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The prevalence of allergic diseases has been increasing rapidly, especially in developing countries. Various adverse health 
outcomes such as allergic disease can be attributed to rapidly increasing air pollution levels. Rapid urbanization and increased 
energy consumption worldwide have exposed the human body to not only increased quantities of ambient air pollution, but also a 
greater variety of pollutants. Many studies clearly demonstrate that air pollutants potently trigger asthma exacerbation. Evidence that 
transportation-related pollutants contribute to the development of allergies is also emerging. Moreover, exposure to particulate matter, 
ozone, and nitrogen dioxide contributes to the increased susceptibility to respiratory infections. This article focuses on the current 
understanding of the detrimental effects of air pollutants on allergic disease including exacerbation to the development of asthma, 
allergic rhinitis, and eczema as well as epigenetic regulation.
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INTRODUCTION

Increasing evidence shows that air pollution is associated with 
adverse health outcomes, particularly respiratory diseases. Rapid 
global urbanization and increased energy consumption have 
exposed the human body to not only an increased quantity of 
ambient air pollution, but also a greater variety of pollutants. 
The principle air pollutants of concern are particulate matter 
(PM), ozone (O3), and nitrogen oxides (NOX) in addition to other 

indoor air pollutants. The detrimental effects of these materials 
on the exacerbation of asthma as well as respiratory morbidity 
and mortality in asthma patients are well documented [1, 2]. 
Evidence that transportation-related pollutants contribute to the 
development of allergies is also emerging. Furthermore, exposure 
to PM, O3, and nitrogen dioxide (NO2) contributes to increased 
susceptibility to respiratory infection [3, 4]. Recent advances in 
the understanding of the mechanisms involved in the association 
between air pollution and allergies provide insight into how air 
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pollution influences the epigenetic alteration of genes [5, 6]. Since 
many Asian countries have recently industrialized, the use of motor 
vehicles and production of exhaust gas from factories are rapidly 
increasing. Additionally, coal is still used as the major source of 
energy in many Asian countries [7, 8]. This article focuses on the 
detrimental effects of air pollutants on allergic diseases including 
exacerbation to the development of asthma, allergic rhinitis, and 
eczema as well as effects on epigenetic regulation.

Air pollutants and their roles in allergies 

Outdoor air pollutants
The major source of NO2 and PM is fossil fuels, which are 

combusted by motor vehicles, power stations, and factories 
(Table 1). Of these, PM production by motor vehicles contributes 
to a substantial part of air pollution. PM is a general term that 
refers to tiny fragments of solid or liquid matter associated with 
the atmosphere, which vary in number, size, shape, chemical 
composition, and origin. The largest single source of airborne PM 

from motor vehicles is diesel exhaust [9]. Diesel exhaust particles 
(DEPs) account for most airborne PM in the world’s largest cities 
because of the increasing number of new cars with diesel engines 
in industrialized countries [10, 11]. In addition to the increasing 
sales of diesel vehicles, the fact that diesel fuel combustion results 
in up to 100 times more particles than gasoline suggests that 
diesel exhaust may be a significant contributor to increases in the 
prevalence of allergic diseases. In an animal study, DEP exposure 
led to increased rates of allergic reactivity and asthma with 
elevated production of antigen-specific IgE and histamine [12]. 
Human data show that DEP exposure increases interleukin (IL)-4, 
IL-5, IL-6, and IL-10 mRNA levels and reduces IFN-γ levels [13, 14]. 
These results suggest that DEP exposure may be associated with 
reduced Th1 function. 

O3, a triatomic molecule comprising 3 oxygen atoms, is formed 
by the action of ultraviolet light and atmospheric electrical 
discharges (NOX and volatile organic compounds (VOCs)) on 
dioxygen. O3 is a far more powerful oxidant than dioxygen and has 
many industrial and consumer applications related to oxidation.

