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INTRODUCTION

Allergic rhinitis (AR) affects 1 billion people worldwide, with a 
15%-20% prevalence that is increasing rapidly. Many patients 
with AR have insufficient relief of symptoms and seek anti-al-
lergic medications as the first treatment.1-3 Allergen immuno-
therapy is an effective and fundamental treatment for allergic 
diseases, such as asthma and AR. However, more advanced 
strategies are needed in terms of effectiveness and safety.4,5 In 
this regard, recent treatment improvements include a combi-
nation of allergen immunotherapy and biological modifiers, 
such as therapeutic antibodies, receptors, cytokines, and small 
molecules.6

Allergic diseases, such as AR and asthma, are propelled main-
ly by T-helper (Th) 2 cells.7 However, recent studies have impli-
cated several other helper T cells involved in allergic inflamma-
tion including Th17, Th9, Th22, and Th25 cells.8 Th9 cells are 
generated in the presence of interleukin (IL)-4 and transform-
ing growth factor (TGF)-β, and are major contributors to aller-
gic disease through IL-9.9 Besides Th9 cells, IL-9 is produced by 
multiple sources, such as type 2 innate lymphoid cells (ILC2s), 

mast cells, eosinophils, natural killer (NK)-T cells, Th2 cells, 
Th17 cells, and regulatory T (Treg) cells.10,11 IL-9 has pathophys-
iological functions in allergy, autoimmune disease, and leuke-
mia as well as physiological functions in nematode infection 
and melanoma.12

IL-9 was initially considered a Th2 cytokine; however, now it 
is known to be produced by Th9 cells. IL-9, together with IL-4, 
IL-5, and IL-13, is a cytokine of the type 2 immune response 
that induces allergic inflammation.13 IL-9 plays multiple roles, 
acting as a growth factor for T cells, enhancing immunoglobu-
lin E (IgE) production, inducing mucus production by epitheli-
al cells, and promoting tissue mast cell accumulation.14,15 In a 
mouse model of asthma, administration of anti-IL-9 antibody 
reduced allergic pathologies.16 In human studies, anti-IL-9 
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monoclonal antibody in adults with mild to moderate asthma 
showed acceptable safety profiles and promising clinical activi-
ties, although it showed no improvement in symptoms in 
adults with uncontrolled asthma.17,18 Based on these reports, we 
hypothesized that anti-IL-9 antibody could be considered an 
adjuvant in allergen immunotherapy. However, few studies 
have evaluated the effects of IL-9 on tolerance induction in al-
lergic inflammation.

Oral tolerance (OT) has been defined as the specific suppres-
sion of immune response to a specific antigen by oral adminis-
tration of the antigen.19 OT has been studied in treatment of au-
toimmune and allergic diseases.20,21 Many studies using OT in 
allergic disease have shown the suppression of Th2 responses 
and induction of Treg cells.22

Therefore, we investigated the effect of anti-IL-9 antibody on 
OT in a mouse model of AR. After sensitization, OT was in-
duced by feeding with ovalbumin (OVA). During OT, 1 group of 
mice was injected with anti-IL-9 antibody. The effects of OT 
with or without administration of anti-IL-9 antibody were com-
pared. To the best of our knowledge, this is the first study to 
evaluate the influence of anti-IL-9 antibody on OT in a mouse 
model of AR.

 

MATERIALS AND METHODS

Experimental animals
Six-week-old female BALB/c mice weighing 20-30 g were used 

in this study. The experiment was performed with the approval 
of the Institutional Animal Care and Use Committee at The 
Catholic University of Korea.

