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INTRODUCTION

Under aerobic conditions, cells with low metabolic demands 
(such as normal barrier cells, naïve T cells, and memory T cells) 
utilize oxidative phosphorylation to synthesize adenosine tri-
phosphate (ATP), a robust fuel source. Oxidative phosphoryla-
tion is a highly efficient process that produces 36 to 38 ATP mol-
ecules from 1 molecule of glucose, but under anaerobic condi-
tions, this process is precluded, and instead cells generate ener-
gy by glycolysis, which involves the conversion of glucose to lac-
tate in order to synthesize ATP. Although glycolysis can synthe-
size ATP rapidly, it is much less efficient than oxidative phos-
phorylation, because oxidative phosphorylation generates 36 to 
38, but glycolysis generates only 2 at times postoperatively.1

Recent studies indicate that cells with high metabolic de-
mands, such as tumor cells and activated T cells, synthesize 
ATP through glycolysis during rapid proliferation, even under 
aerobic conditions. The first scientist to discover this phenome-
non was Otto Warburg, who noted cancerous cells convert glu-
cose to lactate in order to synthesize ATP even under oxygen-
rich conditions, and thus “aerobic glycolysis” is also referred to 
as “the Warburg effect.”2

Aerobic glycolysis has been studied primarily in tumor cells, 

and attempts have been made to inhibit the growth and pro-
gression of neoplasia by regulating this process.3,4 However, 
studies on the role of aerobic glycolysis in immune cells are in 
their infancy.

The hexosamine biosynthetic pathway (HBP) is also involved 
in the metabolism of glucose. The HBP causes post-translational 
modifications of proteins and contributes to syntheses of com-
plex molecules, such as glycolipids, proteoglycans, and others. 
Furthermore, recent studies have shown that a competitive re-
lationship exists between the HBP and glycolysis.5-7

Indeed, “metabolic immunology” or “immunometabolism,” 
that is, a study of the role of metabolism on immunologic func-
tions and activities of cells, has recently attracted much atten-
tion in a hitherto relatively unexplored field of research. Thus, 
in this review article, we first describe how cellular metabolic 
pathways, including glycolysis and HBP, appear to act within 
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cells of the immune system and comment on the immunologi-
cal significances of these activities. Next, we review the effects 
of glycolysis and the HBP on various autoimmune diseases and 
immunological/allergic diseases. Finally, we briefly introduce 
the results of our research on the immune effects of HBP aug-
mentation in animal models of allergic disease.

BRIEF REVIEW OF INTRACELLULAR GLYCOLYSIS VERSUS 
THE HBP PATHWAY

A schematic of glycolysis and the HBP is provided in Figure. 
Importantly, the final product of glycolysis is lactate, whereas 
that of the HBP is UDP-N-acetylglucosamine (UDP-N-GlcNAc). 
The purposes of these pathways also differ from each other. 
Glycolysis is used to rapidly synthesize ATP, whereas the HBP is 
used to post-translationally modify numerous proteins. Glucos-
amine (GlcN) administration has the effect of increasing the 
availability of substrate required for HBP activation, and the fi-
nal product of the HBP is UDP-N-GlcNAc, which is subse-
quently converted to O-GlcNAc by O-GlcNAc transferase. Fur-
thermore, it has been well established that O-GlcNAc levels in-
creases sharply under stressful conditions, at least in a short 
term, and that these increases have cyto-protective effects.8,9 It 
has also been shown in a contrast-induced acute kidney injury 
rat model that when O-GlcNAc signaling is enhanced by GlcN 
administration, oxidative stress and apoptosis are reduced.10

ROLES OF AEROBIC GLYCOLYSIS AND THE HBP IN THE 
PROLIFERATION AND ACTIVATION OF IMMUNE CELLS

Normal T cells have frequently been used to study the role of 
aerobic glycolysis, as they proliferate and become activated 
when exposed to external stimuli, such as extracellular antigens 
or pathogens. Furthermore, when naïve T cells are activated, 
aerobic glycolysis is required to regulate the preferential trans-
lation of interferon gamma (IFN-γ) mRNA and optimize IFN-γ 
secretion.11 Aerobic glycolysis also increases the anti-tumor ac-
tivities of T cells and promotes the differentiation of naïve T 
cells into Th17 cells, rather than regulatory T (Treg) cells.12-14

Goto et al.15 found that procyanidin, a type of flavonoid found 
mainly in fruits like apples, inhibits glycolysis. Interestingly, this 
group reported that when proliferating CD4+ T cells were stim-
ulated with anti-CD3ε monoclonal antibody in the presence of 
procyanidin, which was administered to inhibit glycolysis, cel-
lular proliferative activity was reduced to 10% of its normal level 
and the levels of IFN-γ, interleukin (IL)-4, IL-6, and IL-10 were 
also significantly reduced.

