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Antimicrobial resistance in bacteria is problematic in clinical settings and is a growing threat to public health. 
Multidrug-resistant and pandrug-resistant non-fermenters such as Acinetobacter spp. and Pseudomonas aeruginosa have 

recently emerged as a great concern worldwide. Particularly, the prevalence of carbapenem resistance in Acinetobacter 

spp. and P. aeruginosa is problematic, and emergence of polymyxin resistance is ominous. In this review, we discuss 
carbapenem and polymyxin resistance in Acinetobacter spp. and P. aeruginosa isolates and their major clones. 
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Acinetobacter is a Gram-negative coccobacillus, although 

this morphology is very dependent on its growth phase (1, 2). 

Originally viewed as a commensal with low virulence in the 

1970s, it was often ignored in clinical setting (3). However, 

Acinetobacter spp. have emerged as one of the major causal 

agents of nosocomial infections associated with significant 

morbidity and mortality, especially in immuncompromised 

patients and patients in intensive care units (ICUs) (3). 

These pathogens are responsible for pneumonia, urinary 

tract infections (UTIs), skin and soft tissue infections, and 

bloodstream infections. According to the data from the 

National Nosocomial Infections Surveillance (NNIS) system, 

the proportion of Acinetobacter species causing ICU pneu- 

monia increased from 1.4% in 1975 to 6.9% in 2003 in the 

United States. Among Acinetobacter species, A. baumannii 

is a representative species involved in hospital-associated 

infections. However, A. baumannii is not easily differen- 

tiated from environmental species such as A. calcoaceticus 

and the other two clinically relevant Acinetobacter species, 

Acinetobacter genomic species 3 and 13TU, which were 

recently designated on the basis of phenotypic tests as A. 

pittii and A. nosocomialis, respectively (4). They are grouped 

together and named as A. calcoaceticus-A. baumannii (Acb) 

complex (or A. baumannii group). In Korea, another species 

of Acb complex, Acinetobacter genomic species 'close to 

13TU', has been identified more frequently than in other 

countries (5). Recently, the Infectious Diseases Society of 

America identified A. baumannii as one of six particularly 

problematic pathogens (6). 

Pseudomonas aeruginosa is also a ubiquitous Gram-

negative bacterium present in many diverse environmental 

settings. The wide metabolic versability and high intrinsic 

and acquired resistance to many antimicrobial agents have 

allowed P. aeruginosa to persist in both community and 

hospital settings (7). It is one of the major organisms 

responsible for nosocomial infections such as pneumonia, 

UTIs, surgical site infections, and bloodstream infections 

(7). Immunosuppressed patients such as those with severe 

burns, cancer, or acquired immunodeficiency syndrome 
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(AIDS) are particularly at risk to P. aeruginosa infections. 

NNIS data from 1986~1998 has identified P. aeruginosa 

as the fifth most frequently isolated nosocomial pathogen 

(7). P. aeruginosa is the second most common cause of 

healthcare-associated pneumonia including ventilator-

associated pneumonia (8). As P. aeruginosa as well as 

Acinetobacter spp. cannot ferment glucose and they are 

closely related phylogenetically, they are frequently classified 

together as 'non-fermenters'. 

 

Antimicrobial resistance in Acinetobacter spp. 

and P. aeruginosa 

 

Antimicrobial resistance among Acinetobacter spp. 

isolates has increased substantially in recent years (9). The 

emergence of multidrug-resistant (MDR) Acinetobacter spp. 

isolates has become a serious clinical concern worldwide 

(3). A. baumannii is generally intrinsically resistant to a 

number of commonly used antimicrobial agents such as 

aminopenicillins, cephalosporins, and chloroamphenicol. 

In addition, it has shown a remarkable capacity to acquire 

resistance to broad-spectrum-β-lactams, aminoglycosides, 

fluoroquinolones, and tetracyclines (10). Such extensive 

antimicrobial resistance in A. baumannii may be due in part 

to the organism's relatively impermeable outer membrane 

and its environmental exposure to a large reservoir of 

resistance genes (11). 