Table 1. The principal air pollutants of concern

Pollutant 	     Sources      Primary standard
Outdoor PM Fuel combustion 15 μg/m3 (annual)

 (vehicles, power plants) 35 μg/m3 (daily)

O3 Fuel combustion 0.08 ppm (8 h)

 (cars, power plants, 

 gasoline dispensing facilities)

NO2 High temperature combustion 0.053 ppm (annual)

SO2 Industrial processes 0.03 ppm (annual)

Coal combustion 0.14 ppm (daily)

Petroleum combustion

CO Vehicular exhaust 9 ppm (8 h)

Incomplete combustion of fuel 35 ppm (1 h)

 (natural gas, coal, wood)

Indoor Second-hand smoke

Radon Rock formations beneath buildings

CO Fuel combustion

CO2 Human metabolic activity

VOCs Gases from certain solids or liquids

(paints and lacquers, paint strippers, 

cleaning supplies, pesticides)

PM, particulate matter; O3, ozone; NO2, nitrogen dioxide; SO2, sulfur dioxide; VOCs, volatile organic compounds.
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Indoor air pollutants

Environmental tobacco smoke (ETS), which is also referred to as 
passive smoking or secondhand smoke, is the greatest indoor air 
pollutant. It is defined as the exposure of a nonsmoking person 
to tobacco combustion products emitted by others. Postnatal 
exposure to ETS is causally related to the development childhood 
asthma. Furthermore, ETS is related to an increased risk of adult-
onset asthma [15, 16]. Exposure to cigarette smoke reduces Th1 
cytokine activities such as those of IFN-γ and NK cells [17, 18]. 
This reduced Th1 function is linked to a reduced ability to fight 
respiratory infections and is thought to function in carcinogenesis.

Besides ETS, many indoor building materials, new furniture, and 
fresh paint may cause allergies [19]. VOCs such as formaldehyde 
will be discussed in upcoming issue. Perfluorocarbons are used 
as stains and water repellents applied to furniture fabrics and 
carpeting. Plasticizers (i.e., phthalates) are compounds added to 
plastics to make them more flexible. Triclosan is an antimicrobial 
agent used in soaps, deodorants, toothpastes, shaving creams, 
and mouthwashes. Organic solvents are used in many industrial 
and commercial settings as well as in dry cleaning, paint, paint 
thinner, clues, inks, nail polish, nail remover, and various building 
and construction materials. These indoor materials are associated 
with higher rates of allergic and respiratory problems, directing 
the immune system toward Th2 dominance and suppressing 
Th1 function [20-23]. Herbicides and pesticides are also strongly 
associated with asthma and allergies and have been demonstrated 
to induce Th2-dominant immune responses [24-26]. 

Air pollution and asthma

Asthma is characterized by airway inflammation and bronchial 
hyperresponsiveness. The prevalence of asthma has increased 
rapidly worldwide, particularly in industrialized societies [27]. Many 
studies have focused on the relationship between air pollution 
and asthma.

Air pollution and asthma exacerbation 
Asthma symptoms can be exacerbated by numerous 

causes including infection, drugs, excess allergen exposure, 
and meteorological changes. Many epidemiological studies 
demonstrate strong associations between air pollution and 
asthma exacerbation. 

NO2 exposure is linked to emergency room visits, wheezing, 
and medication use among children with asthma [28, 29]. NO2 

also potentiates allergic responses to specific inhaled allergens 
in asthma patients [30, 31]. O3 exposure is also associated with 
hospital admissions [32, 33], worsening of symptoms, rescue 
medication [34], asthma attacks, respiratory infections, and 
reduced peak f low rate [35]. There is substantial evidence 
demonstrating the effects of particulate pollution on respiratory 
function [36] and increased asthma symptoms [33]. Ambient 
sulfur dioxide (SO2) exposure may also be a risk factor for 
respiratory symptoms in asthma patients [37, 38]. An animal study 
demonstrates this association in that repeated exposure to low 
levels of SO2 enhanced the development of ovalbumin-induced 
asthmatic reactions in guinea pigs [39].

Asthma can be exacerbated as a consequence of exposure 
to the abovementioned air pollutants. The causal relationship 
between transportation pollution and worsening of asthma 
symptoms was evident in a randomized crossover study involving 
60 volunteers [40]. On separate days, participants walked along 
Oxford Street, a heavily trafficked street in London, and on another 
day, they walked Hyde Park, a nearby park with low air pollution 
levels. Walking along Oxford Street induced asymptomatic but 
significantly greater reductions in forced expiratory volume in 1 
second (FEV1) and forced vital capacity than walking through Hyde 
Park.

