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 Acinetobacter is an important opportunistic, multidrug resistant pathogen causing majority 

of nosocomial infections worldwide. The multidrug resistance is attributed by a plethora of 

efflux pumps and the overexpression of the same mediates export of antimicrobial agents. 

Quorum sensing (QS) is the cell-to-cell communication system in which bacteria produces 

specific signaling molecules which are transported out to the surrounding environment to 

communicate with other bacterial cells. It has been noticed that multidrug efflux pumps like 

resistance-nodulation-cell division (RND) efflux pumps play an important role in QS by 

exporting these signaling molecules. This review discusses various RND efflux pumps and 

the current understanding of the interrelationship of RND efflux pumps and QS in 

Acinetobacter spp. Studies demonstrate that RND efflux pumps could be considered as 

potential targets to block QS thereby reducing pathogenesis and antibiotic resistance. The 

known RND efflux pump-mediated quorum quenching strategies for Acinetobacter and 

other bacterial strains are discussed in detail. Finally, the prospective quorum quenching 

strategies targeting the transcriptional regulators of RND efflux pumps to inhibit multidrug 

efflux pumps are addressed. 
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INTRODUCTION

Nowadays, the applicability of antibiotics is undermined by the evolution of 

multidrug resistant bacteria. Bacteria has developed various resistance strategies 

to fight against antibiotic stress and the most known ones are modification of the 

antibiotic by hydrolysis, acetylation or adenylation of the specific drugs, 

phosphorylation, modification of the antibiotic target by mutation or methylation, 

isolating the toxic compound by non-essential proteins in the cell or altering the 

membrane permeability of drugs (1). The pathogenic bacteria can transfer the 

resistant determinants to other organisms by horizontal gene transfer as many of 

these resistant gene elements are located on plasmids, transposons and integrons 

(2, 3). The first line of defense for many bacteria is to prevent the entry of toxic 

compounds via the cell membrane. Though the cell membrane of bacteria acts as 

an effective barrier to prevent the entry of many toxic compounds because of its 

amphipathic nature, the compounds may find their way into cells through pores

and porins in the outer membrane (4). Thus, the downregulation of the expression

of porins is an effective way to block the entry of toxic compounds into the cells (4).
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In addition, bacteria express a plethora of multidrug efflux pumps and the overexpression of these pumps alone is enough to 

cause multidrug resistance (MDR), without additional resistance factors (5).  

 

Multidrug efflux pumps are classified in six families; major facilitator superfamily (MFS), small multidrug resistance family 

(SMR), ATP-binding cassette superfamily (ABC), multidrug and toxic compound extrusion family (MATE), proteobacterial 

antimicrobial compound extrusion family (PACE) and resistance-nodulation-division superfamily (RND) (5). The SMR, MATE 

and MFS families form the main efflux pump systems in Gram-positive bacteria, while RND efflux pumps are widely 

distributed in Gram-negative bacteria. Depending on the specific family the efflux pumps belong to, they can be either single 

component transporters or multicomponent systems with an inner membrane transporter, outer membrane channel and a 

periplasmic protein, such as RND efflux pumps (6). The RND pumps are majorly associated with clinically relevant antibiotic 

resistance, such as AcrAB-TolC efflux pump of Escherichia coli (E. coli) and Salmonella enterica serovar Typhimurium (S. 

typhimurium) and MexAB-OprM of Pseudomonas aeruginosa (P. aeruginosa) (7). Just like other RND efflux pumps, 

AcrAB-TolC efflux pumps are tripartite efflux pumps having three components, a transporter (efflux) protein, AcrB in the 

inner membrane, an outer membrane protein channel, TolC and a periplasmic accessory protein, AcrA (8). The RND efflux 

pumps are usually expressed at a basal expression level in bacteria which helps them to survive in the presence of toxic 

compounds (9). The AcrAB efflux pump is reported to recognize and transport a wide range of structurally unrelated 

compounds including antibiotics, bile salts, dyes and detergents (10). The substrate profile of AcrAB-TolC efflux pump of E. 

coli includes chloramphenicol, lipophilic β-lactams, fluoroquinolones, tetracycline, rifampin, novobiocin, fusidic acid, nalidixic 

acid, ethidium bromide, acriflavine, bile salts, short-chain fatty acids, SDS, Triton X-100, and triclosan (11-15). 