Outbreaks by MDR A. baumannii isolates have occurred 

worldwide, and even isolates resistant to most commercially 

available agents (pandrug resistance, or PDR) are also 

emerging (3, 12). Of particular concern is resistance to 

carbapenems such as imipenem and meropenem. Carba- 

penems are usually recommended as a potent antimicrobial 

agent against A. baumannii infections (13). However, carba- 

penem resistance in A. baumannii is emerging in many 

parts of the world and the resistance rate has increased to 

about 30% (14). Thus, few antimicrobial agents can be 

reliably used for effective therapy against MDR or PDR 

Acinetobacter infections. Although polymyxins such as 

polymyxin B and colistin have not typically been included 

in regimens to treat Acinetobacter infections since the 1980s 

because of their neurotoxicity and nephrotoxicity, they are 

now considered as one of the last resorts against MDR or 

PDR Acinetobacter infections (15, 16). So far, colistin or 

polymyxin B resistance rates among Acinetobacter isolates 

are very low worldwide (17). However, some investigators 

have reported the emergence of heteroresistance or resistance 

to colistin following colistin treatment (18, 19). In addition, 

high resistance rates against polymyxin B and colistin 

among Acinetobacter isolates from South Korea have been 

recently reported (20). Even A. baumannii isolates showing 

nonsusceptibilities to all antimicrobials including polymyxins 

and tigecycline have been found in several countries in- 

cluding South Korea (21, 22). 

High mortality in P. aeruginosa infections is attributable 

to the intrinsic resistance to many antimicrobial agents and 

the development of the MDR phenotype in healthcare 

settings. The increasing prevalence of MDR among P. 

aeruginosa isolates from ICU patients in the United States 

- from 4% in 1993 to 14% in 2002 (23) - is noteworthy. As 

in A. baumannii and Enterobacteriaceae such as Escherichia 

coli and Klebsiella pneumonia, carbapenems play a sig- 

nificant role in the treatment of P. aeruginosa infections. 

However, in contrast to Enterobacteriaceae, carbapenem 

resistance is not unusual in P. aeruginosa. The rate of 

imipenem resistance among P. aeruginosa isolates has 

been estimated as 7~23% (7). In South Korea, imipenem-

resistant P. aeruginosa isolates have increased from 17% in 

1997 to 26% in 2009 according to data from the Korean 

Nationwide Surveillance of Antimicrobial Resistance 

(KONSAR) program (24). 

 

Carbapenem resistance in A. baumannii 

and P. aeruginosa 

 

Carbapenems such as imipenem and meropenem enter 

Gram-negative bacteria through outer membrane proteins 

and acylate the penicillin-binding proteins (PBPs). Car- 

bapenems inhibit the peptidase domain of PBPs and can 

interfere with peptide cross-linking. As a result, the peptido- 

glycan is weakened and the cell bursts due to osmotic 

pressure (25). Carbapenems exhibit an overall broad in 
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vitro antimicrobial spectrum including Gram-positive and 

Gram negative bacteria (26, 27). Against Acinetobacter and 

Pseudomonas infections, carbapenem is the most potent 

and widely-used agent (10, 28). However, carbapenem 

resistance in non-fermenting bacteria such as Acinetobacter 

spp. and P. aeruginosa is increasing worldwide and poses a 

major public health threat. The mechanisms of carbapenem 

resistance include the production of β-lactamases, efflux 

pumps, and mutations altering the expression and/or function 

of porins and PBPs (25). 

Genetic and biochemical basis of carbapenem resistance 

in Acinetobacter spp. have mostly been related to the pro- 

duction of β-lactamases. So far, two intrinsic β-lactamases, 

AmpC-type cephalosporinase and oxacillinase (OXA-51-

like), have been identified in most A. baumannii isolates. 

However, these intrinsic enzymes are expressed at very low 

levels and do not enhance the full carbapenem resistance in 

A. baumannii (29). Instead of these intrinsic β-lactamases, 

several other acquired β-lactamases have been identified as 

inducing carbapenem resistance in A. baumannii. These 

acquired enzymes belong either to the class B enzymes (also 

known as metallo-β-lactamases, MBLs) or to the class D 

enzymes (also known as oxacillinases). MBLs such as VIM 

and IMP confer a high level of carbapenem resistance in A. 

baumannii isolates, as well as resistance to all β-lactams 

except aztreonam. However, isolates with SIM-1 can display 

imipenem minimum inhibitory concentrations (MICs) of 

8~16 mg/l. Oxacillinases represented by OXA-23, -24/40, 

and -58 are able to hydrolyze imipenem, but not always 

meropenem, and are grouped in a particular subgroup of 

β-lactamases termed carbapenem-hydrolyzing oxacillinases 

(CHDLs) (30). Compared with MBLs, the carbapenem 

resistance level by oxacillinases in A. baumannii is much 

lower. However, blaOXA-23, blaOXA-58, and blaOXA40 genes 

play significant roles in carbapenem resistance (31). In 

addition, reduced susceptibility to carbapenems has also 

attributed to the modification of PBPs and porins, or to the 

up-regulation of the AdeABC efflux system in A. baumannii 

(29). 