Many research groups in Asia report concordant results 
regarding the associations between air pollution and respiratory 
symptoms. The relative risks of emergency outpatient hospital 
visits are all positively and significantly associated with interquartile 
increases for selected lags for all air pollutants in Korea [41]. 
Similarly, a comparative study found that the prevalence rates 
of asthma symptoms are significantly higher in Incheon, Korea, 
which has significantly higher levels of outdoor CO and PM than 
Jeju, Korea [42]. However, Kim et al. [43] found no such association 
between air pollutant levels and the relative risk of emergency 
room visits. The authors state seasonal variation and interindividual 
differences as the key reasons for the inconsistency with previous 
studies. In Taiwan, seasonality in air pollutant levels is reported 
to be associated with asthma admission; moreover, asthma 
hospitalization propensity is significantly correlated with air 
pollution levels [44]. PM2.5 levels are associated with the percentage 
of neutrophils and IL-8 level in nasal lavage on the day of exposure 
[45]. Several researchers in Hong Kong also report evidence 
corroborating the adverse effects of ambient concentrations of air 
pollutants on hospitalization rates for asthma [46, 47]. The 2008 
Beijing Olympic and Paralympic Games provided a large natural 
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experiment showing that significant reductions in the average 
concentrations of CO, PM10, NO2, and O3 [48] resulted in significant 
reductions in hospital visits due to asthma [49].

Biomarkers of airway inflammation and oxidative stress, such 
as exhaled breath condensate pH, supernatant IL-8, supernatant 
myeloperoxidases, and exhaled breath malondialdehyde, were 
recently used as outcome measures in epidemiological studies 
[40, 50]. These methods enable a more accurate estimation of 
individual pollutant level exposure. 

Air pollution and asthma prevalence 
Although it is well known air pollutants can cause immediate 

respiratory symptoms, the role of air pollution in the increased 
incidence of asthma is less clear. However, some researchers 
postulate the causes of the dramatic increase in the prevalence 
of asthma and allergic diseases. Furthermore, recent studies 
provide evidence showing that air pollution is associated with 
the development of asthma. Many birth cohort studies followed 
children until preschool age and report a correlation between 
transportation-related air pollution and asthma onset [51-55]. 

In China, the number of asthma cases has increased rapidly 
since the early 2000s [56]. Researchers have published several 
epidemiologic studies on the association between ambient 
pollutants and asthma prevalence. Many studies report that the 
prevalence of bronchial symptoms with asthma is positively 
associated with NOX, O3, and PM levels [37, 38, 57]. In Japan, 
a prospective cohort study was conducted to confirm the 
association between the incidence rate of asthma and ambient 
NO2 level during follow-up [58]. A study investigating the annual 
respiratory symptoms of 3,049 Japanese students from 8 urban 
and rural areas shows a positive association between regional NO2 
levels and asthma prevalence [59]. India’s national health survey 
also identified the influence of pollution from biomass combustion 
on the prevalence of asthma [8]. However, several studies failed to 
detect such associations [60, 61]. Furthermore, asthma prevalence 
is not necessarily proportional to air pollutant levels. Diverse 
factors including ethnic characteristics should be considered. 

Air pollution and other allergic diseases

Air pollution and allergic rhinitis 
Two major mechanisms explain the increased prevalence 

of allergic rhinitis in industrialized areas. Increased fossil fuel 
combustion may initially lead to allergic sensitization and 

airway responsiveness to allergens. Airway responsiveness to 
environmental allergens may subsequently aggravate symptoms 
of allergic rhinitis [62]. A longitudinal birth cohort study reports 
that children living near major roads have increased odds of 
runny nose and sneezing during the first year of life [63] as well 
as increased odds of sensitization during the first 8 years of life 
[64, 65]. Similar results were found in Taiwan. A study of 32,143 
Taiwanese school children indicates that persistent exposure to 
NOX, CO, and SO2 may increase the prevalence of allergic rhinitis 
[66]. In addition, transportation-related air pollution is a possible 
risk factor for allergic rhinitis in middle school-aged children [67].

