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Rheumatoid arthritis (RA) is an autoimmune disease that starts with decreased tolerance to modified self-antigens and even-
tually leads to synovitis and destruction of bone and cartilage. Age is a risk factor for developing RA. Major changes in the im-
mune system come with age due to chronic oxidative stress on the deoxyribonucleic acid (DNA) damage pathway, somatic mu-
tation, modifications of auto-antigens, T cell tolerance and activation of fibroblast-like synoviocytes (FLS). Reactive oxygen spe-
cies (ROS) generated by nicotinamide adenine dinucleotide phosphate oxidase 2 (NADPH oxidase 2) suppress T cell receptor 
signaling. Sirtuin 1 (SIRT1) is a critical immune suppressor of T cell activation and a key regulator of oxidative stress. When oxi-
dative stress reduces activity of SIRT1, the breakdown of tolerance to modified self-antigens is expected. Generation of ROS can 
be perpetuated by enhanced DNA damage and dysfunctional mitochondria in a feedback loop during the development of RA. 
Through major T cell loss and selective proliferation of peripheral T cells, pro-inflammatory T cell pools with abnormal features 
are established in the T cell compartment. Hypoxic and inflammatory condition in synovium perpetuates ROS generation, 
which leads to the activation of FLS. In both T cell and synovium compartment, oxidative stress reshapes the immune system 
into the development of pre-clinical RA. (J Rheum Dis 2016;23:340-347)
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INTRODUCTION

Reactive oxygen species (ROS) include superoxide, hy-
drogen peroxide and hydroxyl radicals produced by the 
sequential reduction of oxygen. It is commonly thought 
that ROS are pro-inflammatory agents because in-
flammatory diseases have been linked to chronically ele-
vated ROS production (“oxidative stress”). However, it is 
not clear what pathological processes are initiated or 
regulated by ROS in the immune system. Recently ROS 
have been studied as specific and critical regulators of im-
mune system signaling [1,2]. ROS are generated from 
various sources including mitochondria and nicotinamide 
adenine dinucleotide phosphate oxidase (NADPH oxi-
dase, Nox). The discovery of a family of NADPH oxidases 
related to the phagocyte oxidase (Nox/Duox family) pro-

vides new opportunities to investigate the distinct roles 
of ROS generation by genetically manipulating these 
sources [3].
Rheumatoid arthritis (RA) is a long-lasting auto-

immune disease that primarily affects joints due to the in-
flammation of the synovium and consequently causes 
damage to the cartilage and bones [4]. The etiology of RA 
is unclear. However, inflammatory cytokines are known 
to play important roles in the pathogenesis of RA to pro-
mote autoimmunity, chronic inflammation and tissue 
destruction. Oxidative stress has also been shown to be 
closely correlated with the pathogenesis of RA [5]. This 
review aims to provide an exploration of the possible 
roles of ROS generation in the immune systems involved 
in the initiation and development of RA. 
The effects of ROS at different stages of RA develop-
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ment vary with the level and location of ROS production 
and the cell type or tissues involved [4]. ROS generally 
function as damaging or modifying agents of cellular 
components or as signaling molecules in an immune 
response. ROS are generated from several sources by 
stimulation of inflammatory cytokines such as tumor ne-
crosis factor (TNF) or angiogenic factor such as vascular 
endothelial growth factor (VEGF) [6,7]. Mitochondria 
and NADPH oxidase are well studied sources of ROS [8]. 
Nox2 and Duox1 have been suggested to be critical [9,10] 
in T cell receptor (TCR) signaling of T cells and Nox2-de-
pendent ROS generation was identified even as sup-
pressor of arthritis [11]. Hypoxia-driven ROS generation 
is also very important in terms of RA pathogenesis be-
cause hypoxia develops even in the pre-clinical stage of 
synovitis and worsens the inflammation which in turn 
further promotes hypoxic conditions and creates a vicious 
cycle that may contribute to the establishment and pro-
gression of RA [12].
As aging progresses, biochemical imbalance between 