HBP synthesizes UDP-N-GlcNAc from glucose, and UDP-N-
GlcNAc then becomes a substrate for glycoprotein synthesis, 
through N-glycan synthesis.16-18 Araujo et al.1 showed that when 
T cells are treated with GlcNAc, it not only significantly inhibits 
Th17 differentiation, but also promotes differentiation into Treg 

cells.
N-glycan branching reduces T-cell receptor clustering/signal-

ing and inhibits T-cell growth by increasing the surface reten-
tion of cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), 
an inhibitor of T-cell growth.1,19,20 However, inhibition of aerobic 
glycolysis allows fructose-6-phosphate to be used as a substrate 
for the HBP, which results in increased N-glycan branching.1

Both aerobic glycolysis and the HBP require fructose-6-phos-
phate as an intermediate, and thus these 2 pathways have a 
competitive relationship, that is, if one pathway is utilized, 
shunting toward the other pathway may be inhibited. However, 
Araujo et al.1 observed that extracellular acidification and oxy-
gen consumption rates did not change significantly even when 
GlcNAc was administered to T cells cultured under conditions 
that induce a Th17 phenotype, and suggested that GlcNAc ad-
ministration did not directly inhibit aerobic glycolysis in their 
system.

POTENTIAL ROLES OF GLYCOLYSIS AND THE HBP IN 
AUTOIMMUNE DISEASE

Garcia-Carbonell et al.21 extracted fibroblast-like synoviocytes 
from the joint fluids of rheumatoid arthritis patients and treat-
ed these primary cell lines with 2-deoxy-D-glucose (2-DG), an 
inhibitor of glycolysis. Cellular proliferation and migration rates 
were significantly diminished by 2-DG, which also significantly 
inhibited secretions of IL-6, matrix metalloproteinase (MMP)-1, 
and MMP-3. To confirm these results, additional experiments 
were conducted in animal models. In a K/BxN murine serum 
transfer model of arthritis, administration of a glycolysis inhibi-
tor (2-DG) significantly reduced inflammatory cell infiltration, 
joint injury severity, and cartilage damage. Collectively, these 
findings suggest that inhibition of glycolysis pathways offers the 
possibility of an adjunctive strategy for the treatment of rheu-
matoid arthritis.

In T-cell activation assays, inhibition of T-cell receptor signal-
ing and proliferation has been demonstrated in naïve T cells 
cotreated with hexosamine and GlcNAc or GlcN.14 Further-
more, hexosamine supplementation in mice with experimental 
autoimmune encephalomyelitis accelerated disease progres-
sion.17

Salvatore et al.22 administered GlcNAc orally or trans-rectally 
to pediatric patients with refractory inflammatory bowel dis-
ease (Crohn’s disease or ulcerative colitis). Eight of the 12 (8/12) 
patients administered GlcNAc exhibited significant improve-
ment, and 5 of the 9 patients administered GlcNAc trans-rectal-
ly) reported marked improvement (2 reported complete remis-
sion and 3 notable improvements in symptoms). All 21 patients 
underwent mucosal biopsy and were histologically confirmed 
to have lower gastrointestinal disease improvements. The au-
thors concluded GlcNAc offers an affordable, non-toxic, and ef-
fective treatment for refractory inflammatory bowel disease.
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POTENTIAL ROLES OF GLYCOLYTIC INHIBITORS AND 
GLUCOSAMINE SUPPLEMENTATION IN ALLERGIC 
INFLAMMATION

Attempts have been made to develop a targeted drug delivery 
system based on the sequential, selective inhibition of each 
step of aerobic glycolysis (Figure).23 Pharmacologic agents, such 
as phloretin, WZB117, and fasentin, inhibit glycolysis by pre-
venting cellular glucose uptake through glucose transporter 
(GLUT), but as GLUTs are present in all cells, blockade of 
GLUTs in specific cell types has proven to be difficult. There-
fore, this treatment type remains at the pre-clinical stage.24,25

Hexokinase coverts glucose to glucose-6-phosphate in the 
first step of glycolysis. Lonidamine blocks hexokinase and has 
passed phase III clinical trials, but has not been widely com-
mercialized due to its reported pancreatic and hepatic toxicity 
profiles.26-28

The glucose analog 2-deoxyglucose also potently inhibits gly-
colysis, and although pre-clinical trials have been attempted, 
reports suggest that its effect is somewhat unpredictable and 
that its use may be associated with increased transformed cell 
survival.29-32

Agents that inhibit phosphofructokinase (PFK), which con-
verts fructose-6-phosphate to fructose-1,6,-bisphosphate, are 
also being actively developed.33 In addition, a number of agents 
have been developed to inhibit enzymes involved in down-
stream steps of glycolysis, for example, 3-bromopyruvate is an 
inhibitor of glyceraldehyde-3-phosphate dehydrogenase (GAP-

DH),34-37 FX-11 and oxamate suppress lactate dehydrogenase 
(LDH),38,39 and Shikonin and pyruvate kinase M2 (PKM2)-spe-
cific siRNA are inhibitors of pyruvate kinase (PK).40,41 Since 
these potential therapeutics reached pre-clinical or early clini-
cal stages, they may soon be available for use in clinical prac-
tice.

