

Review

Microbiological Characteristics of *Corynebacterium striatum*, an Emerging Pathogen

Sae Am Song¹, Jeong Hwan Shin^{1,2}

¹Department of Laboratory Medicine, Inje University College of Medicine, Busan, Korea

²Paik Institute for Clinical Research, Inje University College of Medicine, Busan, Korea

C. striatum is part of the normal skin and mucous membrane flora in humans and is widely disseminated in the environment. Traditionally, these strains have been considered contaminants. However, *C. striatum* has been linked to respiratory infection, bacteremia, and endocarditis; and it is strongly related to nosocomial outbreaks. At present, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF) is the most accurate routine identification method. Many *C. striatum* strains are multi-drug resistant, being susceptible only to vancomycin and linezolid. We should survey the antimicrobial susceptibility results regularly to monitor its resistance and consider it a possible pathogen.

Key words: *Corynebacterium striatum*; Emerging pathogen; Resistance

Corresponding Author: Jeong Hwan Shin
Department of Laboratory Medicine, Inje University Busan Paik Hospital, 75 Bokji-ro, Busanjin-gu, Busan 47392, Korea
Tel: +82-51-890-6475
Fax: +82-51-890-8615
E-mail: jhsmile@inje.ac.kr

Received 3 Apr 2018

Revised 5 May 2018

Accepted 12 Jun 2018

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (<http://creativecommons.org/licenses/by-nc/4.0/>) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Corynebacterium is a gram-positive bacillus that is widely distributed in the environment [1]. It consists of more than 80 species and is common in the normal flora of human skin and mucous membranes [1]. These organisms traditionally have been considered contaminants and are ignored when they are detected in clinical specimens. However, the association of *Corynebacterium* species with disease is increasing, and we should consider them true pathogens when they are isolated from usually sterile specimens or invasive indwelling devices and in patients who have received long-term antimicrobial therapy.

In recent years, *Corynebacterium striatum* has been isolated frequently from clinical specimens, and multi-drug-resistant strains are common. We need to know more precisely about the general characteristics of this organism, its clinical features, an accurate identification method, and antimicrobial resistance. We review the characteristics of *C. striatum*, an emerging pathogen, focusing on

these points.

1. Epidemiology and Clinical Features

Corynebacterium striatum is part of the normal flora of the skin and mucous membranes in humans and is widely disseminated in the environment. It has generally been regarded as a contaminant when isolated from clinical specimens. However, it can have pathogenicity in both immunocompromised and immunocompetent hosts [2] and can colonize various medical devices. Since *C. striatum* was first reported as a causative pathogen of pleuropulmonary infection in 1980 [3], it has been associated with diverse infections and nosocomial outbreaks. Thus, the organisms have been responsible for respiratory infection [4], infectious endocarditis [5,6], arthritis [7], cellulitis [8,9], catheter-related bloodstream infection [10,11], meningitis [12], skin infection [13], osteomyelitis [14], abscess [15], and wound infection [16]. An important aspect of several of these infections, including infectious endocarditis, sepsis, or meningitis, caused by *C. striatum* is an association with a nosocomial risk factor such as med-

ical devices [11,17] and underlying immunosuppressive conditions. Also, it can cause clinically significant infections at multiple sites and exhibited behavior consistent with an emerging pathogen in several studies [18,19]. Belmares et al. reported infections with this organism, which was the most common among *Corynebacterium* species [17], to have a mortality rate of 78.6%. There have been occasional reports of *C. striatum* nosocomial outbreaks in patients with chronic obstructive pulmonary disease (COPD) [20] and those in intensive care units [21]. These studies showed that the most common comorbidity in infected patients is COPD, which means that chronic pulmonary disease with long-time use of respiratory equipment can contribute to respiratory infection or colonization by *C. striatum*. Furthermore, *C. striatum* has pathogenicity in specific conditions such as repeated exposure to antibiotics or invasive procedures. Also, several studies have reported that *C. striatum* can be transmitted from patient to patient via the hands of medical personnel [21,22]. Thus, enforcing hand hygiene and applying short-period therapeutic devices or antibiotics are significant factors recognized as preventative of nosocomial infection. However, these strains commonly were isolated in outpatient settings, so we can presume that they originated in the community [23].