the formation and clearance of ROS generates a state re-
ferred to as “oxidative stress”, leading to the damage of 
various cell components including proteins, lipids and de-
oxyribonucleic acid (DNA) [12]. Based on the concept 
that autoimmune diseases are a consequence of immune 
aging, age-related changes such as chronic oxidative and 
inflammatory stress are relevant to the initiation of RA 
[13-17]. Oxidative stress has already been shown to be 
involved in autoimmune responses. Surprisingly the 
p47phox subunit of Nox2 was first discovered as a pro-
tective factor in arthritis models, which suggested that 
Nox2-originated oxidative bursts suppressed auto-
immune T cells [11,18,19]. ROS generation was pro-
posed to regulate the expression of inflammatory cyto-
kines and chemokines and to affect tissue damage in RA 
[20]. Excessive production of ROS may be critical for 
joint destruction and osteoclast activation [21,22]. ROS 
generation derived from the hypoxia-activated Nox2 is an 
initiating factor in angiogenesis for joint inflammation 
[23]. 

MAIN SUBJECTS

Effects of ROS in the pathogenesis of RA
1) Somatic mutation
Elevated ROS generation at the site of chronic in-

flammation causes somatic mutations [24]. Somatic mu-
tations in the p53 gene have been observed in the RA 

synovium and cultured fibroblast-like synoviocytes (FLS) 
[25]. Many mutations produced by oxidative stress are 
present in the mitochondrial genome. A high frequency of 
mitochondrial somatic mutations was reported in syno-
vial tissue of patients with RA and was strongly asso-
ciated with low level of oxygen in the synovium as well as 
with high synovial lipid peroxidation [26]. 

2) Defect in DNA damage repair pathways
Impairments of DNA damage repair pathways increase 

the risk of RA in older people [27]. Naïve T cells in old 
people have more chance to accumulate genomic DNA 
damage than those in young people because these cells in 
older people have a relatively long life span in the periph-
ery and are exposed to oxidative stress [28]. DNA damage 
such as DNA double-strand breaks needs to be detected 
and repaired by DNA damage repair pathways in order to 
maintain genomic stability. Increases in DNA-dependent 
protein kinases and deficiencies in ataxia telangiectasia 
mutated (ATM) and p53 in RA T cells have been shown to 
impair these repair pathways and lead to markedly in-
creased DNA damage and apoptosis in naïve CD4+ T cells 
[27,29]. The significant loss of naïve T cells imposes lym-
phopenia-induced proliferation, leading to premature im-
munosenescence and possibly an autoimmune-biased T cell 
repertoire [17,27]. Dysfunctional T cells in patients with RA 
display the characteristics of inflammation-activated cells 
and sustain chronic inflammatory immune responses in 
the synovium [30].

3) Oxidative modification of auto-antigens
Oxidative stress-induced modifications in protein, lipid 

and DNA may have important roles in the pathogenesis of 
RA [31]. A strong correlation between levels of ROS and 
disease activity score with markers of oxidative damage 
was observed in patients with RA. Measurement of oxida-
tively modified proteins, lipids or DNA could serve as a 
biomarker for monitoring disease activity of RA [32]. 
Type II collagen oxidized by ROS (ROS-CII) were strongly 
detected in the serum and synovial fluid of patients with 
RA. 92.9% of sera from disease-modifying antirheumatic 
drug (DMARD)-naïve patients with early RA showed au-
toreactivity to ROS-CII [33]. Neo-epitopes can be gen-
erated by oxidative modification of proteins and be in-
volved in autoimmune responses [34]. The immune sys-
tem via pattern recognition receptors (PRRs) such as 
scavenger receptors, receptor of advanced glycation end 
products (RAGE) and toll-like receptor 4 (TLR4) can 
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sense neo-epitopes as pathogen- or danger-associated 
molecular patterns (PAMPs/DAMPs) [35]. 
Advanced glycation end products (AGEs) are accumu-