 

Apart from their involvement in antibiotic resistance, RND efflux pumps are reported to play a role in bacterial pathogenicity 

by contributing to colonization and persistence of bacteria in their ecological niche (9). These efflux pumps extrude various 

host-derived antimicrobial compounds such as bile salts, fatty acids and detergents promoting the adaptation and survival of 

the bacterium in their ecological and physiological niches (16). The efflux of bile salts via AcrAB efflux pumps or its homologs 

has been reported in E. coli, P. aeruginosa, Neisseria gonorrhoeae (N. gonorrhoeae) and S. typhimurium (16-20). The 

defective mutations in these efflux pumps caused reduced virulence in several pathogens. In S. typhimurium, the inactivation 

of acrAB impaired intestinal colonization in murine model, indicating that the AcrAB efflux pump is required for full virulence 

(21). In addition, Buckley et al. reported that acrB and tolC gene mutants colonize poorly in the avian gut, pointing that 

AcrAB-TolC system is essential for colonization of S. typhimurium in chickens (22). Similarly, In N. gonorrhoeae, a bacterial 

pathogen of the human genital mucosae, the deletion of mtrD or mtrE gene, the product of which constitutes the MtrCDE 

efflux system lead to poor bacterial colonization in genito-urinary tract of female mice (23). The CmeABC efflux pump of 

Campylobacter jejuni confers resistance to a wide range of antimicrobials and the functional inhibition of this efflux pump 

could prevent bacterial host colonization (24). Recently, the role of AcrAB-TolC in virulence has also been reported in 

Klebsiella pneumoniae and Enterobacter cloacae in which the efflux pump defective mutants displayed reduced capability to 

infect mouse model (25, 26). In P. aeruginosa, the mutant lacking the MexAB-OprM, a homolog of AcrAB-TolC couldn’t 

invade Madin–Darby canine kidney (MDCK) cells and it was suggested that the MexAB-OprM efflux system could export 

virulent determinants important for bacterial pathogenesis (27). The tolC mutant of S. typhimurium poorly adhered to both 

human embryonic intestinal cells and mouse monocyte macrophages, showing that the efflux pump system has a role in 

mediating bacterial adherence (22).  

 

In addition to their direct role in bacterial pathogenesis, the efflux pumps affect bacterial virulence in a more indirect manner 

by altering the cell to cell communication (quorum sensing, QS) response in bacteria. QS is mediated by the release of 

chemical signaling molecules called autoinducers which are synthesized in vivo and needs to be transported across the cell 

membrane. The first report of autoinducers as substrate of RND family efflux pumps was made in studies of P. aeruginosa, in 

which the QS signals, acyl homoserine lactones (AHLs) are exported out by MexAB-OprM system (28, 29). P. aeruginosa 

overexpressing Mex pumps displayed reduced virulence due to the increased efflux of AHLs and the inability of the cells to 

accumulate QS signals. In addition, the overexpression of MexCD-OprJ and MexEF-OpRN are associated with the reduced 

expression of genes encoding type III secretion in P. aeruginosa (30). In E. coli, the overexpression of the QS regulator SdiA 
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lead to the overexpression of AcrAB efflux pump, suggesting a potential role of this pump in QS (31). In this review, we focus 

on the RND efflux pump systems in the nosocomial pathogen, Acinetobacter spp. with special emphasis on their role in QS. 

In addition, we discuss the current state of knowledge on quorum quenching strategies by inhibiting the RND efflux pumps 

and future perspectives to effectively tackle this nosocomial pathogen.  

