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INTRODUCTION

The global human genome project was launched in the 
1990’s and researchers expect to understand information of 
the whole human genome, especially genes which encode 
functional proteins. However, they recognized that the human 
genome contains only about 20000 protein-coding genes [1,2]. 
It is not surprising that the numbers of protein-coding genes 
are pretty similar in number to those of Caenorhabditis elegans. 
Because the protein-coding genes could not properly explain 
the human gene expression complexity in view of physiologi-
cal and evolutional aspects, investigators have suspected that 
the potential non-protein coding but transcriptionally active 
genes (>98% of transcribed genes) may be fully accountable 
for gene expression complexity of human [3-5].

Recently, investigators categorized the non-coding RNAs 
(ncRNAs) as short ncRNA, mid-size ncRNA, and long non-
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coding RNA (lncRNA) by their lengths, and sometimes 
ncRNAs are subdivided by function, loci, and post-transcrip-
tional modification. Among these, most onco-molecular biol-
ogists are deeply interested in the short ncRNAs [e.g., microR-
NAs (miRNAs)] [6] and very recently lncRNAs for their 
research projects as an aspect of gene expression regulation 
[7-11]. This review, we essentially highlight and introduce our 
recent understanding of roles of lncRNAs in tumorigenesis, 
including glioma development.

LNCRNAS: MODE OF ACTION

Recent reports showed that lncRNAs have multifunctional 
roles on modulating embryonic pluripotency, differentiation, 
development, and various diseases, essentially in cancers [7-11]. 
Therefore, dysregulation of lncRNAs has been shown to be as-
sociated with a broad range of defects on those physiological 
phenomena. lncRNAs may be classified according to their 
mode of action and functions in cells such as, 1) mediators on 
signaling pathway, 2) serving as molecular decoys, 3) work as 
molecular guides for the ribonucleoprotein complexes to cer-
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tain specific chromatin site, and also have 4) scaffold function 
for the proper complex formation (Fig. 1) [11].

lncRNAs: mediators on signaling pathway
In most cases, transcription of lncRNAs is temporally reg-

ulated and the expression has tissue specificity. Moreover, their 
expression is modulated in response to the internal and exter-
nal stimuli [12]. Therefore, lncRNAs may serve as molecular 
signaling mediators which modulate a certain set of gene ex-
pression temporally and even spatially (Fig. 1A).

lncRNAs: molecular decoys
lncRNAs may serve as molecular decoys which take pro-

teins or RNAs away from a specific location. Sometimes decoy 
lncRNAs can serve as “sponge” to proteins (e.g., transcription 
factors and chromatin modifiers) and small ncRNAs (e.g., 
miRNAs) (Fig. 1B) [13]. This event can lead to overall tran-
scriptome change of cells.

lncRNAs: work as molecular guides
lncRNAs can serve as the molecular guides by locating cer-

tain ribonucleoprotein complexes to a specific target site on 
the chromatin (Fig. 1C) [14]. The gene expression can be al-
tered either in neighboring genes (in cis) or distantly located 
ones (in trans).

lncRNAs: scaffold function
lncRNAs can support the assembly of protein complexes 

which link the factors together to generate brand new func-
tions (Fig. 1D). Some lncRNAs possess distinct protein-bind-
ing domains that combine each molecule together. This event 
may have impact on action of transcription or repression.

LNCRNAS ON TUMORIGENESIS

Generally the lncRNAs designate ncRNAs which is more 
than 200 nt long [7-11]. 1) Usually those modulate DNA meth-
ylation which is closely related with genome imprinting (e.g., 