lated by increased oxidative stress in aging and RA [36]. 
Advanced oxidation protein products (AOPPs) are accu-
mulated in RA patients and are involved in various chron-
ic inflammatory conditions through Nox-dependent ROS 
production [37]. As one of the receptors for AGEs and 
AOPPs, RAGE has been suggested as a risk factor for car-
diovascular disease in RA patients [38]. Bone-targeting 
endogenous secretory RAGEs were shown to rescue RA 
in the murine collagen-induced arthritis (CIA) model 
[39].

4) Signaling role in T cell tolerance
Several types of ROS have been reported to be involved 

in T cell activation and differentiation in autoimmune 
responses. ROS generated from Nox2, Duox1 and mi-
tochondria in T cells were reported to be relevant to these 
functions [9,10,40]. ROS from macrophages and other 
immune cells are also involved [41]. ROS have been 
shown to regulate autoimmune responses. Impairment of 
Nox2-dependent ROS generation in neutrophil cytosolic 
factor 1 (Ncf1)-mutated mice results in enhanced disease 
severity in several different animal models of arthritis 
[11,18,19]. Macrophage-restricted expression of func-
tional Ncf1 restored arthritis resistance in a CIA model 
but not in a T cell-independent anti-collagen anti-
body-induced arthritis model. Restoration of Ncf1 in 
Ncf1-deficient mice suppressed T cell activation [41].

5) Regulation of T cell differentiation
Several types of ROS generation were reported to modu-

late differentiation of naïve CD4+ T cells. In both mouse 
and human models oxidative stress led the differentiation 
of the naïve CD4+ T cells towards Th2 phenotype [42,43]. 
In the absence of ROS T cells differentiated to Th1 type 
[9,41]. In addition, activation of naïve T cells from 
Nox2-deficient mice exhibited a skewed Th17 phenotype 
[19]. 
The immediate-early response gene X-1 (IEX-1, also 

known as IER3) is involved in preventing the production 
of ROS in mitochondria. Consequently the elevated gen-
eration of mitochondrial ROS from null mutation of IER3 
facilitates the differentiation of Th17 cells and immuniza-
tion with collagen lead to more severe arthritis in IER3 
null mice than in wild-type mice. This finding indicates 
that mitochondrial alterations provide substantial con-

tributions to the dominant T cells [44]. 
Naïve CD4+ T cells from patients with RA have excess 

NADPH production. This leads to excessively reduced 
glutathione and reduced ROS generation [45]. ROS loss 
and ATM insufficiency in naïve CD4+ T cells from pa-
tients with RA skew T cell differentiation into interferon 
(IFN)-γ and interleukin (IL)-17 producing effector T cells. 
These biases are reversed by increasing intracellular ROS 
by treatment with menadione that generates intracellular 
ROS via redox cycle [45]. These observations indicate im-
portance of ROS-based signal transduction in shaping T 
cell differentiation in RA.

Accelerated immune aging 
Aging is characterized by increasing inflammatory and 

oxidative stress. The main feature of the aging process is 
a chronic progressive increase in the proinflammatory 
status described originally as inflamm-aging [13]. Based 
on the close relationship between oxidative stress, in-
flammation and aging, the oxidation-inflammatory theo-
ry of aging (oxi-inflamm-aging) was proposed [14]. RA, 
closely associated with aging, displays the characteristics 
described in the oxi-inflamm-aging [16,17]. During chronic 
oxidative and inflammatory stress oxidative modification 
of cellular components leads to the status described in the 
inflamm-aging and influences the homeostasis and 
health of the body. The relationship between the redox 
state and the function of immune cells influences the 
speed of aging and lifespan of the cells. At old age the body 
maintains a pro-inflammatory status and innate immune 
responses are actively induced more than adaptive im-
mune response [15]. These pathways bring about a con-
stant low level activation of granulocytes, macrophages 
and dendritic cells. The oxidative burst associated with an 
innate immune response upregulates ROS formation and 
reduced cellular antioxidant capacity. Overproduced oxi-
dants react with membrane lipids and proteins and impair 
their function and create a circular loop of DAMP signal-
ing activation. Moreover DAMPs can activate immune 
cells and their signaling pathway mediators such as nu-
clear factor kappa-light-chain-enhancer of activated B 
cells (NF-κB) and NADPH oxidase to further increase 
ROS production.
Extracellular DAMPs such as S100 calcium-binding pro-