Production of the AR model and induction of OT
Forty mice were randomized to 1 of 4 groups: the control 

(n=10), AR (n=10), OT (n=10), and OT with anti-IL-9 antibody 
(OT+IL9AB) (n=10) groups. Allergen sensitization and chal-
lenge protocols are summarized in Fig. 1. Briefly, on days 0, 7, 
and 14, all mice except those in the control group were immu-
nized with an intraperitoneal injection of OVA 25 μg (grade V; 
Sigma-Aldrich, St. Louis, MO, USA) and aluminum hydroxide 1 
mg (Aldrich, Milwaukee, WI, USA). On days 28-36, mice in the 

OT and OT+IL9AB groups were fed 20 mg of OVA 5 times to in-
duce tolerance. During this period, mice in the OT+IL9AB 
group were intraperitoneally injected with 500 μg of purified 
anti-mouse IL-9 antibody (clone MM9C1; BioLegend, San Di-
ego, CA, USA),23 while those in the OT group were injected with 
isotype IgG. All sensitized mice were challenged intranasally 
with 50 μg of OVA on days 43-49. The control group received 
phosphate-buffered saline (PBS) intranasally instead of OVA. 
Fig. 1 depicts the protocol used in this study.

Allergy symptoms
The number of sneezing and nose-rubbing motions during 15 

minutes after the final allergen challenge was recorded and 
compared among the experimental groups. The assessors were 
blinded to the protocol.

OVA-specific IgE levels in serum
Blood samples were collected from mice 24 hours after the 

last challenge, and the sera were separated by centrifugation. 
The serum OVA-specific IgE level was measured using an en-
zyme-linked immunosorbent assay (ELISA) kit (Pharmingen, 
San Diego, CA, USA).

Nasal mucosa evaluation
The decapitated heads were fixed in paraformaldehyde, de-

calcified with Calci-Clear Rapid (National Diagnostics, Atlanta, 
GA, USA) and embedded in paraffin. The blocks were sliced 
into 4-μm-thick sections and stained with hematoxylin and eo-
sin (H & E) to evaluate general morphology and number of eo-
sinophils in the lamina propria. The average number of eosino-
phils was counted in 4 areas around the nasal septa under a 
light microscope. The individual who counted the eosinophils 
was blinded to the protocol.

Real-time polymerase chain reaction (PCR)
Nasal mucosa was removed to evaluate the level of mRNA ex-

pression using real-time PCR. Total RNA was extracted using 
TRIzol reagent (Invitrogen, Carlsbad, CA, USA) from nasal mu-
cosa, and the first strand was reverse-transcribed using a ran-
dom primer (TaKaRa, Otsu, Japan). The oligonucleotide primer 

Fig. 1. Schematic representation of the experimental AR and treatment protocol. AR, allergic rhinitis; OVA, ovalbumin; Alum, aluminum hydroxide; i.p., intraperitone-
al administration; i.n., intranasal administration.
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sequences were as follows: interferon (IFN)-γ forward primer, 
5´-AGAGCCAGATTATCTCTTTCTACCTCAG-3´ and IFN-γ re-
verse primer, 5´-CCTTTTTCGCCTTGCTGTTG-3´; T-bet for-
ward primer, 5´-GCCAGGGAACCGCTTATA-3´ and T-bet re-
verse primer, 5´-CCTTGTTGTTGGTGAGCTTTA-3´; IL-4 for-
ward primer, 5´-TCAACCCCCAGCTAGTTGTC-3´ and IL-4 re-
verse primer, 5´-AAATATGCGAAGCACCTTGG-3´; GATA3 for-
ward primer, 5´-CTGGATGGCGGCAAAGC-3´ and GATA3 re-
verse primer, 5´-GTGGGCGGGAAGGTGAA-3´; IL-17 forward 
primer, 5´-TCCAGAAGGCCCTCAGACTA-3´ and IL-17 reverse 
primer, 5´-AGCATCTTCTCGACCCTGAA-3´; ROR-γt forward 
primer, 5´-AGCATCTATAGCACTGACGG-3´ and ROR-γt reverse 
primer, 5´-CAGAAACTGGGAATGCAGTG-3´; PU.1 forward 
primer, 5´-GCATCTGGTGGGTGGACAA-3´ and PU.1 reverse 
primer, 5´-TCTTGCCGTAGTTGAG-3´; IL-10 forward primer, 
5´-GCTCTTACTGACTGGCATGAG-3´ and IL-10 reverse primer, 
5´-CGCAGCTCTAGGAGCATGTG-3´; TGF-β forward primer, 
5´-CACCATCCATGACATGAACC-3´, and TGF-β reverse primer 
5´-TCATGTTGGACAACTGCTCC-3´; Foxp3 forward primer, 
5´-GAAAGCGGATACCAAATGA-3´ and Foxp3 reverse primer, 
5´-CTGTGAGGACTACCGAGCC-3´; glyceraldehyde 3-phos-
phate dehydrogenase (GAPDH) forward primer, 5´-GCACAGT-
CAAGGCCGAGAAT-3´ and GAPDH reverse primer, 5´- 
GCCTTCTCCATGGTGGTGAA-3´. The expression levels of 
IFN-γ, IL-4, T-bet, GATA3, PU.1, IL-17, ROR-γt, IL-10, TGF-β, 
Foxp3, and GAPDH mRNA were determined by real-time PCR 
using the ABI PRISM 7300 Real-Time PCR System (Applied Bio-
systems, Foster City, CA, USA) and SYBR Green PCR master mix 
(TaKaRa). The expression levels of these mRNAs were analyzed 
using the ABI 7300 Sequence Detection System (Applied Biosys-
tems). The results were normalized to β-actin expression and 
represented as the fold-increase with respect to expression in 
the control group.