Corynebacterium striatum infection can occur at any age and in various sites, but it is more common in male patients because the greater sebum output on the skin of males can support the survival of lipophilic diphtheroids such as *C. striatum* [12,24,25]. Virulence factors associated with *C. striatum* are limited. However, skin barrier damage, a medical device, use of broad-spectrum antibiotics, underlying disease, and poor immune status may influence the occurrence of infection. *Corynebacterium striatum* is known to be resistant to many antimicrobial treatments. To prevent such infections, it is recommended to remove any artificial device if possible and not to use long-term antimicrobial agents [26,27]. Therefore, repeated isolation of *C. striatum* is significant and should not be underappreciated, as it may contribute to the death of some patients [28].

2. Laboratory Diagnosis

Corynebacterium species are gram-positive, slightly curved, typically club-shaped bacilli. Generally, *Corynebacterium* can be isolated on 5% sheep blood agar-based selective medium at 37°C. The biochemical identification of various species can be difficult because of their biochemical variability. For routine identification, micromethods such as API Coryne strip (bioMérieux, Marcy l'Étoile, France) and RapID® CB Plus or several automated identification systems are commonly used in the clinical microbiology laboratory.

API Coryne strip can be used for suspect colonies, which are

tiny grayish, mostly translucent, coryneform organisms. The device consists of 20 microtubes that test carbohydrate fermentation or enzymatic activity. Unfortunately, the device cannot distinguish *C. striatum* from *C. amycolatum* because these species have similar phenotypic characteristics. Moreover, the final identification is based on the statistical use of multiplicity. Therefore, the accuracy is relatively low.

Various automated identification systems for *Corynebacterium* are used routinely. VITEK®2 (bioMérieux) with an anaerobe and *Corynebacterium* (ANC) identification card employs kinetic analysis utilizing fluorescence, turbidity, and colorimetric technology based on the metabolic processes of the microorganisms. Rennie et al. reported that the correct identification rate of the Vitek2 ANC identification card for *Corynebacterium* species was 80% to 100% [29]. The Microscan system (Beckman Coulter, Brea, CA, USA) and BD Phoenix system (Becton Dickinson, Franklin Lakes, NJ, USA) also are commercially available for *Corynebacterium* identification.

The reliable identification techniques include matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and 16S rRNA sequencing. MALDI-TOF MS, which is based on the protein composition of microorganisms, has been used in clinical laboratories to identify *Corynebacterium* species. Vila et al. reported that MALDI-TOF MS analysis is a rapid and consistent system for identification of *Corynebacterium* at the species level within 15 min [30]. Rong Bao et al. reported the MALDI-TOF identification rate for *Corynebacterium* as 92% compared with *rpoB* gene sequencing [31]. Other studies showed similar identification rates, ranging from 92.3% to 100% [32-35]. Therefore, MALDI-TOF may be a more useful diagnostic method than biochemical assay and can be a primary identification tool.

Various molecular methods have been applied for identification of *Corynebacterium* species, including 16S rRNA sequencing, *rpoB* gene sequencing, and restriction fragment-length polymorphism (RFLP), DNA-DNA hybridization, and real-time polymerase chain reaction (PCR). Because the 16S rRNA gene of *Corynebacterium* shows low intra-genus polymorphism, nearly complete 16S rRNA sequencing (approximately 1,500 bp) is required to identify to the species level. The *Rpo B* gene also can be used to discriminate *Corynebacterium* species. Khamis reported that the *rpoB* gene is polymorphic enough to identify *Corynebacterium* species [36]. Alibi et al. suggested PCR restriction analysis using the *rpoB* gene to differentiate *C. striatum* from other *Corynebacterium* species [32]. We do not need to use these molecular methods as routine tests, but they can be used as a confirmatory tool when we need to check the final results because of an inappropriate phenotypic method.