So far, MBLs are the major determinants of β-lactamase-

mediated resistance to carbapenems in P. aeruginosa. As in 

A. baumannii, the VIM and IMP enzymes are by far the 

most common MBLs found in carbapenem-resistant P. 

aeruginosa isolates (32). While IMP-type MLBs predomi- 

nate in P. aeruginosa isolates from Asia, VIM-type MBLs 

are prevalent in Europe (28). However, this distinction is 

blurred, as both enzymes become disseminated worldwide. 

In addition to VIM and IMP, GIM-1 has been found in P. 

aeruginosa isolates from Germany (33), and SPM-1 is 

prevalent in P. aeruginosa isolates from Brazil (34). Among 

the class A β-lactamases (or carbapenemases) such as GES, 

IMI, KPC, NMC-A, and SME, GES and KPC enzymes 

have been identified in P. aeruginosa. KPC enzymes 

showing activity against most β-lactams have primarily 

been described in Klebsiella pneumoniae, and rarely in P. 

aeruginosa. For GES, GES-2, and GES-5 have been reported 

in P. aeruginosa isolates. 

Among the five families of efflux pump systems so far 

described in bacteria, the Resistance Nodulation Division 

(RND) family is the most significant in the antimicrobial 

resistance of P. aeruginosa. Of the RND-type efflux pump 

systems, MexAB-OprM, MexCD-OprJ, and MexXY-OprM 

contribute to the resistance to carbapenems (7). However, the 

efflux pump is a minor contributor to carbapenem resistance 

in P. aeruginosa (28). The most common mechanism of 

resistance to the carbapenems in P. aeruginosa is loss or 

alteration of the outer membrane porin protein OprD (35). 

OprD is the major means for the entry of carbapenems, and 

inactivation of OprD is the main cause of non-MBL-

mediated carbapenem resistance in P. aeruginosa. OprD 

inactivation frequently operates in conjunction with other 

mechanisms such as derepressed ampC or MexAB-OprM. 

 

Polymyxin resistance in Acinetobacter spp. 

and P. aeruginosa 

 

Polymyxins (polymyxin B and colistin), which are a 

group of cyclic decapeptides produced by Bacillus polymyxa, 

and which have been known since 1949, bind to the anionic 

bacterial outer membrane, leading to a detergent effect that 

disrupts membrane integrity (16). They show a high affinity 

for the lipid moiety of lipopolysaccharide (LPS) and can 
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preferentially displace Mg2+ and Ca2+ from cationic binding 

sites. Colistin was largely replaced by aminoglycosides in 

the 1970s because of its neurotoxicity and nephrotoxicity 

(36). However, colistin and polymyxin B are now considered 

as a therapy of last resort against infections by MDR Gram-

negative bacteria, in particular A. baumannii, P. aeruginosa, 

and K. pneumoniae (36). Colisitn resistance rate is now 

relatively low worldwide, probably due to its low use over 

the last 50 years. However, colistin (or polymyxin B)-

resistant A. baumannii or P. aeruginosa isolates have been 

identified (20, 37, 38). 

In several Gram-negative species, colistin resistance is 

related to the modification of the lipid A moiety of the 

LPS outer membrane component. Polymyxin resistance in 

Salmonella enterica and P. aeruginosa has been linked to 

the PmrAB and PhoPQ two-component systems, which are 

involved in modifying the LPS core and lipid A regions 

with ethanolamine and the addition of aminoarabinose to 

lipid A (39~41). Recently, mutations in pmrA and pmrB in 

colistin-resistant derivatives of A. baumannii isolate were 

identified (42). In addition, it was reported that the complete 

loss of LPS production may mediate the colistin resistance 

in A. baumannii (43). Very recently, it was shown that the 

addition of phosphoethanolamine to lipid A is critical to 

polymyxin resistance in A. baumannii (44). 

In P. aeruginosa, substitution of the LPS lipid A with 

aminoarabinose contributes to polymyxin resistance (40). 

This modification is carried out by the products of the 

araBCADTEF-ugd locus, which is regulated by two-

component systems, PmrAB and PhoPQ. It has been 

reported that mutations in phoQ and pmrB promote the 

polymyxin B resistance in clinical P. aeruginosa isolates (45, 

46). Another two-component system, ParRS, also regulates 

arnBCADTEF-ugd expression, with a mutation in parR 

being associated with polymyxin resistance (47). However, 

the mechanism of polymyxin resistance in A. baumannii 

and P. aeruginosa is not fully understood. 