Western blot detection of GATA3, ROR-γt, and Foxp3 protein 
levels

The protein levels of GATA3, ROR-γt, and Foxp3 in nasal mu-
cosa were determined by Western blot. The membrane was 
probed with antibodies against GATA3, ROR- γt, Foxp3, and 
GAPDH as the normal control. Anti-GATA3 (Santa Cruz Bio-
technology, Santa Cruz, CA, USA), anti-ROR-γt (eBioscience, 
San Diego, CA, USA), and anti-Foxp3 (eBioscience) antibodies 
were used.

Flow cytometry
The spleen was removed aseptically 24 hours after the final 

challenge. For cell surface staining, 106 splenic mononuclear 
cells were incubated with fluorescein isothiocyanate (FITC)-
conjugated mouse CD4 (GK1.5) antibody (eBioscience). For in-
tracellular staining, cells stained with CD4 were incubated with 
fixation/permeabilization working solution, and Fc receptors 
were blocked with excess mouse Fc block. Cells were then 

stained with phycoerythrin (PE)-Cy5-conjugated mouse Foxp3 
(FJK-16s) and APC-CD25 antibodies (eBioscience). CD4+ 
CD25+Foxp3+ T cells were analyzed using FACS-Calibur (Becton 
Dickinson, San Jose, CA, USA).

Statistical analysis
All measured parameters are expressed as means±standard 

deviation (SD). The differences among the groups were ana-
lyzed using Kruskal-Wallis analysis. In cases with statistical dif-
ferences, the ranked parameters were compared using one-way 
analysis of variance (ANOVA) and Bonferroni’s multiple com-
parison tests. Analyses were performed with PASW Statistics 
software (ver. 18.0; SPSS Inc., Chicago, IL, USA). A P value of < 
0.05 was considered to indicate statistical significance.

 

RESULTS

Decreased allergy symptoms by the administration of anti-IL-9 
antibody

To determine the effect of anti-IL-9 antibody on allergy symp-
toms, we evaluated the number of sneezing and rubbing mo-
tions during 15 minutes after the final challenge. Mice in the OT 
and OT+IL9AB groups had lower numbers of sneezing motions 
than those in the AR group (OT vs AR, P=0.001; OT+IL9AB vs 
AR, P=0.003). The number of sneezing motions in the OT+ IL-
9AB group was significantly decreased compared with that in 
the OT group (P=0.04; Fig. 2A). The number of nasal rubbings 
was higher in the OT and OT+IL9AB groups than in the AR 
groups (OT vs AR, P=0.000; OT+IL9AB vs AR, P=0.001). The 
number of nasal rubbings in the OT+IL9AB group was also di-
minished compared with that in the OT group, although no sig-
nificant difference was detected (Fig. 2B). We found that ad-
ministration of anti-IL-9 antibody during induction of OT de-
creased allergy symptoms.