tein A8/A9 (S100A8/A9) are well known to act as critical 
alarmins. They modulate the inflammatory response and 
interact with the PRR, TLR4 and RAGE to promote cell 
activation and recruitment [46]. S100A8/A9 was identi-
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fied as a potential biomarker for monitoring disease activ-
ity of RA and has been tested successfully in localizing 
sites of sterile injury in pre-clinical imaging studies. 
Surprisingly the S100A8/A9 protein works as a partner 
for the cytosolic factors of NADPH oxidase activation in 
neutrophils [47]. Neutrophils and monocytes are re-
cruited to sites of inflammation during infection or sterile 
injury.

Mitochondrial defects
Mitochondrial defects are a crucial component of the ag-

ing process and several age-related diseases. Mitochondrial 
disturbances lead to the deterioration of protein quality 
control and can especially contribute to the decline in au-
tophagic degradation with aging [48]. Elevated pro-
duction of ROS due to mitochondrial disturbances in-
creases with aging and enhances signaling of DAMPs 
[49,50]. Expressions of certain genes related to the func-
tion of mitochondria were altered in patients with RA. A 
functional annotation study of RA and osteoarthritis 
(OA) by integrative genome-wide gene expression profil-
ing analysis indicates that both RA and OA can be classi-
fied as mitochondrial disorders [51]. A five-fold increase 
in mitochondrial ROS production in whole blood and 
monocytes of patients with RA relative to that of healthy 
subjects suggests that oxidative stress is a pathogenic 
hallmark in RA [32].

SIRT1
Sirtuin (SIRT), a class III protein deacetylase, has been 

considered to be a longevity factor for its ability to combat 
oxidative stress and promote cellular survival. NF-κB 
signaling is activated during aging [52] and is a potent in-
ducer of the expression of several NADPH oxidase com-
ponents including gp91phox and p22phox [53]. SIRT1 
has also been suggested as a potent inhibitor of NF-κB 
signaling by suppressing oxidative stress and inflammatory 
responses [54]. In response to oxidative stress SIRT1 in-
duced antioxidant expression via forkhead box O (FoxO) 
pathways. SIRT1 can deacetylate FoxO factors (FoxO1, 
FoxO3a, and FoxO4) to stimulate the expression of anti-
oxidants such as catalase, manganese superoxide dis-
mutase (MnSOD) and thioredoxin and also potentiate 
SIRT1 expression via an auto-feedback loop [55]. 
Phosphatase and tensin homolog (PTEN) activated by 
SIRT1-dependent deacetylation activates FoxO tran-
scription factors, which stimulate the expression of sev-
eral antioxidants and SIRT1 as well as many autophagy 

proteins. SIRT1 participates in the DNA damage repair 
process in an ATM-dependent way. The stress resistance 
was generally increased by these responses, which results 
in an extended life span [56].
Increased oxidative stress has been associated with the 