RND efflux pump systems in Acinetobacter spp 

In Acinetobacter baumannii (A. baumannii), three RND efflux systems, AdeABC (32), AdeFGH (33), and AdeIJK (34) are 

reported to be primarily associated with MDR. AdeABC is the first characterized RND efflux pump in A. baumannii and is 

comprised of the major fusion protein AdeA, a multidrug transporter AdeB, and the outer membrane factor OMF (32). The 

AdeA and AdeB shares similarity to AcrA (55%) and MexA (58%) and to AcrB (68%) and MexB (67%), respectively, of E. 

coli and P. aeruginosa. The expression of AdeABC is under the tight control of the two-component regulatory system 

AdeR-AdeS, encoded by adeRS operon located upstream of adeABC operon (35). AdeS is a sensor kinase which monitors 

the environmental conditions and activates or inactivates the response regulator, AdeR which regulates the expression of the 

efflux pump (35). In addition, the AdeABC and AdeIJK RND pumps are indirectly regulated by the two-component regulatory 

system BaeSR in A. baumannii (36, 37). The AdeABC efflux system is not expressed in natural isolates of A. baumannii and 

the overexpression of the pump confers MDR by extruding aminoglycosides, β-lactams, fluoroquinolones, tetracyclines, 

tigecycline, macrolides, chloramphenicol, and trimethoprim (32). The AdeFGH efflux pump, encoded by the adeFGH operon 

provides high-level resistance to fluoroquinolones, chloramphenicol, trimethoprim, and clindamycin and decreased 

susceptibility to tetracyclines, tigecycline, and sulfamethoxazole without affecting β-lactams and aminoglycosides (33). As in 

the case AdeABC efflux pump, AdeFGH pump is also not constitutively expressed in wild type strains. A putative LysR-type 

transcriptional regulator, named AdeL, encoded by adeL located upstream of the adeFGH operon controls the expression of 

the AdeFGH efflux pump in A. baumannii (33). The AdeIJK efflux pump, encoded by the adeIJK operon is specific for the 

species (38, 39) where it confers intrinsic resistance to β-lactams, such as ticarcillin, cephalosporins, and aztreonam, 

fluoroquinolones, tetracyclines, tigecycline, lincosamides, rifampin, chloramphenicol, cotrimoxazole, novobiocin, and fusidic 

acid (34). It has been noticed that AdeIJK acts in a synergistic fashion with AdeABC to export compounds such as tigecycline 

(34). The AdeXYZ efflux pump, encoded by the adeXYZ has 97% identity with AdeIJK (34) and is found in Acinetobacter 

GDG3, Acinetobacter GDG13TU and Acinetobacter GDG 17 (40). However, the functional aspect of this efflux pump with 

respect to antimicrobial resistance has not well understood. Another efflux pump system, AdeDE confers resistance to 

aminoglycosides, fluoroquinolones, erythromycin, tetracycline and chloramphenicol in Acinetobacter spp. belonging to 

Acinetobacter genomic DNA group 3 (41). AdeDE is encoded by the membrane fusion protein gene, adeD and the RND 

transporter gene, adeE, and the outer membrane protein of AdeDE has not been identified. 

Quorum sensing in Acinetobacter spp 

Quorum sensing is the regulatory mechanism by which bacterial cells communicate each other producing signaling 

molecules called autoinducers. At a specific density in the environment, the autoinducers specifically bind to transcriptional 

regulators thereby altering the expression of various genes in a population (42). It has been known that QS plays a major role 

in the production of virulence factors, motility, nodulation, plasmid transfer, antibiotic production, bioemulsion production, 

bioluminescence and biofilm formation (43-45).  

 

A. baumannii has one QS system which is mediated by the two-component system, AbaI/AbaR which is homologous to the 

typical LuxI/LuxR system in E. coli. AbaI is the autoinducer synthase that synthesizes AHLs, the signaling molecules which 

interact directly with the AbaR and this complex binds to specific promoter sequences (lux-box) regulating the expression of 

QS target genes (46). It has been reported that AbaI is responsible for the production of N-(3-hydroxydodecanoyl)-L-HSL 

(3-hydroxy-C12-HSL) in A. baumannii strain M2 (46). The complete genome analysis of A. baumannii ATCC 17978 
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suggested that the autoinducer synthase AbaI and acyltransferase are the sole enzymes responsible for the synthesis of AHLs 

of varying chain lengths by this organism (46). The comparative analysis of the autoinducer synthase from Gram negative 

bacteria revealed that AbaI is 45% identical to the autoinducer synthases from environemental isolates such as 

Halothiobacillus neapolitanus, Acidithiobacillus ferrooxidans ATCC 23270, Thiobacillus ferrooxidans, Pseudomonas spp. 