Diminished serum OVA-specific IgE levels and eosinophil 
infiltration in nasal mucosa by the administration of anti-IL-9 
antibody

Serum OVA-specific IgE levels indicate the status of atopy. Se-
rum OVA-specific IgE levels were elevated markedly in the AR 
group compared with the OT and OT+IL9AB groups (AR vs OT, 
P=0.002; AR vs OT+IL9AB, P=0.006). The OT+IL9AB group 
displayed significantly lower serum OVA-specific IgE than the 
OT group, indicating that anti-IL-9 antibody decreases OVA-
specific IgE synthesis (P=0.010, Fig. 3A).

As eosinophils are a key player in allergic inflammation, we 
evaluated whether anti-IL-9 antibody could reduce eosinophil 
infiltration. The AR group had a higher eosinophil count than 
the OT and OT+IL9AB groups (AR vs OT, P=0.002; AR vs OT+ 
IL9AB; P=0.005). In addition, we found that the eosinophil 
count was lower in the OT+IL9AB group than in the OT group 
(P=0.049). These results show that anti-IL-9 antibody during 
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Fig. 2. Nasal symptom scores. The number of sneezes (A) and rubbing motions (B). Error bars represent standard deviations (SD). *P<0.05 vs the control group; 
†P<0.05 vs the Der f group.

Fig. 3. Decreased OVA-specific IgE synthesis and eosinophil infiltration in nasal mucosa by the administration of anti-IL-9 antibody during induction of OT. (A) OVA-
specific IgE in serum. (B) Eosinophil counts in the nasal mucosa of each study group. (C) Infiltration of eosinophils (arrows) in the nasal mucosa of BALB/c mice. (a) 
Control, (b) AR, (c) OT, and (d) OT+IL9AB groups. H&E stain; original magnification, ×400 (scale bar=10 µm). Error bars represent standard deviations. *P<0.05. 
OVA, ovalbumin; IgE, immunoglobulin E; IL, interleukin; OT, oral tolerance; H&E, hematoxylin and eosin.
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OT induction attenuates eosinophil infiltration in nasal mucosa 
(Fig. 3B). Fig. 3C shows the infiltration of eosinophils in the 
lamina propria.

Anti-IL-9 antibody administration inhibits Th2 responses, but 
not Th1 responses

As the imbalance of Th1 and Th2 responses causes allergy in-
flammation, we evaluated whether anti-IL-9 antibody could re-
store this imbalance. The mRNA expressions of IFN-γ (a Th1 cy-
tokine) and T-bet (a transcription factor for Th1 cells) were in-
creased in the AR group compared with the other groups, al-
though without significance. No difference in IFN-γ and T-bet 
mRNA expression was detected between the OT and the OT+ 
IL9AB groups (Fig. 4A and B). In contrast, the mRNA expression 
of IL-4 (a Th2 cytokine) was increased significantly in the AR 
group compared with the OT and OT+IL9AB groups (AR vs OT, 
P=0.013; AR vs OT+IL9AB, P=0.042). Likewise, the mRNA ex-
pression of GATA3 (a transcription factor for Th2 cells) was sig-
nificantly increased in the AR group (AR vs OT, P=0.005; AR vs 
OT+IL9AB, P=0.001). The OT+IL9AB group displayed de-

creased mRNA expressions of IL-4 (P=0.049) compared with 
the OT group (Fig. 4C). The mRNA expression of GATA3 was 
also decreased in the OT+IL9AB group compared with the OT 
group, although no significant difference detected (Fig. 4D). 
Western blot analysis showed lower GATA3 protein levels in the 
OT and OT+IL9AB groups compared with those in the AR group, 
with the OT+IL9AB group showing lower GATA3 protein levels 
than the OT group (Fig. 5). These results demonstrated that ad-
ministration of anti-IL-9 antibody during OT induction sup-
pressed Th2 responses, but had little effect on Th1 responses.