Fig. 1. Schematic diagram of lncRNA action mechanisms. A: Mediators on signaling pathway: lncRNAs can serve as molecular signaling 
mediators which modulate certain set of gene expression in conjunction with specific transcription factors or chromatin modifiers. B: Molec-
ular decoys: lncRNAs can serve as the molecular decoy which takes away proteins or RNAs from the specific location. C: Work as molecu-
lar guides: lncRNAs can serve as the molecular guides by locating certain ribonucleoprotein complexes to specific target site on chromatin. 
D: Scaffold function: lncRNAs can support the assembly of protein complexes which link the factors together to generate brand new func-
tions. IncRNA: long non-coding RNA.
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X-chromosome inactivation by lncRNA XIST) [15]. 2) Several 
large intergenic non-coding RNAs (lincRNAs) which locate 
intergenic (gene to gene) region induced by tumor suppressor 
p53 in response to DNA damage (e.g., lincRNA-p21) [16]. 3) 
The ultra-conserved region (UCR) is extremely conserved 
DNA sequences among species which is more than 200 nt 
long [17,18]. From this region the lncRNA T-UCR is tran-
scribed actively. Although the exact physiological roles of T-
UCR have not been reported yet, however investigators as-
sumed that T-UCRs have existed from early evolution stage, 
and have special roles for interacting with miRNA or different 
distribution in tissues.

In most cases lncRNAs are involved in transcriptional regu-
lation [19]. The lncRNAs can be classified by their action 
mechanisms, 1) acting in cis; the lncRNA transcription affects 
the surrounding coding gene expression, 2) modulating his-
tone modification [14,20], and 3) acting in trans; XIST induces 
X-chromosome inactivation of female [15].

Recent reports showed that the dysfunction of lncRNAs is 
closely associated with tumor formation, proliferation, inva-
sion, and metastasis [3,8,9,11]. In this review, we highlight 
several essential lncRNAs which are closely related with tu-

morigeneis. As the lncRNAs 1) metastasis-associated lung ad-
enocarcinoma transcript 1 (MALAT1) and 2) prostate cancer 
associated non-coding RNA 1 (PRNCR1), prostate cancer 
gene expression marker 1 (PCGEM1), and as the lincRNA 3) 
H19 and 4) homeobox transcript antisense intergenic RNA 
(HOTAIR) are discussed.

lncRNA MALAT1
The lncRNA MALAT1 is a 7-kb long, spliced non-coding 

RNA, also known as non-coding nuclear-enriched abundant 
transcript 2 (NEAT2), which is highly conserved amongst 
mammals and dominantly expressed in the nucleus [21]. In-
terestingly, a conserved tRNA-like sequence at the 3ʹ end is 
cleaved off and processed to generate a short tRNA-like 
ncRNA, MALAT1-associated small cytoplasmic RNA (mas-
cRNA) [22]. Moreover, MALAT1 modulates the speckle as-
sociation of a subset of pre-mRNA splicing factors [23-25].

MALAT1 RNA is usually overexpressed in cancer tissues, 
and overexpression of MALAT1 is associated with cell hyper-
proliferation and metastasis [21,26]. Some reports showed that 
MALAT1 regulates the expression of metastasis-associated 
genes and MALAT1 regulates expression of cell cycle genes 

Fig. 2. Potential therapeutic approaches for targeting lncRNAs. Several methods, including small interfering RNAs (siRNAs), antisense oli-
gonucleotides (ASOs) and ribozymes or deoxyribozymes, can be used to block the function of lncRNAs. A: Synthetic double-stranded short 
RNA can be delivered to cells and the antisense strand of the siRNA duplex loads on to the RNA-induced silencing complex (RISC) and 
degrades the targeted lncRNA. B: ASOs are single-stranded, chemically modified DNA oligomers (less than 25 nt in length) that are de-
signed to be complementary to a target lncRNA. ASOs form a heteroduplex with the target lncRNA, and RNase H recognizes the lncRNA-
DNA heteroduplex and cleaves the RNA strand. C: However, ribozymes or deoxyribozymes do not dependent on the RISC, which mediates 
siRNA-induced degradation, or on RNase H. IncRNA: long non-coding RNA.
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and performs key roles in G1/S and mitotic progression [27].
It also known that MALAT1 controls cell cycle progression 

by modulating the oncogenic transcription factor B-MYB 
(Mybl2) [28]. Tripathi et al. [27] showed that specific deletion 
of MALAT1 in cells leads to activation of p53 and its target 
genes. MALAT1-depleted cells show cell cycle defects which 
are sensitive to the p53 levels, indicating that p53 is a main 
downstream mediator for the MALAT1 activity. In MALAT1-
depleted cells, replication of the S-phase is reduced, and rather 
cell population of G1 and G2/M increased. Also, expression of 
genes associated with cell cycle arrest (e.g., tumor suppressor 
p53, cdk inhibitor p21) also increases. In addition, reduced ex-
pression of oncogenic transcription factor B-MYB which is re-
lated with G2/M progression, was observed in MALAT1-de-
pleted cells [27].

