be performed using the residual, which is 
an estimate of the error. If the normality requirement is 
not satisfied, the regression model should be modified 
through the model check and the data check, and the re-
gression analysis should be performed to satisfy the nor-
mality requirement. In addition, besides normal assump-
tion with respect to error terms, the regression model of 
linear regression assumes homoscedasticity, independence, 
and linearity. Therefore, regression analysis should be 
done by regression analysis that satisfies all normality, 
homoscedasticity, independence, and linearity by modify-
ing the regression model through the model check and 

the data check.

CONCLUSION

A systematic and thorough understanding of the neces-
sity of normality test and the method of normality test can 
enhance the reliability of the results reported in clinical 
studies. Research designs and interpretation of the find-
ings based on the selection of the most appropriate stat-
istical analysis method can also be considerably 
improved.
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