Inhibition of PU.1 and ROR-γt mRNA expression by anti-IL-9 
antibody administration

Th9 and Th17 cells are recently identified contributors to aller-
gic inflammation. Th9 cells are involved in mucus hyperplasia, 
mast cell accumulation, lung remodeling, and airway hyper-re-
activity via production of IL-9.10 Th17 cells, a newly defined sub-
population of CD4+ T cells, develop airway neutrophilia via pro-
duction of IL-17 in allergic airways.8 We evaluated the effect of 
anti-IL-9 antibody on both the mRNA expression of PU.1 (a 

Fig. 4. Administration of anti-IL-9 antibody inhibits Th2 responses rather than Th1 responses. Quantitative analysis of IFN-γ (A), T-bet (B), IL-4 (C), and GATA3 (D) 
mRNA expression in nasal mucosa by real-time PCR. Error bars represent SD. *P<0.05. Th, T-helper; IFN, interferon; PCR, polymerase chain reaction; SD, standard 
deviation; other abbreviation as Fig. 3.
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transcription factor for Th9 cells) and ROR-γt (a transcription 
factor for Th17 cells). PU.1 mRNA expression was higher in the 
AR group than in the OT or OT+IL9AB groups (AR vs OT, 
P=0.001; AR vs OT+IL9AB, P=0.001). The OT+IL9AB group had 
significantly lower PU.1 mRNA expression than the OT group 
(P=0.004, Fig. 6A). Mice in the AR group had significantly high-
er expression of ROR-γt and IL-17 mRNA than those in the OT 

and OT+IL9AB groups. ROR-γt mRNA levels was decreased in 
the OT+IL9AB group compared with the OT group, similar to 
PU.1 mRNA expression (P=0.047), whereas no significant dif-
ference of IL-17 mRNA levels was detected between the OT and 
OT+IL9AB groups (Fig. 6B and C). Western blot analysis showed 
that the ROR-γt protein level was decreased primarily in the 
OT+IL9AB group (Fig. 5). These results showed that anti-IL-9 
antibody negatively affects the induction of Th9 and Th17 cells.

Increased Foxp3 and IL-10 mRNA expression and Foxp3 
protein level, and decreased TGF-β mRNA expression by anti-
IL-9 antibody administration

Treg cells have tolerogenic effects in allergic inflammation via 
production of IL-10 and TGF-β, inhibitory cytokines of the Th2 
response.24 Moreover, the presence of TGF-β affects production 
of IL-9.25 We evaluated whether anti-IL-9 antibody could poten-
tiate OT in our mouse model. The mRNA expressions of Foxp3 
(a transcription factor for Treg cells) and IL-10 were reduced in 
the AR group compared the OT and OT+IL9AB groups (Foxp3: 
AR vs OT, P=0.026; AR vs OT+IL9AB, P=0.001. IL-10: AR vs OT, 
P=0.001; AR vs OT+IL9AB, P=0.000). The OT+IL9AB group had 

Fig. 5. Representative blot for determining GATA3, ROR-γt, and Foxp3 protein 
levels.  
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Fig. 6. Inhibition of mRNA expression of PU.1 and ROR-γt by the administration of anti-IL-9 antibody. Quantitative analysis of PU.1 (A) ROR-γt (B), and IL-17 (C) mRNA 
expression in nasal mucosa by real-time PCR. Error bars represent SD. Abbreviations as in Fig. 4. *P<0.05.