aging process and the expression and activity of SIRT1 
was downregulated by chronic oxidative stress in in-
flammatory conditions [57]. For instance ROS can inhibit 
SIRT1 activity by evoking oxidative modifications on its 
cysteine residues. SIRT1 as a potent inducer of autophagy 
deacetylated Atg5, Atg7 and Atg8 proteins to stimulate 
autophagosome formation [58]. Furthermore FoxO1 and 
FoxO3 can act as downstream effectors of SIRT1 to pro-
mote autophagy [59], a process which declines with aging 
and is disturbed in several age-related diseases. Decreased 
activity of SIRT1 in aging leads to impairments in autoph-
agy and subsequently enhances oxidative stress. A 
low-grade inflammatory phenotype was sustained in ag-
ing tissues because of impairments of autophagy. Conse-
quently the deficiency in autophagy could enhance ROS 
and inflammatory responses in tissues and induce a state 
called inflamm-aging [60]. 
SIRT1 expression and activity was found to be decreased 

in RA patients and anti-citrullinated protein antibody 
(ACPA)-positive patients with RA showed lower SIRT1 
activity relative to ACPA-negative patients with RA. The 
rate of apoptosis of peripheral blood mononuclear cells 
(PBMCs) in patients with RA was increased and neg-
atively correlated with SIRT1 expression levels. SIRT1 is 
required to maintain T-cell tolerance [61]. And the lack of 
SIRT1 resulted in hyperacetylation of c-Jun and the break-
down of T cell tolerance [62]. Therefore, the decreased 
activity of SIRT1 in aged people and RA patients may re-
sult in the activation of autoimmune T cells. 
Treatment with resveratrol reduced synovial hyper-

plasia, cartilage destruction, leukocyte infiltration, mac-
rophage and T cell activation, and collagen-specific im-
munoglobulin levels in both CIA and lipopolysaccha-
rides-induced acute inflammatory arthritis models 
[63,64]. Resveratrol-induced SIRT1 activation leads to 
the inhibition of RelA acetylation and a reduction in NF-
κB-induced expression of inflammatory factors such as 
TNF-α, IL-1β, IL-6, matrix metalloproteinases (MMPs) 
such as MMP1 and MMP3, and cyclooxygenase 2, all of 
which have been implicated in the pathogenesis of RA. 
Similarly resveratrol-treated bone-derived cells showed 
reduced receptor activator of nuclear factor kappa-B li-
gand (RANKL)-induced NF-κB acetylation and activa-
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Figure 1. Role of oxidative stress in the pathogenesis of rheu-
matoid arthritis (RA). (A) With advancing age, oxidative stress 
plays critical roles in the generation of pre-clinical RA in the 
process of the immune-aging. (B) Important pathways regu-
lated by the oxidative stress in the immune-aging process re-
shape the immune systems to lead breakdown of T cell toler-
ance, activation of fibroblast-like synoviocytes (FLS) and the 
generation of the inflammatory networks for pathogenesis of 
RA. Oxidative stress could contribute to development of RA in
several ways. Enhanced generation of reactive oxygen species
(ROS), oxidative modification of self-antigens, generation of 
danger-associated molecular patterns (DAMPs), mutagenesis 
of genomic deoxyribonucleic acid (DNA) and mitochondrial 
DNA, dysfunctional mitochondria, reduced autophagy, DNA 
damage, defects in DNA damage pathways, reduced activity 
of sirtuin 1 (SIRT1), p53, forkhead box O (FoxOs), and anti-
oxidants, enhanced activity of AKT, activation of vascular en-
dothelial growth factor (VEGF) and hypoxia-inducible factor 
(HIF) pathway and inhibition of phosphatase and tensin homo-
log (PTEN).

tion, as well as reduced osteoblastic activity associated 
with RA [65]. Resveratrol is also able to avoid excessive 
ROS induced lipid peroxidation and DNA damage.

