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ABSTRACT
Background: Caveolin, a family of integral membrane proteins are a principal 
component of caveolae membranes. In this study, we investigated the effect of p38 
kinase on differentiation and on inflammatory responses in sodium nitroprusside (SNP)- 
treated chondrocytes. Methods: Rabbit articular chondrocytes were prepared from 
cartilage slices of 2-week-old New Zealand white rabbits by enzymatic digestion. SNP 
was used as a nitric oxide (NO) donor. In this experiments measuring SNP dose 
response, primary chondrocytes were treated with various concentrations of SNP for 
24 h. The time course of the SNP response was determined by incubating cells with 
1 mM SNP for the indicated time period (0～24 h). The cyclooxygenase-2 (COX-2) 
and type II collagen expression levels were determined by immunoblot analysis, and 
prostaglandin E2 (PGE2) assay was used to measure the COX-2 activity. The tyrosine 
phosphorylation of caveolin-1 was determined by immunoblot analysis and immuno-
staining. Results: SNP treatment stimulated tyrosine phosphorylation of caveolin-1 and 
activation of p38 kinase. SNP additionally caused dedifferentiation and inflammatory res-
ponse. We showed previously that SNP treatment stimulated activation of p38 kinase 
and ERK-1/-2. Inhibition of p38 kinase with SB203580 reduced caveolin-1 tyrosine pho-
sphorylation and COX-2 expression but enhanced dedifferentiation, whereas inhibition 
of ERK with PD98059 did not affect caveolin-1 tyrosine phosphorylation levels, sug-
gesting that ERK at least is not related to dedifferentiation and COX-2 expression 
through caveolin-1 tyrosine phosphorylation. Conclusion: Our results indicate that SNP 
in articular chondrocytes stimulates dedifferentiation and inflammatory response via p38 
kinase signaling in association with caveolin-1 phosphorylation. (Immune Network 
2006;6(3):117-122)
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Introduction 
  Chondrocytes are differentiated from mesenchymal 
cells during embryo development (1,2). The pheno-
type of the differentiated chondrocyte is characterized 
by the synthesis, deposition, and maintenance of car-
tilage-specific extracellular matrix (ECM) molecules, 
including type II collagen and proteoglycans (3-5). 
Dedifferentiation is a major restriction in mass cell 
production for cell therapy or tissue engineering of 
destructive cartilage. Also, dedifferentiation of chon-
drocytes involves a gradual shift from the synthesis 
of type II to types I and III collagen. Nitric oxide 
(NO) produced via inducible NO synthase in artic-

ular chondrocytes plays a central role in cartilage dis-
eases such as osteoarthritis and rheumatoid arthritis. 
NO causes cartilage destruction by inducing apo-
ptosis, dedifferentiation, and inflammatory responses 
such as cyclooxygenase (COX)-2 expression and pro-
staglandin E2 (PGE2) production in articular chon-
drocytes (6-9). We showed previously that direct pro-
duction of NO by treatment with NO donor, sodium 
nitroprusside (SNP), causes dedifferentiation (10) and 
COX-2 expression (11) via MAP kinase signaling in 
rabbit articular chondrocytes. For example, NO-induced 
activation of extracellular signal-regulated protein kin-
ase (ERK) promotes dedifferentiation, COX-2 ex-
pression, and inhibition of apoptosis, whereas NO- 
induced p38 kinase activation triggers apoptosis, 
COX-2 expression, and maintains differentiated phe-
notypes (10,11).
  Caveolin, a family of 21～24 kDa membrane pro-
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tein that binds many different sinaling molecules such 
as heterotrimeric G proteins, Src, Ras and calmo-
dulin (12-16) . Caveolin-1 is also directly involved in 
signaling cascades as a substrate of both serine and 
tyrosine kinases. Caveolin was first identified as a 
major tyrosine-phosphorylated protein in v-Src-trans-
formed embryonic fibroblasts (17) and was demon-
strated that tyrosine phosphorylation of caveolin-1 on 
tyrosine 14 was mediated by the activation of p38 
kinase and Src tyrosine kinase (18). Phosphorylation 
of caveolin-1 on tyrosine is likely to be an interme-
diate step in a signaling cascade occurring within cav-
eolae.
  The present study investigate the roles of caveolin-1 
tyrosine phosphorylation in the regulation of dediffer-
entiation and COX-2 expression of SNP-treated chon-
drocytes. The investigation additionally focuses on 
the characterization of the role of MAP kinase sub-
types in dedifferentiation and COX-2 expression. We 
report here that p38 kinase regulates nitric oxide- 
induced dedifferentiation and COX-2 expression of 
articular chondrocytes in a caveolin-1 tyrosine phos-
phorylation-dependent pathway.