Re
la

tiv
e 

PU
.1 

m
RN

A 
le

ve
l (

fo
ld

)

Re
la

tiv
e 

RO
R-
γ t

 m
RN

A 
le

ve
l (

fo
ld

)

Re
la

tiv
e 

IL
-1

7 m
RN

A 
le

ve
l (

fo
ld

)

CON CON CONAR AR AROT OT OTOT+IL9AB OT+IL9AB OT+IL9AB

2.5

2.0

1.5

1.0

0.5

0

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0

3.0

2.5

2.0

1.5

1.0

0.5

0

*

*
* **

* *
*

* *

A B C

Fig. 7. Increased Foxp3, IL-10, and TGF-β mRNA expression and Foxp3 protein level by the administration of anti-IL-9 antibody. Quantitative analysis of Foxp3 (A), IL-
10 (B), and TGF-β (C) mRNA expression in nasal mucosa by real-time PCR. Error bars represent SD. *P<0.05. TGF, transforming growth factor; other abbreviation as 
Fig. 4. 

Re
la

tiv
e 

Fo
xp

3+
 m

RN
A 

le
ve

l (
fo

ld
)

Re
la

tiv
e 

IL
-1

0 m
RN

A 
le

ve
l (

fo
ld

)

Re
la

tiv
e 

TG
F-

b 
m

RN
A 

le
ve

l (
fo

ld
)

CON CON CONAR AR AROT OT OTOT+IL9AB OT+IL9AB OT+IL9AB

2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2

0

3.0

2.5

2.0

1.5

1.0

0.5

0

3.0

2.5

2.0

1.5

1.0

0.5

0

*
*

* *
*

** *
*

*

A B C

*

*
*



Anti-IL-9 on Tolerance in Mice With Allergy

Allergy Asthma Immunol Res. 2017 May;9(3):237-246. https://doi.org/10.4168/aair.2017.9.3.237

AAIR

http://e-aair.org  243

significantly higher mRNA expression of Foxp3 (P=0.015) and 
IL-10 (P=0.049) than the OT group (Fig. 7A and B). TGF-β was 
lower in the AR group than in the OT group (P=0.001). In con-
trast to the IL-10 mRNA level, the TGF-β mRNA level was de-
creased in the OT+IL9AB group compared with the OT group 
(P=0.001, Fig. 7B and C). Western blot analysis showed in-
creased Foxp3 protein levels in the OT and OT+IL9AB groups 
compared with the AR group. The OT+IL9AB group showed 
markedly higher levels of Foxp3 protein than the OT group (Fig. 
5). These results supported that anti-IL-9 antibody increased 
tolerance induction in this mouse model despite decreased 
TGF-β mRNA levels.

Increased induction of CD4+CD25+Foxp3+ T cells by anti-IL-9 
antibody administration

Cells were sorted based on their level of Foxp3 and CD25 ex-
pression and whether they expressed CD4 (Fig. 8A). The per-
centage of CD4+CD25+Foxp3+ T cells is a proportion of total 
splenic mononuclear cells. The AR group had lower percentag-
es of these cells than the OT and OT+IL9AB groups (AR vs OT, 
P=0.022; AR vs OT+IL9AB, P=0.015). Similar to the result of 
Foxp3 mRNA expression, the percentage of these cells was in-
creased significantly in the OT+IL9AB group compared with 
the OT group (P=0.031, Fig. 8B). These results indicate that ad-
ministration of anti-IL-9 antibody produced an increase in 
CD4+CD25+Foxp3+ T cells during tolerance induction.

DISCUSSION

IL-9 is a pleiotropic cytokine that plays a role in allergic in-
flammation. In asthma, IL-9 increases ILC2 survival, Th2 cell 
responses, IgE production, and innate cell inflammation. In ad-
dition, IL-9 induces collagen deposition, smooth muscle hy-
perplasia, and mucus production.10 However, the precise 
mechanisms of allergic inflammation by IL-9 and the effects of 
IL-9 on tolerance induction are unclear.