Reshaping of peripheral naïve T cells
Although synovial inflammation-induced cartilage dam-

age and destruction of bone is the dominant manifes-
tation of clinical RA, systemic immune abnormalities that 
are not joint specific are already apparent many years be-
fore onset of the RA [4,66]. With advancing age, prob-
lems in the homeostasis of the T cell compartments and 
signaling thresholds for T cell activation lead to the loss of 
naïve T cells, the accumulation of inflammatory T cell 
populations and loss of tolerance to modified self-anti-
gens [17,27].
The breakdown of tolerance to modified self-anti-

gens-induced activation of self-reactive T cells could be 
driven by activation of DAMP signaling in addition to 
TCR signaling. DAMPs such as heat shock proteins and 
high mobility group box 1 (HMGB1) released from in-
jured tissue can activate TLR4 and TLR2, respectively 
[46]. Similarly, increased production of ROS and post-tran-
slationally modified molecules such as oxidized lip-
oproteins activate the TLR8 and TLR2 pathway, res-
pectively. TLR2, TLR4 and TLR8 activation will proceed 
to initiate an inflammatory response whose key media-
tors are IL-1, IL-6 and TNF-α. The increased expression 
of cytokines IL-1β, IL-6, and TNF-α play key roles in the 
initiation of arthritis and pathogenesis of destructive ar-
thritis in experimental animal models [67].
As thymic activity decreases around the age of 40 to 50 

years, prolonged residence of naïve T cells in the periph-
ery progressively lead to the accumulation of oxidative 
DNA damage [28]. A defect in the maintenance of ge-
nomic integrity with age causes excessive loss of periph-
eral T cells that needs to be compensated by homeostatic 
proliferation to maintain compartment size and leads to 
the eventual emergence of senescence biomarkers. 
During this enforced T-cell proliferation in periphery in-
frequent self-reactive T cells could be clonally expanded 
and lead to overaged and autoreactive T cells [27]. 
Naïve CD4+ T cells from patients with RA are metabol-

ically reprogrammed, favoring NADPH production over 
adenosine triphosphate (ATP) generation [45]. Excessive 
NADPH supplies the cell with excessively reduced gluta-
thione and depletes ROS. Such reductive stress fastens 
the cell cycle of T cells because they skip the G2/M cell cy-
cle checkpoint due to insufficient ATM activation. ROS 

loss and ATM insufficiency promote T cell differentiation 
into Th1 and Th17 effector cells. p53 mRNA levels were 
significantly lower in PBMCs from patients with RA than 
from healthy controls. And PTEN expression down-regu-
lated by p53 deficiency induced the activation of signal 
transducer and activator of transcription 3 (STAT3) [68]. 
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Loss of p53 exacerbated autoimmune arthritis and dysre-
gulated the population of Th17 and regulatory T (Treg) 
cells. The oxidative stress-dependent inhibition of PTEN 
may have similar effects on the T cell differentiation [69]. 

CONCLUSION

There are various immune reaction steps and cell types 
in which different type of ROS may have specific roles in 
the pathogenesis of RA. Here we focus on the possible 
roles of ROS in the development of pre-clinical RA 
(Figure 1). Chronic oxidative stress in old age could gen-
erate mutations in both genomic and mitochondrial 
DNA, leading to enhanced ROS generation in a feedback 
loop and an eventually remodeling of immune systems. 
ROS production may contribute the breakdown of T cell 
tolerance through several pathways. Nox2-generated 
ROS was identified as a negative regulator for Th17 dif-
ferentiation and T cell activation. ROS from mitochondria 
on the other hand works in an opposite way. SIRT1 also 
has been shown to be a critical immune suppressor of 
both T cell and macrophage activation. SIRT1 activity 
which is down-regulated by oxidative stress may aug-
ment ROS generation through several signaling pathways 
involving NF-κB, hypoxia-inducible factor (HIF), FoxOs 
or PTEN. With advancing age, FLS are activated in syno-
vium and take tumor-like properties in which ROS gen-
eration is strongly involved. Several ROS-based signaling 
pathways appear to play critical roles in reshaping the 
compartment of T cells and synovium in the pre-clinical 
phase of RA.
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