(pmr), Ralstonia solanacearum and Burkholderia ambifaria MC40-6 and 47% identical to the one from Pseudomonas spp. 

RW10S (47). The communication among bacterial cells depending on the cell density plays a crucial role in the maturation of 

biofilms (46, 48). In A. baumannii, mutation in abaI which is responsible for the production of AHLs lead to 30-40% 

reduction in biofilm formation compared to the parental strain (49). In addition, Niu et al. revealed that the exogenous 

addition of AHLs restored the biofilm maturation in abaI mutant of A. baumannii M2 (46). In a different study, the 

supplementation of AHL exogenously produced biofilm in a biofilm-negative clinical isolate of Acinetobacter (50). Recently, a 

homologue of the AbaI/AbaR system, referred as AnoI/AnoR was characterized  in A. nosocomialis (51). The AnoI/AnoR 

system shares 94% identity with the AbaI/AbaR of A. baumannii. The A. nosocomialis strain produces N-(3-hydroxy- 

dodecanoyl)-L-homoserine lactone (OH-dDHL) as the signaling molecule and the anoI mutant was not able to synthesize 

OH-dDHL pointing that AnoI is important for the production of AHLs (51). In addition, the expression of anoI was 

derepressed in the anoR mutant, suggesting the role of AnoR as activator of anoI in A. noscomialis. The deletion of anoR 

contributed to impaired biofilm formation and surface motility and the complementation of anoR in the anoR deletion 

mutant restored both the characteristics to that of wild type, indicating that AnoR is important for biofilm formation and 

motility (51). 

 

It has been known that 63% of Acinetobacter strains identified so far produce more than one AHL (52). Though majority of 

the A. baumannii clinical isolates produce more than six AHLs, only one type is detected abundantly among them (50). Also, 

the AHL production is dependent on the culture conditions and four AHLs were identified when grown on minimal media 

and three when grown on minimal media with 0.1% tryptone in A. calcoaceticus BD413 (53). It is interesting to see that 

although multiple AHLs have been identified in Acinetobacter, only one autoinducer synthase is identified so far (46). Thus, it 

can be assumed that the AHL synthase has low specificity and it might be producing other AHLs as well. The quorum sensing 

signals are not homogenously distributed in Acinetobacter strains and thus it is difficult to distinguish the virulent and 

non-virulent strains based on the type of AHLs (52). However, one particular sensor, the Rf1-type sensor is widely distributed 

in strains belonging to A. calcoaceticus - A.baumannii complex (52). 

Interrelationship of RND efflux pumps and quorum sensing in Acinetobacter spp 

The QS system is mediated by the synthesis of signaling molecules and these molecules need to be exported into the 

surrounding media either by diffusion or active efflux (48). The AHLs vary in their carbon chain length and the short chain 

AHLs (4-8 carbon atoms) can easily diffuse through the cell membrane while the long chain AHLs (10-12 carbon atoms) 

need active transport across the membrane (48). The secretion of quorum sensing signals has been associated with 

multidrug efflux pumps (54, 55).  In A. baumannii, the AHLs are exported into the extracellular environment through the 

AdeFGH efflux pump and the increase in concentration of AHLs in the extracellular environment accelerates the entry of 

AHLs into the intracellular environment to form AbaR-AHL complexes (54). The AHLs exported out are sensed by nearby A. 

baumannii cells and the increased interaction between cells through AHLs results in the acceleration of biofilm formation. In 

another study, the overexpression of AdeABC efflux pump in A. baumannii displayed increased biofilm formation and 

virulence phenotype though very little is known on various genes associated with mechanisms related to QS in this 

nosocomial pathogen (56). In a clinical isolate of A. baumannii strain S, the expression of multidrug efflux pump genes adeA 

and adeB were induced by the production of AHLs (57). The loss of AHL production in the mutant strain lead to the 

decreased mRNA expression level of these efflux pump genes while the addition of AHLs restored their expression. Thus, it 

can be hypothesized that the AHL-mediated induction of AdeA and AdeB expression might be contributing to multidrug 

resistance in A. baumannii. Similarly, in a recent study, it was reported that the expression of acrA and acrB efflux pump 

genes encoding the AcrAB multidrug efflux system in A. nosocomialis is downregulated in the absence of the quorum 
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It has been reported that metallic nanoparticles represent a potential candidate to block multidrug efflux pumps in bacteria 