OT has been used in many studies using animal models of al-
lergic diseases. In mouse models of AR or asthma, feeding aller-
gen suppressed airway reactivity, airway eosinophilia, and pro-
duction of Th2 cytokines and allergen-specific IgE. It also in-
duced the production of regulatory cytokines secreted by Treg 
cells.26-29 Therefore, OT, a type of mucosal tolerance, may be 
considered a strategy of allergen-specific immunotherapy.

This study examined the effects of anti-IL-9 antibody on OT in 
a mouse model of AR. We demonstrated that anti-IL-9 antibody 
suppressed allergic inflammation by inhibiting the induction of 
Th2 and Th17 cells. Furthermore, we found that anti-IL-9 anti-
body enhanced  induction of Treg cells and production of IL-
10, a tolerogenic cytokine, but decreased the production of 
TGF-β. These results suggest that neutralizing IL-9 may in-
crease the induction of OT in a mouse model of AR.

Many murine studies have demonstrated that IL-9 mediates 
allergic inflammation. IL-9 is associated with the development 
of airway hyper-responsiveness (AHR) and airway remodel-

Fig. 8. Increased induction of CD4+CD25+Foxp3+ T cells by the 
administration of anti-IL-9 antibody. Flow cytometric analysis 
of CD4+CD25+Foxp3+ T cell subsets. (A) Representative fluo-
rescence-activated cell sorting analysis of each group. The 
upper right quadrant represents CD4+CD25+Foxp3+ T cells. (B) 
The percentages of CD4+CD25+Foxp3+ T cells as a proportion 
of total splenic mononuclear cells. Error bars represent SD.
Abbreviations as in Fig. 4. *P<0.05.
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ing.30,31 In the present study, administration of anti-IL-9 anti-
body reduced the sneezing response. In addition, serum OVA-
specific IgE and eosinophil infiltration in nasal mucosa were 
decreased by neutralization of IL-9. GATA3 and IL-4 mRNA ex-
pression, as well as GATA3 protein levels, were also reduced by 
the administration of anti-IL-9 antibody. Our results were simi-
lar to those from previous studies using mouse models of atop-
ic disease, which showed that Th9 cells promote mast and eo-
sinophil accumulation, mucus production, Th2 cytokine pro-
duction, and bronchial hyperresponsiveness via production of 
IL-9. These effects are reversed by the transfer of  Il9-/-Th9 cells 
or by IL-9 neutralization.16,23,32-34 In a model of chronic airway 
hyperreactivity, the number of Th9 cells directly correlated with 
the severity of AHR, and anti-IL-9 treatment decreased airway 
inflammation.23 Another study using a mouse model reported 
that IL-9 neutralization reversed airway remodeling via reduc-
tion of mast cell numbers and decreased expression of the pro-
fibrotic mediators.32 In a study of mice with PU.1-deficient T 
cells, the expression of IL-9 and chemokines was reduced and 
allergic inflammation was attenuated.33 In addition, IL-9 neu-
tralization reduced infiltration of inflammatory cells and their 
cytokine production in murine asthma models.34

Many studies have reported that IL-9 mediates allergic in-
flammation in human, although the precise mechanism of 
pathogenesis by IL-9 remains unclear. In previous study, aller-
gic patients had elevated Th9 cells in peripheral blood mono-
nuclear cells together with elevated serum IgE levels.35 A recent 
study showed that serum IL-9 concentrations in patients with 
allergic asthma were increased and inversely related to eosino-
phil apoptosis.36 Another study reported that IL-9 gene expres-
sion in serum samples was increased in asthmatics, which was 
correlated with disease severity.37 A study of atopic infants dem-
onstrated that IL-9 production from allergen-stimulated pe-
ripheral blood mononuclear cells was increased in the absence 
of concomitant increases in the production of other Th2 cyto-
kines, suggesting that IL-9 may be produced earlier than other 
cytokines in the development of atopic disease.38 Two different 
studies with allergic patients demonstrated that Th9 differenti-
ation and IL-9 production in allergic inflammation was pro-
moted by thymic stromal lymphopoietin, an epithelial cell-de-
rived cytokine.39,40