3. Antimicrobial Susceptibility Test and Resistance

The Clinical and Laboratory Standards Institute (CLSI) published “Methods for antimicrobial dilution and disk susceptibility testing of infrequently isolated or fastidious bacteria; Approved Guideline M45-A” in 2006. This guideline provides the information and interpretive criteria for broth microdilution susceptibility testing of *Corynebacterium* species. However, there are no interpretive criteria for disk diffusion testing. The testing conditions require lysed horse blood-supplemented Mueller-Hinton broth for adequate growth. Moreover, the medium should contain calcium 50 µg/mL for testing of daptomycin. The antimicrobial agents used are as follows: penicillin, cefotaxime (cefepime, ceftriaxone), imipenem (meropenem), vancomycin, daptomycin, gentamicin, erythromycin, ciprofloxacin, doxycycline (tetracycline), clindamycin, trimethoprim-sulfamethoxazole, quinupristin-dalfopristin, and linezolid. The interpretive criteria for penicillin and erythromycin are estimated from the minimum inhibitory concentrations (MICs) of *Corynebacterium* species. However, the interpretive criteria for cephalosporin, linezolid, and others are adapted from those for *Streptococcus*, *Enterococcus*, and *Staphylococcus* species published in CLSI document M100. The European Committee on Antimicrobial Susceptibility Testing (EUCAST) provides a breakpoint table for interpretation of MICs and zone diameters for *Corynebacterium* species. Unlike CLSI, EUCAST includes the interpretive criteria for the disk diffusion method. The medium should have 5% defibrinated horse blood and beta-NAD 20 mg/L. The antimicrobial agents tested are benzylpenicillin, ciprofloxacin (moxifloxacin), gentamicin, vancomycin, clindamycin, tetracycline, linezolid, and rifampicin. It is not easy to perform routine antimicrobial susceptibility testing of *C. striatum* in the clinical laboratory because there is no commercial kit, and growth requires a special medium including horse blood.

Previous reports revealed that *C. striatum* generally is susceptible to several antimicrobial agents, including penicillin, cefazolin, imipenem, and vancomycin [28,37]. However, many more recent articles found an increase in multidrug resistance [21,23,38]. In Korea, Yoo et al. described bacteremia caused by multidrug-resistant *C. striatum* [39].

In 2006, *C. striatum* strains in Japan were all susceptible to vancomycin but showed high-level resistance to erythromycin, tetracycline, rifampin, and ciprofloxacin [40]. In one report from Brazil, 87% of *C. striatum* were resistant to most antimicrobial agents except vancomycin, linezolid, and tetracycline [41]. Vancomycin was consistently effective in most previous reports of *C. striatum* testing.

Daptomycin can be considered to treat gram-positive pathogens. Several reports show that *Corynebacterium* infections can be treated

with daptomycin, for which the MICs are low [42,43]. However, daptomycin-resistant *C. striatum* is discussed in the literature [43,44]. Van Hal et al. reported that daptomycin resistance is highly correlated with higher MICs for vancomycin in *S. aureus* because cell-wall thickening can alter the charge of the outer membrane, which reduces daptomycin passage through the cell membrane [45]. However, others found no structural difference between daptomycin-susceptible and -resistant *Corynebacterium* strains [44,46]. McElvania TeKippe et al. [43] revealed a very interesting finding concerning daptomycin resistance. They demonstrated the acquisition of high-level resistance when the daptomycin-susceptible isolates were incubated with the drug. This implies the possibility of acquisition of daptomycin resistance in patients treated for a long time with the drug.

The other agent employed to treat *C. striatum* infection is linezolid because there have been no reports of resistance for *Corynebacterium* species. However, this drug carries a 34% to 80% rate of adverse effects that result in discontinuation of administration during long courses [47].

Ceftaroline has been explored for uncommon gram-positive pathogens, including *C. striatum* [48,49]. The efficacy was variable for *C. striatum* and other *Corynebacterium* species. On the other hand, McMullen et al. reported that *C. striatum* is nearly universally resistant to ceftaroline, although the extent of resistance is variable. They presumed that the resistance is attributable to the modification of penicillin-binding protein and concluded that ceftaroline is not adequate to use as a treatment. McMullen et al. [35] tested the activity of telavancin and revealed achievable MICs for *C. striatum* treatment.

CONCLUSION

Corynebacterium striatum is part of the normal flora of the skin and mucous membranes in humans. However, it can have pathogenicity in both immunocompromised and immunocompetent hosts. *C. striatum* has been associated with diverse infections and nosocomial outbreaks including skin infection, respiratory infection, and severe invasive infections. In addition, *C. striatum* is resistant to many antimicrobial treatments. We should identify *C. striatum* correctly to the species level and survey the antimicrobial susceptibility results regularly to monitor its resistance.

CONFLICTS OF INTEREST

The authors have no financial conflicts of interest.