lncRNAs PRNCR1 and PCGEM1
Two lncRNAs, PRNCR1 (also known as PCAT8) and PC-

GEM1, are usually overexpressed in aggressive prostate can-
cers and have a close relationship with castration resistance 
and proliferation of cancer cells [29-31]. PRNCR1 and PC-
GEM1, specifically interact with androgen receptor (AR) and 
strongly enhance androgen receptor-mediated gene activation 
in both ligand-dependent and -independent manner [14].

After the interaction between PRNCR1 and AR, acetylation 
occurs at the C-terminal of AR protein, which accelerates the 
association of DOT1L (disruptor of telomeric silencing 1 like 
histone H3 methyltransferase) to the PRNCR1-AR complex. 
Consequently, DOT1L mediates N-terminal acetylation of AR 
protein which enhances recruitment of lncRNA PCGEM1. In 
the castration-resistant prostate cancer cells, expression for 
short hairpin RNA targeting these two lncRNAs strongly sup-
pressed proliferation of cancer cells and xenograft tumor 
growth in mice [14]. Taken together, the data indicate that ln-
cRNAs are potentially essential for the castration resistance in 
prostate cancers. However, the specific mechanistic roles of 
these two lncRNAs in castration resistance during  prostate 
cancer development are still under investigation.

lincRNA H19
The lincRNA H19 gene encodes around 2.3-kb long tran-

script which does not contain any known open reading frames 
[32-34]. It is normally transcribed by RNA polymerase II like-
wise general mRNA transcripts and transported to the cyto-
plasm after sequential capping-polyadenylation-splicing steps. 
Furthermore, H19 lincRNA is one of the most highly ex-
pressed in the placenta and evolutionarily conserved at the nu-
cleotide level between human and rodent [34]. Interestingly, 
H19 is the imprinted gene which is only transcribed from the 
maternally inherited allele; the paternal H19 allele dose not ex-

pressed. H19 gene is located on downstream of growth-pro-
moting insulin-like growth factor 2 (igf2) and H19 and igf2 
share common imprinting mechanism. Recent reports show 
that H19 is closely associated with tumorigenesis and fetal 
growth syndrome. However, the exact physiological functions 
of H19 are largely unknown yet [35-40].

Intriguingly, recent reports showed that H19 serves as miR-
NA precursor. miR-675 is located in the first exon of H19, and 
expressed through the excision from full H19 lincRNA tran-
script in the placenta of gestational time point which shows to 
stop normal growth [41]. The overexpression of miR-675 in 
embryonic cell and extra-embryonic cell caused decrease of 
cell proliferation. The target gene of miR-675 (ex. lgf1r) is de-
repressed in H19 null placenta. Furthermore, processing of 
miR-675 from H19 is known to be regulated by stress-response 
RNA-binding protein HuR. HuR inhibits miR-675 processing 
by binding to H19 transcript. Release of miR-675 from H19 
transcript inhibits cell proliferation rapidly in response to cel-
lular stress or oncogenic signals [34]. miR-675 processing 
mechanism from H19 seems to be associated with molecular 
pathology in fetal growth and tumorigenesis.

lincRNA HOTAIR
HOTAIR usually shows overexpressed patterns in early and 

metastatic breast cancer cells [20]. HOTAIR regulates the gene 
expression by interacting with polycomb repressive complex 2 
(PRC2) and lysine-specific demethylase 1A. Together with 
these two enzymes, HOTAIR can control methylation and de-
methylation status of histones [20]. PRC2 seems to be more 
important related with cancer because cancer cells which con-
tain lysine-27 methylated histone H3 showed similar gene ex-
pression of embryonic fibroblasts. Generally, PRC2 expression  
induces metastasis of cancer cells. However metastasis can be 
suppressed when PRC2 is too overexpressed.