Materials and Methods
Monolayer culture of rabbit articular chondrocytes and exper-
imental culture condition. Rabbit articular chondrocytes 
were released from cartilage slices of 2-week-old New 
Zealand white rabbits by enzymatic digestion. To 
summarize, after aseptic dissection cartilage slices 
were aseptically dissected and then dissociated enzy-
matically for 6 h in 0.2% collagenase type II (381 
U/mg solid, Sigma) in PBS, and individual cells were 
then obtained by collecting the supernatant after brief 
centrifugation. The cells were resuspended in Dul-
becco’s modified Eagle's medium (DMEM, Gibco- 
BRL, Gaithersburg, MD) supplemented with 10% 
(v/v) fetal bovine-calf serum, 50μg/ml streptomycin, 
and 50 units/ml penicillin, after which and they were 
then plated on culture dishes at a density of 5×104 
cells/cm2. The medium was changed every 2 days 
after seeding, and cells reached confluence in approx-
imately 5 days. 
Determination of chondrocyte differentiation status. Loss of 
chondrocyte phenotype, dedifferentiation, was deter-
mined by examining the accumulation of sulfated gly-
cosaminoglycan with Alcian Blue, as described previ-
ously (19,20) or by the expression of type II collagen 
studied by immunoblot analysis. To summarize, type 
II collagen expression was detected using antibodies 
purchased from Chemicon (Temecula, CA) by immu-
noblotting, as described below.
Immunoblot analysis. Whole cell lysates were prepared 
by extracting proteins using a buffer containing 50 
mM Tris-HCl, pH 7.4, 150 mM NaCl, 1% Nonidet 