According to our recent studies on the colistin resistance 

in A. baumannii and P. aeruginosa, complete correlation 

among colistin resistance, PmrAB or PhoPQ mutations, and 

PmrAB or PhoPQ overexpression was not identified (48). 

Thus, PmrAB or PhoPQ overexpression associated with 

their amino acid alterations is only partially responsible for 

colistin resistance. 

 

MDR clones of A. baumannii and P. aeruginosa 

 

Based on band pattern typing methods such as amplified 

fragment length polymorphism (AFLP) and ribotyping, 

three clones, European clones I, II, and III, have been 

suggested to be responsible for a majority of hospital out- 

breaks caused by MDR A. baumannii isolates in European 

hospitals (49, 50). Recently, it was reported that these 

European clones have disseminated worldwide, which 

prompted to be re-designated as Global clones (GCs) or 

worldwide (WW) lineages I, II, and III (51). Of these, GCs 

I and II have caused the most outbreaks worldwide. In the 

multilocus sequence typing (MLST) schemes of Bartual et 

al. (52), ST92 and its close relatives is the most prevalent 

clone worldwide including the United States, Europe, and 

Asia (53~55). Of note, clone ST92 may be responsible for 

worldwide dissemination of the blaOXA-23 carbapenemase 

gene in A. baumannii (56, 57). 

Also in South Korea, ST92 has been the most frequently 

identified clone among imipenem-resistant A. baumannii 

isolates (21). However, it was recently replaced by its single-

locus variants, including ST75 and ST138 (5). Although 

ST75 and ST138 differ from ST92 only in the gpi locus, 

they showed high resistance rate of carbapenems. Because 

the gpi locus is as a hot spot of high recombination event 

(21, 58), a clonal switch of A. baumannii in South Korea is 

probably due to recombination. 

Presumably, P. aeruginosa exhibits a nonclonal epidemic 

population structure and recombination may be frequent 

and play a critical role in its evolution (59~61). Thus, a 

great diversity of STs in MLST has been observed and 

overlaps between isolates from clinical and environmental 

sources existed (62). In spite of the nonclonal feature of P. 

aeruginosa isolates, the emergence, spread, and persistence 

of a few MDR clones have been observed. One clear 

example is the MDR O12 clone, a CC/BURST Group (BG) 

4. It emerged during the 1980s and includes only clinical 
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isolates (63). ST111 and ST229 belong to the O12 or BG4 

clone (64). CC111, referred as 'Major European MDR clone 

P12', is also a member of international groups including 

VIM-2 and VIM-4-producing P. aeruginosa isolates (65, 

66). 

In addition to the O12 clone, the O11 clone is also 

closely related to epidemic isolates (63). While serotype 

O12 isolates are a heterogeneous population, serotype O11 

isolates often present low diversity (63). The O11 clone is 

also termed as CC/BURST Group (BG) 11. In particular, 

CC235, which is the most prevalent clone in nosocomial P. 

aeruginosa isolates, corresponds to this O11 clone. CC235 

has been found in many countries such as Austria, Belgium, 

France, Greece, Hungary, Italy, Japan, Poland, Russia, 

Serbia, Singapore, Sweden, Turkey, Nigeria, Brazil, and 

the United States (64, 65). In addition, it was also identified 

in South Korea (38, 67). In ST235 P. aeruginosa isolates, 

diverse β-lactamases such as VIM, BEL, IMP, OXA, PER, 

PSE, and SPM have been identified. In a study of P. 

aeruginosa isolates from Mediterranean countries, ST235 

was the most common clone and was related to MDR and 

exoX-/exoU+ (61). In particular, the association between 

ST235 and IMP-6 in South Korea (67, 68) is noteworthy. 

Because IMP-6 induces high-level meropenem resistance, 

the combination of the worldwide clone and potent MBL is 

troubling. 

In addition to the two international clones, some CF 

clones of P. aeruginosa such as CC146, CC148, and CC406 

have also been reported worldwide since the late 1990s (69). 

These CF clones often have hypermutable phenotype (i.e., a 

'pan-resistant' phenotype), but rarely possess carbapene- 

mases (65). CC277 also has a worldwide distribution and 

SPM-1-positive isolates have been were found in Brazil. 

CC175 has been identified in many European countries, 

and VIM-2-producing CC175 isolates have been described 

in Germany. 

The emergence and spread of carbapenem- or polymyxin-

resistant Acinetobacter spp. and P. aeruginosa isolates is a 

great concern worldwide, especially in South Korea. The 

understanding of their epidemiology and resistance mech- 

anisms will help to combat the threat posed by antimicrobial 

resistance. 
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