LNCRNAS ON GLIOMA DEVELOPMENT

A glioma is a type of tumor that arises from glial cells mostly 
in the human brain. High-grade gliomas usually have a ten-
dency to infiltrate into the extracellular matrix of the brain and 
this trait makes it difficult to perform surgery and radio-thera-
py [42]. Therefore the understanding of the molecular mecha-
nism of infiltrative phenotype of gliomas and identification of 
key regulator(s) for invasion are essential for the efficient treat-
ment of this hardly curable disease [43,44].

Recent reports showed that several lncRNAs have close rela-
tionship with glioma development. Some lncRNAs that may 
contribute to brain development and certain specific differen-
tially expressed lncRNAs may play an important role in the 
pathogenesis of glioblastoma multiforme [45]. The most high-



JY Park et al.

5

ly upregulated lncRNA is Colorectal Neoplasia Differentially 
Expressed (CRNDE) [46]. The importance of CRNDE and its 
roles in specialized processes such as brain function have not 
been addressed yet.

Another lncRNA, maternally expressed gene 3 (MEG3), has 
been found that it markedly decreased in glioma tissues com-
pared with adjacent normal tissues [47]. Moreover, overex-
pression of the lncRNA MEG3 in human glioma cell lines in-
hibits cell proliferation and promotes cell apoptosis. Therefore 
MEG3 might have inhibitory role in glioma development and 
can serve as potential drug in anti-glioma therapy.

The lincRNA H19 and its derivative miR-675 were positively 
correlated with glioma grades. Moreover, H19-derived miR-
675 regulated cadherin 13 which is the directly target of miR-
675, thereby modulating glioma cell invasion [48]. The poten-
tial oncogenic role of lincRNA H19/miR-675 may serve as 
development of anti-glioma therapy.

THERAPEUTIC APPROACHES FOR 
TARGETING LNCRNAS

Various therapeutic approaches for the lncRNAs have been 
developed and several pharmaceutical companies are also ac-
tively developing lncRNA-targeting therapeutics [49,50]. First, 
the small interfering RNAs (siRNAs) against the specific ln-
cRNA can be used for the strategies to regulate lncRNA func-
tion (Fig. 2A). In most cases, predominant localization of ln-
cRNAs is in the nucleus, and thus siRNAs may be less 
accessible to lncRNAs than mRNAs. However, successful 
knockdown of lncRNAs have been reported by many re-
searchers irrespective of their subcellular localization.

Other strategies [e.g., antisense oligonucleotides (ASOs) as 
well as ribozymes or deoxyribozymes] can be adapted to di-
rectly target lncRNAs when an overall secondary structure or 
the nucleotide sequence is not favorable for the optimized de-
sign of siRNAs (Fig. 2B). Antisense oligonucleotides have ad-
vantages over siRNAs including independence of RNA-in-
duced silencing complex (RISC) machinery, high specificity, 
and low off-target effects. Recent reports showed that 
MALAT1 function on lung cancer cells in mouse successfully 
inhibited by using ASOs [22,23,27].

Ribozymes or deoxyribozymes (e.g., hammerhead ribo-
zyme) bind to a target sequence complementarily and pro-
mote the cleavage of the flanking RNA region (Fig. 2C). These 
may be useful for the targeting of lncRNAs that are not favor-
able for optimal siRNA design [49,50].

CONCLUSION

Recent global analysis showed that cancer transcriptome is 

more complex than previously expected. Dysregulated expres-
sion of lncRNAs, including protein-coding genes and miRNAs 
have potential pervasive roles as the driver of human cancers 
and development and progression of the cancers [3,8,11]. The 
epigenomic reprogramming by lncRNAs can be applicable to 
many other human diseases characterized by aberrant lncRNA 
expression [51]. Therefore, in the context of cancer cells, ecto-
pic expression or specific knockdown of lncRNAs such as 
PRNCR1, PCGEM1, and HOTAIR seems to re-impose that 
chromatin state, thereby enabling gene expressions are more 
favorable or unfavorable to the mobilization and matrix inva-
sion of cancer cells.

As the non-epigenomic regulation, such as regulation of al-
ternative splicing (e.g., MALAT1) [23] and generation of miR-
NA precursor (e.g., lincRNA H19) [41] lncRNAs can modu-
late gene expression more favorable to tumor development.

Therefore, understanding the precise molecular mecha-
nisms of lncRNAs to the various biological processes will be a 
critical step in exploring new strategies in future cancer ther-
apy.
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