P-40, and 0.1% sodium dodecylsulfate, supplemented 
with protease inhibitors [10μg/ml leupeptin, 10μ
g/ml pepstatin A, 10μg/ml aprotinin and 1 mM of 
4-(2-aminoethyl) benzenesulfonyl fluoride] and phos-
phatase inhibitors (1 mM NaF and 1 mM Na3VO4). 
The proteins were size-fractionated by SDS-polyac-
rylamide gel electrophoresis and transferred to a 
nitrocellulose membrane. The nitrocellulose sheet was 
then blocked with 3% non-fat dry milk in Tris- 
buffered saline. COX-2 was detected using antibody 
purchased from Cayman Chemical (Ann Arbor, MI). 
Caveolin-1, p-Caveolin-1, ERK-2 and p38 were de-
tected using antibodies purchased from Santa Cruz 
Biotech. (Santa Cruz, CA). The bands were visualized 
using peroxidase-conjugated secondary antibodies and 
chemiluminescence.
Imunofluorescence microscopy. Tyrosine phosphorylation of 
caveolin-1 in rabbit articular chondrocytes was inves-
tigated using an indirect immunofluorescence micros-
copy, as described previously (20). Briefly, chondro-
cytes were fixed with 3.5% paraformaldehyde in PBS 
for 10 min at room temperature. The cells were per-
meabilized and blocked with 0.1% Triton X-100 and 
5% fetal calf serum in PBS for 30 min. The fixed 
cells were washed and incubated for 1 h with 
antibody (10μg/ml) against anti-phospho-caveolin-1 
antibodies and with fluorescin-conjugated goat anti- 
mouse antibodies for 30 min. Cells were then mount-
ed with low-Fade, and observed under a fluorescence 
microscope. 
p38 kinase assay. p38 kinase activity was determined 
by immune complex kinase assays as described pre-
viously (19,20). Briefly, cells were lysed in a buffer 
containing 20 mM Tris-HCl, pH 7.5, 150 mM NaCl, 
1 mM EDTA, 1 mM EGTA, 1% Triton-X 100, 2.5 
mM sodium pyrophosphate, 1 mM β-glycerolphos-
phate and inhibitors of proteases and phosphatases, 
as described above. Total cell lysates were precipi-
tated with polyclonal anti-p38 kinase antibody and 
the immune complexes collected using protein-A Se-
pharose beads. The beads were re-suspended in 20μl 
kinase reaction buffer containing 25 mM Tris-HCl, 
pH 7.5, 5 mM DTT, 0.1 mM sodium orthovanadate, 
10 mM MgCl2, 5μCi [γ-32P] ATP and 1μg of 
substrate activating transcription factor-2 (ATF-2) for 
p38 kinase (New England Biolabs, Beverly, MA). The 
kinase reaction was performed for 30 min at 30oC and 
phosphorylated ATF-2 was detected by autoradio-
graphy following gel electrophoresis. 
PGE2 assay. PGE2 production was determined by 
measuring the levels of cellular and secreted PGE2 
using an assay kit (Amersham Pharmacia Biotech, NJ, 
UK). Briefly, chondrocytes were seeded in standard 
96-well microtiter plates at 2×104 cells/well. Follo-
wing addition of the indicated pharmacological rea-
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Figure 1. Tyrosine phosphorylation of caveolin-1 and p38 kinase
in SNP-treated chondrocytes. A and B, rabbit articular chond-
rocytes were treated with 1 mM SNP for the indicated time 
periods (A) or for 24 h with the specified concentrations of SNP
(B). Activation of Cav-1 (caveolin-1) was determined by immu-
noblot analysis, using antibody specific to activated p-Caveolin-1.
p38 kinase activity was determined by immunocomplex kinase 
assay, using ATF-2 as a substrate. Expression of Caveolin-1 and
p38 MAP kinase was determined by immunoblot analysis. The
data in A represent the results of a typical experiment conducted
four times, and B signifies the average values with standard devi-
ation (n=4).
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Figure 2. Dedifferentiation in SNP-treated chondrocytes. Cho-
ndrocytes were treated with the indicated concentrations of SNP
for 24 h. The expression of type II collagen (collagen II) was
determined immunoblot analysis (A). Accumulation of sulfated 
glycosaminoglycan in cells treated with the indicated concen-
trations of SNP for 24 h was quantified by Alcian Blue staining
(B). The data represent the results of a typical experiment con-
ducted at least three times with similar results. 
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Figure 3. SNP treatment induces COX-2 expression in articular 
chondrocytes. Chondrocytes were treated with the indicated 
concentrations of SNP for 24 h (A, C) or with 1 mM SNP for
specified time period (B). The expression of COX-2 and ERK-2 
was determined immunoblot analysis (A, B), and production of 
PGE2 was determined by using a PGE2 assay kit (C). The data 
represent the results of a typical experiment conducted at least
three times with similar results.

gents, total cell lysate was used to quantify the 
amount of PGE2, according to the manufacturer's 
protocol. PGE2 levels were calculated against a stan-
dard curve of PGE2 and normalized against the 
amount of genomic DNA. 
Data analyses and statistics. The results are expressed as 
the means±S.E. values calculated from the specified 
number of determinations. A Student's test was used 
to compare individual treatments with their respective 
control values. A probability of p＜0.05 was taken as 
denoting a significant difference.