Jin et al.42 investigated the role of GlcNAc in systemic anaphy-
lactic shock and ear swelling. Systemic anaphylaxis and ear 
swelling were induced by administering compound 48/80 (a 
mast cell degranulator) intraperitoneally in ICR mice. In order 
to evaluate its anti-allergic effects, GlcNAc was administered 
orally or subcutaneously 1 hour prior to administering com-
pound 48/80. GlcNAc was found significantly reduce mortality 
and ear swelling.

Jin et al.43 performed a randomized, double-blinded, placebo-
controlled, parallel clinical trial to evaluate the efficacy of low-
dose cyclosporine and GlcN combination therapy in patients 
with atopic dermatitis (AD). Patients with AD and a severity 
scoring of atopic dermatitis (SCORAD) index of ≥30 (maxi-
mum score 103) were selected and cyclosporine (2 mg/kg) plus 
GlcN (25 mg/kg) was given to one group of patients, and cyclo-
sporine (2 mg/kg) and placebo to another. After 8 weeks of drug 
administration, the mean SCORAD index of patients given cy-
closporine plus GlcN was significantly greater, and no signifi-
cant increase in side effects was observed. As a result, they rec-
ommended that low-dose cyclosporine plus GlcN be consid-
ered for the treatment of moderate to severe AD.

We sought to evaluate the effect of hexosamine supplementa-

Figure. Schematic of glycolysis and the HBP. HBP, hexosamine biosynthetic pathway.
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tion on experimental allergic inflammation. Initially, we in-
duced allergic asthma and rhinitis in BALB/c mice by intraperi-
toneal or intranasal administration of ovalbumin (an experi-
mental protein derived from chicken egg white). In order to 
evaluate the therapeutic effect of GlcN supplementation, GlcN 
was administered intravenously to mice 30 minutes prior to 
each of the ovalbumin administrations. After 4 weeks of treat-
ment, serum immunoglobulin G (IgE) levels were significantly 
lower in the in GlcN group than in the untreated asthma/rhini-
tis groups. On a cellular level, we noted that the numbers of in-
flammatory leukocytes, such as eosinophils, and Th1 and Th17 
cytokine titers in bronchoalveolar lavage fluid were all signifi-
cantly reduced by GlcN treatment. Histopathologic findings of 
lung parenchyma and nasal mucosa were also significantly bet-
ter in treated mice. Taken together, these findings suggest that 
supplementary GlcN treatment may augment treatment re-
sponse by up-regulating the HBP pathway.44 

SAFETY PROFILES OF HEXOSAMINE SUPPLEMENTATION 
STRATEGIES

GlcN is an over-the-counter, non-prescription dietary supple-
ment. However, because it is not classified as a drug, few stud-
ies have been conducted to determine its side effect profile 
and/or drug interactions.45 Adverse reactions induced by GlcN 
and chondroitin sulfate have been reported in fewer than 5% of 
patients. However, gastrointestinal side effects, such as discom-
fort, abdominal pain, diarrhea, and nausea, are relatively com-
mon, and somnolence, cutaneous reactions and headaches 
have also been reported.46

Cerda et al.46 asked 151 patients with chronic liver disease 
whether they had taken or were taking GlcN and/or chondroi-
tin sulfate. Twenty-three patients (15.2%) had taken GlcN prep-
arations, and 2 reported a temporary increase in liver enzyme 
(aminotransferase) levels after administration. The cause of rare 
hepatotoxicity attributable to GlcN has not been determined, 
but it is currently believed to be related to a hypersensitivity 
mechanism. Accordingly, caution should be exercised when 
GlcN is administered to patients with impaired hepatic func-
tion; and if elevated liver transaminase levels or jaundice ap-
pear, GlcN should be discontinued and a specialist consulted.

One case of transient asthma deterioration has been reported 
after GlcN dietary supplementation. However, the causal rela-
tionship between GlcN administration and asthma exacerba-
tion is unclear and it is difficult to conclude from this single in-
cident whether GlcN was involved. MEDLINE searches con-
ducted for this review did not identify any other GlcN-associat-
ed respiratory complications.47

GlcN is extracted from the exoskeleton of crab, lobster, and 
shrimp, and thus patients with a seafood or shellfish allergy 
may be hesitant to take GlcN. However, this allergy is caused by 
IgE responses to antigens in seafood flesh and is not related 

with shells. Gray et al.48 conducted a GlcN skin test on 6 patients 
with allergies to seafood, such as shrimp, crab, and lobster, and 
all were negative for reaction to GlcN. After skin testing, these 6 
patients were administered 500 mg of oral GlcN and no report-
ed side effect or meaningful symptom was observed.