(67). In Staphylococcus aureus (S. aureus), zinc oxide nanoparticles displayed inhibitory role on efflux pumps (67). Similarly, 

the synergistic use of polyacrylic acid-coated iron oxide (magnetite) nanoparticles (PAA-MNP) with rifampicin against 

Mycobacterium smegmatis resulted in four-fold higher growth inhibition than that of rifampicin alone (68). Christena et al. 

reported the applicability of copper nanoparticles as efflux pump inhibitors in S. aureus and P. aeruginosa (69). The above 

studies prove the potential of nanoparticles as multidrug efflux pump inhibitors and the utility of these nanoparticles as efflux 

pump inhibitors could be investigated in Acinetobacter spp. as well. In addition, trifluoromethyl ketones (TFs) are reported to 

inhibit the QS response through their inhibition of efflux pumps in Chromobacterium violaceum 026 and E. coli (70). Since 

TFs inhibit efflux systems and QS, and also have significant antibacterial property, they could be exploited to treat infections 

that rely on QS and efflux-pump mediated multidrug-resistant phenotypes like Acinetobacter infections. 

Apart from targeting the multidrug efflux pumps directly as a quorum quenching strategy, the efflux pump-mediated QS 

could also be inhibited indirectly by targeting the transctriptional regulators which controls the efflux pump expression (Fig. 

1). In A. baumannii, the overexpression of the AdeABC efflux pump is mediated by the regulator AdeR (71). Also, the 

AdeABC and AdeIJK pumps are positively regulated by the BaeSR regulon in A. baumannii (36). Thus, the modulators which 

target AdeR or BaeR would be a promising tool to regulate the expression of the corresponding multidrug efflux pumps in A. 

nosocomialis. In Yersinia enterocolitica, the AcrAB-TolC efflux pump is positively regulated by the regulator protein, OmpR 

(72). In our lab, in silico analysis and the electrophoretic mobility shift assay revealed that OmpR can bind to the acrAB 

promoter region in A. nosocomialis, suggesting that OmpR might be controlling the expression of AcrAB efflux pump (data 

not published). However, further studies are of importance to elucidate the regulatory mechanism of OmpR in controlling 

the expression of AcrAB efflux pump in A. nosocomialis. In addition, screening for potential inhibitors of OmpR would be a 

desirable strategy to regulate the expression of OmpR thereby controlling the AcrAB efflux pump-mediated QS in A. 

nosocomialis.  

CONCLUSION 

Significant advances have been made in elucidating the functional aspects of various RND multidrug efflux pumps in 

Acinetobacter spp. RND efflux pumps are associated with MDR in Acinetobacter strains by extruding out antibiotics. Apart 

from this, these efflux pumps play an important role in the efflux of QS biomolecules thereby increasing bacterial virulence 

and biofilm formation. Thus, the inhibition of the RND efflux pumps would be a potential strategy to disrupt QS and to 

reduce the severity of infections. It is worth noticing that there are some promising RND efflux pump inhibitors like 

nanoparticles reported in other bacterial strains and the efficacy of the same could be tested in Acinetobacter as well. In 

addition, targeting the regulators of RND efflux pumps to inhibit multidrug efflux pumps would serve as a promising 

prospective quorum quenching strategy. Further studies are desired in this direction to completely understand the 

mechanism of transcriptional regulation of various efflux pumps and to screen the modulators of these regulators. The 

inhibition of RND efflux pumps not only increases the sensitity of bacterial cells to antimicrobial agents but also blocks the QS 

system thereby reducing pathogenesis. Thus, the studies which focus on screening new biomolecules targeting 

transcriptional regulators of multidrug efflux pumps would provide new therapeutic options to effectively control 

Acinetobacter infections. 
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