Results
Nitric-oxide-induces phosphorylation of caveolin-1 and p38 
kinase. Rabbit articular chondrocytes in primary cul-
ture were treated with the NO donor SNP. SNP 
caused a dramatic increased caveolin-1 tyrosine phos-
phorylation and p38 kinase activity as determined by 
immunoblotting and immunocomplex kinase assay, 
respectively, in a dose- and time-dependent manner, 
as shown in Fig. 1A and Fig. 1B. But expression of 
caveolin-1 slightly increased. These results indicate 
that NO induces caveolin-1 tyrosine phosphorylation 
and p38 kinase activation.
NO induces dedifferentiation, COX-2 expression, and PGE2 
production of articular chondrocytes. To examine the effects 
of SNP on articular cartilage chondrocyte on dedif-
ferentiation, COX-2 expression, and PGE2 produ-
ction, primary cell cultures were treated with the indi-
cated concentrations of SNP for 24 h or with 1 mM 
SNP for specified time periods. As expected, expres-
sion of type II collagen (Fig. 2A) and sulfated proteo-
glycan synthesis (Fig. 2B) were significantly reduced 
in a dose-dependent manner in SNP-treated chond-
rocytes. But, SNP increased protein levels of COX-2 
in a time-and dose-dependent manner as determined 
by immunoblotting (Fig. 3A,B). Consistent with the 
induction of COX-2 expression, SNP stimulated 
PGE2 production (Fig. 3C). These data indicate that 
NO not only causes dedifferentiation of articular 
chondrocytes but also stimulates COX-2 expression 
and PGE2 production.
NO-induced activation of p38 kinase causes tyrosine phosph-
orylation of caveolin-1. To determine the association be-
tween caveolin-1 and p38 kinase activation, chondro-
cytes were treated with SNP in the presence and ab-
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Figure 4. NO-induced activation of p38 kinase but not 
ERK-1/-2 causes tyrosine phosphorylation of caveolin-1. A and
B, cells were treated with 1 mM SNP for 24 h in the presence
of indicated concentrations of SB203580 (A) or PD98059 (B). 
Caveolin, p-Caveolin-1 and ERK-2 were detected by immunoblot
analyses. The data represent the average values with standard 
deviation (n=4).

Figure 5. NO-induced tyrosine phosphorylation of caveolin-1. Chondrocytes were untreated or treated with 20μM SB203580 and 
exposed to 1 mM SNP for 24 h. Tyrosine phosphorylated caveolin-1 (p-Caveolin-1) was immunostained, and photographs were taken 
with an immunofluorescence microscope. The data represent the results of a typical experiment conducted at least three times.

sence of SB203580, an inhibitor of p38 kinase and 
expression and tyrosine phosphorylation of caveolin-1 
were examined. The addition of SB203580 to SNP- 
treated chondrocytes completely blocked the increased 
tyrosine phosphorylation of caveolin-1 in a dose de-
pendent manner (Fig. 4A). But, caveolin-1 expression 
is slightly decreased by SB203580. In contrast to the 
effects of p38 kinase inhibition, blockade of ERK 
with PD98059, an inhibitor of ERK-1/-2 upstream 
kinase and did not affect tyrosine phosphorylation 
and expression of caveolin-1 (Fig. 4B). In an attempt 
to elucidate the mechanism of p38 kinase regulated 
caveolin-1 tyrosine phosphorylation, chondrocytes 
were treated with SNP in the absence or presence of 
SB203580. SNP treatment resulted in strong staining 