PATHOPHYSIOLOGICAL MECHANISMS TO EXPLAIN THE 
RELATIONSHIP BETWEEN GLYCOLYSIS AND IMMUNITY: 
THE MOST RECENT UPDATED STUDIES

Finally, this review aimed to introduce some of the most re-
cently updated articles on the possible pathophysiologic mech-
anism between glycolysis and immune function. First, Layman 
et al.49 have focused on a protein called neural precursor cell ex-
pressed, developmentally down-regulated 4 (Nedd4) family in-
teracting protein 1 (Ndfip1). When this protein binds to the 
Nedd4 E3 ligase, it suppresses the Th2 immune response by de-
creasing the secretion of cytokines, such as IL-4 from the Th2 
lymphocyte.50,51 Layman et al.49 studied the relationship be-
tween this Ndfip1 protein and Treg cell. Treg cells in a normal 
stable state express Foxp3 protein and play a role in immune 
regulation. Treg lymphocytes therefore play a role in protecting 
against autoimmune diseases and inflammatory disorders.52,53 
However, when unstable in certain circumstances, Foxp3 pro-
tein expression is suppressed, while pro-inflammatory cytokine 
is secreted from activated Treg cells.54,55 Layman et al.49 devel-
oped a knockout mice strain (Ndfip1fl/fl Foxp3-Cre mice) in 
which the Ndfip1 protein was specifically knocked out only in 
Treg cells. In these mice, severe inflammation, such as spleno-
megaly, lymphadenopathy, dermatitis, esophagitis, or pneu-
monia, spontaneously developed from 9 to 16 weeks of age. In 
the serum of these mice, immunoglobulins, such as IgE and 
immunoglobulin G1 (IgG1), were also significantly increased 
compared to wild type mice. The important point here is that 
glycolysis is significantly increased in Ndfip-1 deficient Treg 
cells. The glycolytic rate (measured as extracellular acidification 
rate [ECAR]) and glycolytic capacity were significantly in-
creased in Ndfip-1-deficient Treg cells compared to wild-type 
Treg cells. Therefore, it is possible that the switching of metabo-
lism into glycolysis in activated Treg cells is closely related to 
pathophysiology of Ndfip1 knockout-induced autoimmune 
disorders.

Cai et al.56 studied the role of Epstein-Barr virus (EBV) latent 
membrane protein 1 (LMP1) in nasopharyngeal cancer (NPC) 
patients. LMP1 is a kind of oncoprotein that plays an essential 
role in maintaining EBV in the latent infection state and activat-
ing angiogenesis. As a result, LMP1 promotes tumor cell inva-
sion and, eventually, distant metastasis.57,58 LMP1 is also known 
to contribute to the increase of myeloid-dependent suppressor 
cells (MDSCs).56 In this study, they examined the relationship 
between LMP1 activation and MDSC expansion and found that 
activation of glycolysis is involved as an important mechanism. 
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They measured ECAR to identify glycolytic activity in NPC cells 
expressing LMP1. As a result, it was found that LMP1-express-
ing cells showed a marked increase in glycolytic activity (a sig-
nificant increase in ECAR and abundant lactate as a degrada-
tion product). In addition, they suggested that gene expression 
of various enzymes related to glycolysis (GLUT-1, HK-2, GPI, 
and PFK) was significantly increased in NPC cells. On the other 
hand, in GLUT-1-knockout cells using GLUT-1 siRNA, the gly-
colytic pathway was markedly decreased and the expression of 
various genes related to glycolysis was significantly reduced. 
Therefore, researchers have suggested that increased GLUT-1 
dependent glycolysis is closely related to malignant cell trans-
formation and increased MDSCs.56

CONCLUSION

Glycolysis and the HBP are both associated with glucose me-
tabolism and exhibit important and fascinating connections 
with the immune system. Notably, these 2 pathways play criti-
cal roles in the proliferation and activation of leukocytes, such 
as T cells, and exhibit a competitive relationship whereby the 
down-regulation of glycolysis upregulates the HBP. Although 
attempts to treat malignant tumors and immunological diseas-
es using drugs that modulate these pathways are ongoing, fur-
ther research is needed before these molecules can be safely 
and effectively used in clinical practice. GlcN appears to have a 
satisfactory safety profile and has been shown by our group to 
be effective in inhibiting the progressions of experimental in-
flammatory diseases, such as allergic asthma and rhinitis, in 
mice. Further studies are needed to expand their clinical appli-
cations.
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