ACKNOWLEDGEMENT

This work was supported by the BioNano Health-Guard Research Center funded by the Ministry of Science, ICT, and Future Planning (MSIP) of Korea as a Global Frontier Project (Grant Number H-GUARD_2014M3A6B2060509).

REFERENCES

- Qin L, Sakai Y, Bao R, Xie H, Masunaga K, Miura M, et al. Characteristics of Multidrug-Resistant *Corynebacterium* spp. Isolated from Blood Cultures of Hospitalized Patients in Japan. *Jpn J Infect Dis* 2017;70:152-7.
- Severo CB, Guazzelli LS, Barra MB, Hochhegger B, Severo LC. Multiple pulmonary nodules caused by *Corynebacterium striatum* in an immunocompetent patient. *Rev Inst Med Trop Sao Paulo* 2014;56:89-91.
- Bowstead TT and Santiago SM. Pleuropulmonary infection due to *Corynebacterium striatum*. *Br J Dis Chest* 1980;74:198-200.
- Renom F, Gomila M, Garau M, Gallegos MD, Guerrero D, Lalucat J, et al. Respiratory infection by *Corynebacterium striatum*: epidemiological and clinical determinants. *New Microbes New Infect* 2014;2:106-14.
- Hong HL, Koh HI, Lee AJ. Native Valve Endocarditis due to *Corynebacterium striatum* confirmed by 16S Ribosomal RNA Sequencing: A Case Report and Literature Review. *Infect Chemother* 2016; 48:239-45.
- Xu J, Yang Q, Li J, Zheng X. The left atrial bacterial vegetative mass due to *Corynebacterium striatum* as a presentation of myxoma: a case report. *BMC Infect Dis* 2017;17:368.
- Molina Collada J, Rico Nieto A, Diaz de Bustamante Ussia M, Balsa Criado A. Septic arthritis in a native knee due to *Corynebacterium striatum*. *Reumatol Clin* 2017.
- Martin MC, Melon O, Celada MM, Alvarez J, Mendez FJ, Vazquez F. Septicaemia due to *Corynebacterium striatum*: molecular confirmation of entry via the skin. *J Med Microbiol* 2003;52:599-602.
- Saito S, Kawamura I, Tsukahara M, Uemura K, Ohkusu K, Kurai H. Cellulitis and Bacteremia due to *Corynebacterium striatum* Identified by Matrix-assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry. *Intern Med* 2016;55:1203-5.
- Daisuke U, Oishi T, Yamane K, Terada K. *Corynebacterium striatum* Bacteremia Associated with a Catheter-Related Blood Stream Infection. *Case Rep Infect Dis* 2017;2017:2682149.
- Sholhui Park H-SC, Eui Kyo Seo, Yeung Chul Mun, Miae Lee. Two cases of medical device-related *corynebacterium striatum* infec- tion: a meningitis and a sepsis. *Ann Clin Microbiol* 2016;19:28-31.
- Weiss K, Labbe AC, Laverdiere M. *Corynebacterium striatum* meningitis: case report and review of an increasingly important *Corynebacterium* species. *Clin Infect Dis* 1996;23:1246-8.
- Kolios AGA, Cozzio A, Zinkernagel AS, French LE, Kundig TM. Cutaneous *Corynebacterium* Infection Presenting with Disseminated Skin Nodules and Ulceration. *Case Rep Dermatol* 2017;9:8-12.
- Fernandez-Ayala M, Nan DN, Farinas MC. Vertebral osteomyelitis due to *Corynebacterium striatum*. *Am J Med* 2001;111:167.
- Yamamoto T, Kenzaka T, Mizuki S, Nakashima Y, Kou H, Maruo M, et al. An extremely rare case of tubo-ovarian abscesses involving *corynebacterium striatum* as causative agent. *BMC Infect Dis* 2016; 16:527.
- Biswal I, Mohapatra S, Deb M, Dawar R, Gaind R. *Corynebacterium striatum*: an emerging nosocomial pathogen in a case of laryngeal carcinoma. *Indian J Med Microbiol* 2014;32:323-4.
- Belmares J, Detterline S, Pak JB, Parada JP. *Corynebacterium endocarditis* species-specific risk factors and outcomes. *BMC Infect Dis* 2007;7:4.
- Wong KY, Chan YC, Wong CY. *Corynebacterium striatum* as an emerging pathogen. *J Hosp Infect* 2010;76:371-2.
- Leal SM, Jr., Jones M, Gilligan PH. Clinical Significance of Commensal Gram-Positive Rods Routinely Isolated from Patient Samples. *J Clin Microbiol* 2016;54:2928-36.
- Renom F, Garau M, Rubi M, Ramis F, Galmes A, Soriano JB. Nosocomial outbreak of *Corynebacterium striatum* infection in patients with chronic obstructive pulmonary disease. *J Clin Microbiol* 2007; 45:2064-7.
- Verroken A, Bauraing C, Deplano A, Bogaerts P, Huang D, Wauters G, et al. Epidemiological investigation of a nosocomial outbreak of multidrug-resistant *Corynebacterium striatum* at one Belgian university hospital. *Clin Microbiol Infect* 2014;20:44-50.
- Brandenburg AH, van Belkum A, van Pelt C, Bruining HA, Mouton JW, Verbrugh HA. Patient-to-patient spread of a single strain of *Corynebacterium striatum* causing infections in a surgical intensive care unit. *J Clin Microbiol* 1996;34:2089-94.
- Hahn WO, Werth BJ, Butler-Wu SM, Rakita RM. Multidrug-Resistant *Corynebacterium striatum* Associated with Increased Use of Parenteral Antimicrobial Drugs. *Emerg Infect Dis* 2016;22.
- Watkins DA, Chahine A, Creger RJ, Jacobs MR, Lazarus HM. *Corynebacterium striatum*: a diphtheroid with pathogenic potential. *Clin Infect Dis* 1993;17:21-5.
- Cone LA, Curry N, Wuesthoff MA, O'Connell SJ, Feller JF. Septic synovitis and arthritis due to *Corynebacterium striatum* following