of caveolin-1 tyrosine phosphorylation, and SB203580 
abolished the effects of SNP (Fig. 5). This phenom-
enon is consistent with immunoblotting. These results 
indicate that NO-induced caveolin-1 tyrosine phosph-
orylation is regulated by p38 kinase activity, but not 
ERK-1/-2 activity. 
p38 kinase regulates NO-induced dedifferentiation, COX-2 
expression and PGE2 production. A recent study demo-
nstrated that SNP treatment of articular chondrocytes 
causes both dedifferentiation (10) and inflammatory 
response (11). To investigate the expression levels of 
type II collagen and COX-2, chondrocytes were treated 
with SNP in the presence and absence of SB203580. 
Consistent with our previous data (10,11), blockade of 
p38 kinase accelerated NO-induced decrease of type II 
collagen expression and COX-2 expression in a 
dose-dependent manner (Fig. 6A). Similar to the 
effects on the above results, inhibition of p38 kinase 
potentiated NO-induced decrease in the accumulation 
of sulfated proteoglycan (Fig. 6B) and PGE2 produc-
tion (Fig. 6C). Taken together, these results indicate 
that NO-induced dedifferentiation, COX-2 expres-
sion and PGE2 production is regulated through p38 
kinase pathway.

Discussion
  Our previously studies indicated that NO caused 
apoptosis and dedifferentiation, which are mediated 
by MAP kinase subtypes ERK and p38 kinase (10). 
These MAP kinase play opposing roles, with activated 
ERK-1/-2 inducing dedifferentiation and inhibiting 
NO-induced apoptosis, while p38 kinase signaling 
maintains the differentiated status and induces apop-
tosis. We also previously demonstrated that NO-stim-
ulates expression of inflammatory molecules such as 
COX-2 and PGE2 in chondrocytes via ERK and p38 
kinase (11,21).
  Caveolin-1 is directly involved in signaling cascades 
as a substrate of both serine and tyrosine kinases. 
Caveolin-1 is phosphorylated on tyrosine 14 by Src, 
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Figure 6. p38 kinase regulates dedifferentiation and COX-2 expression/PGE2 production. A and C, articular chondrocytes were treated
with 1 mM SNP for 24 h in the absence or presence of indicated concentrations of SB203580. Type II collagen (Collagen II) and 
COX-2 were detected by immunoblotting. Chondrocytes were untreated or treated with 20μM SB203580 and exposed to 1 mM SNP
for 24 h. Accumulation of sulfated glycosaminoglycan was quantified by Alcian blue staining (B). Production of PGE2 was determined
by using a PGE2 assay kit. The data represent the results of a typical experiment conducted at least three times.

Fyn and Abl in response to a number of stimuli, 
including insulin, angiotensin II, osmotic shock, and 
oxidative stress (22-24). Numerous studies have dem-
onstrated that caveolin interacts with a number of 
signaling molecules that are thought to be enriched 
in caveolae, including certain small and heterotrimeric 
G proteins (13,25), endothelial nitic oxide synthase 
(26,27) and a subset of tyrosine kinase receptors (28). 
In fact, caveolin-1 is a preferred substrate for these 
tyrosine kinases in cells (29-32).
  We first demonstrated signaling pathways involved 
in NO-induced dedifferentiation, COX-2 expression, 
and PGE2 production in rabbit articular chondroc-
ytes, focusing on the functional relationship between 
caveolin-1 and p38 kinase. Based on results obtained 
in this study and our previous reports (10,21,33), we 
propose the following pathway: NO activation of p38 
kinase activates caveolin-1 tyrosine phosphorylation. 
This activation of caveolin-1 is necessary for NO- 
induced dedifferentiation, COX-2 expression and PGE2 
production. In this regard, p38 kinase have been 
proposed to interact with caveolin. This possibility 
will be the subject of future studies.

Footnotes
  1. Abbreviations used are: SNP, sodium nitroprusside; 
NO, nitric oxide; ATF,  activating transcription factor; 
COX, cyclooxygenase; ERK, extracellular signal-regulated 
kinase; MAP kinase, mitogen-activated protein kinase; 
PGE2, prostaglandin E2.
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