As PU.1 is a regulator of IL-9 production in T cells,41,42 anti-IL-9 
antibody could reduce PU.1 mRNA expression. In an in vitro 
study, IL-9 with TGF-β enhanced differentiation of CD4+ T cells 
into Th17 cells.43 In a murine asthma model, anti-IL-9 antibody 
treatment inhibited airway inflammation by reducing the num-
ber of Th17 cells and IL-17 levels.34 In an experimental autoim-
mune encephalomyelitis (EAE) murine model, IL-9 blockade 
with anti-IL-9 antibody reduced both the production of IL-17 
and development of EAE.44 Our results were consistent with 
those of previous studies. We demonstrated that anti-IL-9 anti-
body inhibited the mRNA expression of both PU.1 and ROR-γt 

and reduced the protein level of ROR-γt. These results showed 
a negative effect of anti-IL-9 antibody on the induction of both 
Th9 and Th17 cells, which are major contributors to allergic in-
flammation.

The main aim of this study was to examine the effect of anti-
IL-9 antibody on tolerance induction in allergic inflammation. 
There have been conflicting data from studies investigating the 
effects of IL-9 on Treg in different diseases. In a mouse model of 
allograft tolerance, IL-9 induced mast cell recruitment and acti-
vation essential for the immunosuppressive effect of Treg 
cells.45 In the EAE model, mice lacking the IL-9 receptor had a 
defect in the suppressive activity of Treg cells,43 whereas IL-
9-deficient mice had increased numbers of Treg cells in the spi-
nal cord.46 In a rat model of experimental autoimmune myas-
thenia gravis (EAMG), neutralization of IL-9 inhibited the pa-
thology of EAMG by reducing the number of Th1 cells and in-
creasing the number of Treg cells.47 In a murine model of neph-
rotoxic serum nephritis (NTS), blockage of IL-9 reduced pro-
tection from NTS by both Treg and mast cells. However, IL-9 
deficiency had little effect on the general suppressive activity of 
Treg cells.48 These discrepancies may be caused by differences 
in elicited diseases and roles of IL-9 on different cells with IL-9 
receptors in various immune environments. However, few 
studies have examined the effect of IL-9 on Treg cells in allergic 
inflammation. The present study showed that anti-IL-9 anti-
body increased induction of tolerance by Treg cells. Induction 
of Treg cells and production of cytokines produced by Treg 
cells were increased by the administration of anti-IL-9 anti-
body. On the other hand, anti-IL-9 antibody reduced TGF-β 
mRNA levels, as in a previous study, using a murine model with 
chronic airway inflammation, which showed that anti-IL-9 an-
tibody-treated mice had decreased expression of TGF-β in the 
lung and reduced pathology of airway remodeling.32 Therefore, 
administration of anti-IL-9 antibody may prevent airway re-
modeling including fibrosis. These results supported the notion 
that anti-IL-9 antibody can be a novel treatment target for aller-
gic airway diseases such as asthma and AR.

However, the current study had several limitations. First, the 
number of animals included in this study was small. Second, 
this study lacked measurement of IL-9 levels in nasal mucosa. 
Nevertheless, this study is informative because, as far as we 
know, this is the first study to evaluate the influence of anti-IL-9 
antibody on OT in a mouse model of AR.

In summary, this study demonstrated the tolerogenic poten-
tials of anti-IL-9 antibody on OT in a mouse model of AR. Anti-
IL-9 antibody decreased allergic inflammation through sup-
pression of Th2 and Th17 cells. Our study showed that anti-IL-9 
antibody enhanced Treg cell induction and the production of 
tolerogenic cytokines by Treg cells. These results suggest that 
anti-IL-9 antibody might be a potential immunotherapeutic 
target in allergen immunotherapy for patients with uncon-
trolled allergic airway disease.
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