an accidental scalpel injury. *Clin Infect Dis* 1998;27:1532-3.

26. Oliva A, Belvisi V, Iannetta M, Andreoni C, Mascellino MT, Lichtenber M, et al. Pacemaker lead endocarditis due to multidrug-resistant *Corynebacterium striatum* detected with sonication of the device. *J Clin Microbiol* 2010;48:4669-71.
27. Boltin D, Katzir M, Bugoslavsky V, Yalashvili I, Brosh-Nissimov T, Fried M, et al. *Corynebacterium striatum*--a classic pathogen eluding diagnosis. *Eur J Intern Med* 2009;20:e49-52.
28. Martinez-Martinez L, Suarez AI, Rodriguez-Bano J, Bernard K, Muniain MA. Clinical significance of *Corynebacterium striatum* isolated from human samples. *Clin Microbiol Infect* 1997;3:634-9.
29. Rennie RP, Brosnikoff C, Turnbull L, Reller LB, Mirrett S, Janda W, et al. Multicenter evaluation of the Vitek 2 anaerobe and *Corynebacterium* identification card. *J Clin Microbiol* 2008;46:2646-51.
30. Vila J, Juiz P, Salas C, Almela M, de la Fuente CG, Zboromyska Y, et al. Identification of clinically relevant *Corynebacterium* spp., *Aracanobacterium haemolyticum*, and *Rhodococcus equi* by matrix-assisted laser desorption ionization-time of flight mass spectrometry. *J Clin Microbiol* 2012;50:1745-7.
31. Bao R, Gao X, Hu B, Zhou Z. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry: a powerful tool for identification of *Corynebacterium* species. *J Thorac Dis* 2017;9:3239-45.
32. Sana Alibi AF, Manel Marzouk, Jalel Boukadida. Identification of Clinical *Corynebacterium striatum* Strains by PCR-Restriction Analysis Using the RNA Polymerase β -subunit gene(rpb). *J Bacteriol Parasitol* 2015;6.
33. Theel ES, Schmitt BH, Hall L, Cunningham SA, Walchak RC, Patel R, et al. Formic acid-based direct, on-plate testing of yeast and *Corynebacterium* species by Bruker Biotyper matrix-assisted laser desorption ionization-time of flight mass spectrometry. *J Clin Microbiol* 2012;50:3093-5.
34. Suwantarat N, Weik C, Romagnoli M, Ellis BC, Kwiatkowski N, Carroll KC. Practical Utility and Accuracy of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Identification of *Corynebacterium* Species and Other Medically Relevant Coryneform-Like Bacteria. *Am J Clin Pathol* 2016;145:22-8.
35. McMullen AR, Anderson N, Wallace MA, Shupe A, Burnham CA. When Good Bugs Go Bad: Epidemiology and Antimicrobial Resistance Profiles of *Corynebacterium striatum*, an Emerging Multidrug-Resistant, Opportunistic Pathogen. *Antimicrob Agents Chemother* 2017;61.
36. Khamis A, Raoult D, La Scola B. Comparison between rpoB and 16S rRNA gene sequencing for molecular identification of 168 clinical isolates of *Corynebacterium*. *J Clin Microbiol* 2005;43:1934-6.
37. Martinez-Martinez L, Pascual A, Bernard K, Suarez AI. Antimicrobial susceptibility pattern of *Corynebacterium striatum*. *Antimicrob Agents Chemother* 1996;40:2671-2.