Air pollution and eczema 
In contrast to other allergic diseases, many cohort studies 

report no association between air pollutants and the incidence 
or prevalence of eczema [51, 53, 68]. Yura et al. [69] also failed to 
find a correlation between the ambient air pollution levels and 
eczema prevalence. A recent study conducted in Korea shows 
that management in a low-pollutant room significantly reduces 
the scoring of atopic dermatitis, while PM, formaldehyde, total 
VOCs, CO, bacterial suspensions, and indoor molds are significantly 
higher in patients’ homes than the low-pollutant room [70]. The 
authors of the abovementioned suggest that indoor air pollutants 
are likely to cause atopic dermatitis in susceptible individuals. This 
finding is concordant with that of the latest study investigating the 
clinical effects of outdoor air pollutants such as PM, toluene, and 
VOCs on eczema symptoms using a longitudinal study design with 
an 18-month follow-up [71]; this study found that atopic dermatitis 
symptoms are associated with the levels of outdoor air pollutants 
such as PM, toluene, and VOCs.

Genome and gene-environment interaction 

Studying the effects of various air pollutants on respiratory 
health with respect to an individual’s genetic makeup is 
interesting, given the emerging epidemiological and experimental 
evidence of their association [72]. Gene and air pollution may 
have effects on each other. Individual responses to air pollution 
exposure are determined by genetic differences between subjects, 
and exposure to air pollution in itself can induce epigenetic 
changes via methylation. 

Genetic predisposition
The large interindividual variation with respect to respiratory 
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response to air pollutants (i.e., the airway inflammation and oxidant 
pathway) is known to be genetically regulated. Several candidate 
gene studies have focused on polymorphisms in genes involved 
in antioxidant stress and inflammation [73]. Polymorphisms in the 
genes encoding the following enzymes involved in oxidative stress 
response have been studied: GST, CAT, SOD, GPX1, NQO1, HMOX1, 
and EPHX1. 

Studies on the interaction between genetic predispositions and 
air pollutants are presented in Table 2. Subjects with susceptible 
genotypes (i.e., polymorphic NQO1 and GSTM1) exposed to O3 
during exercise exhibit greater decreases in FEV1 [74] as well as a 
modified lung response to O3 [75] as compared to those without 
the susceptible genotypes. GSTM1 and GSTP1 polymorphisms 
alter the response to combined exposure to pollen and DEPs [76]. 
Furthermore, children with asthma with a genetic deficiency of 
GSTM1 are more susceptible to the deleterious effects of O3 and 
derive greater benefit from antioxidant supplementation [77]. With 
respect to the effects of air pollution, GSTP1 polymorphisms are 
also associated with a greater risk of asthma [78] and sensitization 
to allergens [79].

Besides genetic variation in the extent of oxidative stress, 
polymorphisms in inflammatory genes have been examined. The 
TNF-308 GG genotype exerts a protective effect on lung function 
against O3 exposure [80], while TGF-b1 increases the risk of asthma 
in children living near major roads [81]. 

 
Epigenetic regulation of gene expression

Epigenetic mechanisms such as DNA methylation may 
contribute to gene–air pollution interactions. Exposure to 
environmental agents such as cigarette smoke and air pollutants 
induces changes in DNA methylation [5, 82]. Prenatal cigarette 
smoke exposure leads to the hypomethylation of repetitive 
elements and alterations in gene-specific methylation [83]. One 
animal study reports epigenetic changes after DEP exposure 
[84]. In that study, DEP inhalation by BALB/c mice sensitized to 
Aspergillus fumigatus resulted in hypermethylation of the IFN-γ 
promoter and hypomethylation of the IL-4 promoter in CD4+ T 
lymphocytes, leading to altered IgE production. Sofer et al. [85] 
report that exposure to black carbon and sulfate are significantly 
associated with the methylation pattern in the asthma pathway, 
suggesting that the effect of air pollution on airway responses may 
be mediated through gene methylation. Only a few published 
studies in Asia [86, 87] have examined the ef fect of gene–
environment interactions for determining susceptibility to asthma 

and allergies. Future studies on candidate genes for reversing the 
deleterious oxidizing effect of air pollution to clarify the precise 
roles of air pollutants on asthma and allergies are warranted. 

CONCLUSION

Although the causative role of air pollution in the development 
of allergic diseases remains controversial, several epidemiological 
and experimental studies indicate that air pollutants play roles in 
both the initiation and exacerbation of allergic diseases. Physicians 
should be aware of the importance of air pollution in allergic 
diseases and work with their communities to control air pollutants 
not only to prevent the exacerbations and development of allergic 
diseases, but also to improve people’s health worldwide. 
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