38. Werth BJ, Hahn WO, Butler-Wu SM, Rakita RM. Emergence of High-Level Daptomycin Resistance in *Corynebacterium striatum* in Two Patients with Left Ventricular Assist Device Infections. *Microb Drug Resist* 2016;22:233-7.
39. Yoo G, Kim J, Uh Y, Lee HG, Hwang GY, Yoon KJ. Multidrug-Resistant *Corynebacterium striatum* Bacteremia: First Case in Korea. *Ann Lab Med* 2015;35:472-3.
40. Otsuka Y, Ohkusu K, Kawamura Y, Baba S, Ezaki T, Kimura S. Emergence of multidrug-resistant *Corynebacterium striatum* as a nosocomial pathogen in long-term hospitalized patients with underlying diseases. *Diagn Microbiol Infect Dis* 2006;54:109-14.
41. Baio PV, Mota HF, Freitas AD, Gomes DL, Ramos JN, Sant'Anna LO, et al. Clonal multidrug-resistant *Corynebacterium striatum* within a nosocomial environment, Rio de Janeiro, Brazil. *Mem Inst Oswaldo Cruz* 2013;108:23-9.
42. Fernandez Guerrero ML, Molins A, Rey M, Romero J, Gadea I. Multidrug-resistant *Corynebacterium striatum* endocarditis successfully treated with daptomycin. *Int J Antimicrob Agents* 2012;40:373-4.
43. McElvania TeKippe E, Thomas BS, Ewald GA, Lawrence SJ, Burnham CA. Rapid emergence of daptomycin resistance in clinical isolates of *Corynebacterium striatum*... a cautionary tale. *Eur J Clin Microbiol Infect Dis* 2014;33:2199-205.
44. Tran TT, Jaijakul S, Lewis CT, Diaz L, Panesso D, Kaplan HB, et al. Native valve endocarditis caused by *Corynebacterium striatum* with heterogeneous high-level daptomycin resistance: collateral damage from daptomycin therapy? *Antimicrob Agents Chemother* 2012;56:3461-4.
45. van Hal SJ, Paterson DL, Gosbell IB. Emergence of daptomycin resistance following vancomycin-unresponsive *Staphylococcus aureus* bacteraemia in a daptomycin-naive patient--a review of the literature. *Eur J Clin Microbiol Infect Dis* 2011;30:603-10.
46. Montero CI, Stock F, Murray PR. Mechanisms of resistance to daptomycin in *Enterococcus faecium*. *Antimicrob Agents Chemother* 2008;52:1167-70.
47. Tang S, Yao L, Hao X, Zhang X, Liu G, Liu X, et al. Efficacy, safety and tolerability of linezolid for the treatment of XDR-TB: a study in China. *Eur Respir J* 2015;45:161-70.
48. Sader HS, Jones RN, Stilwell MG, Flamm RK. Ceftaroline activity tested against uncommonly isolated Gram-positive pathogens: report from the SENTRY Antimicrobial Surveillance Program (2008-2010). *Antimicrob Agents Chemother* 2012;56:107-13.

2011). Int J Antimicrob Agents 2014;43:284-6.

49. Goldstein EJ, Citron DM, Merriam CV, Tyrrell KL. Comparative in vitro activity of ceftaroline, ceftaroline-avibactam, and other antimicrobial agents against aerobic and anaerobic bacteria cultured from infected diabetic foot wounds. Diagn Microbiol Infect Dis 2013;76:347-51.