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ABSTRACT

The γδ T cells are unconventional lymphocytes that function in both innate and adaptive 
immune responses against various intracellular and infectious stresses. The γδ T cells can be 
exploited as cancer-killing effector cells since γδ TCRs recognize MHC-like molecules and 
growth factor receptors that are upregulated in cancer cells, and γδ T cells can differentiate 
into cytotoxic effector cells. However, γδ T cells may also promote tumor progression 
by secreting IL-17 or other cytokines. Therefore, it is essential to understand how the 
differentiation and homeostasis of γδ T cells are regulated and whether distinct γδ T cell 
subsets have different functions. Human γδ T cells are classified into Vδ2 and non-Vδ2 γδ 
T cells. The majority of Vδ2 γδ T cells are Vγ9δ2 T cells that recognize pyrophosphorylated 
isoprenoids generated by the dysregulated mevalonate pathway. In contrast, Vδ1 T cells 
expand from initially diverse TCR repertoire in patients with infectious diseases and 
cancers. The ligands of Vδ1 T cells are diverse and include the growth factor receptors 
such as endothelial protein C receptor. Both Vδ1 and Vδ2 γδ T cells are implicated to have 
immunotherapeutic potentials for cancers, but the detailed elucidation of the distinct 
characteristics of 2 populations will be required to enhance the immunotherapeutic potential 
of γδ T cells. Here, we summarize recent progress regarding cancer immunology of human γδ 
T cells, including their development, heterogeneity, and plasticity, the putative mechanisms 
underlying ligand recognition and activation, and their dual effects on tumor progression in 
the tumor microenvironment.
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INTRODUCTION

Among 3 main lineages of lymphocytes—αβ T cells, γδ T cells, and B cells, γδ T cells are 
the most enigmatic lymphocytes that express TCRs rearranged from TCR γ and δ genes 
(1-3). The γδ T cells are one of the innate immune cells that have a pivotal role in cancer 
immunosurveillance as the deficiency of γδ T cells increased the susceptibility to cancers 
(4-7). They can mediate potent direct cytotoxicity by recognizing transformed target cells via 
the γδ TCRs, but they may also detect cancer cells via activating NK cell receptors such as NK 
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group 2 member D (NKG2D) or natural cytotoxicity receptors (NCRs) (8,9). The application 
of γδ T cells, mostly Vγ9Vδ2 T cells, for cancer immunotherapy has been explored against 
various tumors of hematological and epithelial origin (10-16). Many clinical trials have shown 
that those treatments are feasible and safe, but with some obvious limitations (4,12,17). 
Therefore, a better understanding of γδ T cell subset-specific responses during tumor 
immunity is vital to rationally develop optimal strategies for maximizing the anti-tumor 
activity of γδ T cells and inhibiting their pro-tumor activity. Here, we summarize the recent 
progress regarding the immunobiology of human γδ T cells, including the heterogeneity and 
plasticity, the putative mechanisms of ligand recognition and activation, their positive and 
negative effects on the cancer progression, and the future perspective of immunotherapy 
using γδ T cells.

ORIGIN AND DEVELOPMENT OF THE HUMAN γδ T CELLS

The γδ T cells develop earlier than αβ T cells in the thymus and are exported to different 
peripheral tissues according to the chronological order of the thymic development (18,19). 
In the mouse, the first γδ T cells at the embryonic day of 14, Vγ5+Vδ1+ T cells are selected by 
selection and upkeep of intraepithelial T cells protein 1 presented on thymic epithelial cells 
and become dendritic epidermal T cells (DETCs) responsible for body-barrier surveillance 
(20,21). A later process of thymic T cell development generates Vγ6+Vδ1+ T cells that are 
destined for the female genital tract, peritoneal cavity and tongue, and other γδ T cells with 
diverse VDJ clonotypes containing Vγ1, 2, 4, and 7 segments (18,22). Whereas the early 
developing γδ T cells have invariant TCRs, the γδ T cells appearing during the later period of 
the development are diverse in TCR repertoire (22-24).

Human γδ T cells are also present in the thymus as well as the periphery, suggesting 
the thymic development of human γδ T cells (25). Although adult blood γδ T cells are 
predominated by Vγ9Vδ2 cells, neonatal cord blood ɣδ T cells express a diversity of Vγ 
and Vδ chains paired in various combinations, and the majority of neonatal ɣδ T cells are 
Vγ9-Vδ1+ cells (26,27). Therefore, the adult blood Vγ9Vδ2 cells appear to represent the 
post-natal expansion of Vγ9Vδ2 cells expressing canonical CDR3s in response to microbial 
phosphoantigens that are described below (28-30). Human Vγ9Vδ2 cells have been shown 
to expand rapidly after birth within 1 year of life (31). In the adult, Vδ1 and Vδ2 γδ T cells are 
localized in the barrier tissues and the peripheral blood, respectively (32).

HETEROGENEITY OF THE HUMAN γδ T CELLS

Although γδ T cells are cousins of αβ T cells, γδ T cells directly recognize Ags via their 
γδ TCRs without the need of MHC molecules similarly to B cells (1,33,34). The γδ T cells 
are sometimes referred to as innate lymphocytes since they can recognize microbial or 
stress-induced patterns and respond rapidly without previous exposure to the Ags (1,24). 
However, some γδ T cells exhibit highly adaptive features such as clonal expansion and 
differentiation from naïve cells to effector cells (35). The overall characteristics of γδ T cells 
may be positioned between NK cells and CD8+ T cells (36). The γδ T cells are heterogeneous 
concerning functional features depending on the usage of TCR γ and δ chains and the tissue 
localization. The γδ T cell population consists of tissue-resident and peripheral blood γδ T 
cells (1). Human γδ T cells account for 0.5%–5% of all peripheral blood T cells (2,7).
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In humans, several functional Vγ gene segments (including Vγ2, Vγ3, Vγ4, Vγ5, Vγ8, Vγ9, and 
Vγ11) rearrange into 5 Jγ segments and 2 Cγ segments on chromosome 7 to generate TCRγ 
chains, whereas TCRδ chains are generated by the rearrangement of at least 7 Vδ, 3 Dδ, 3 Jδ, 
and 1 Cδ segments on chromosome 14 (2,3,7,37). Whereas Vδ1, Vδ2, and Vδ3 segments are 
used only in the rearrangement of the TCR δ chains, Vδ4–Vδ7 segments are also used in the 
rearrangement of the TCR α chains and have alternative gene names belonging to TCR Vα 
gene segments (37). The functional features of γδ T cells are closely correlated with the usage 
of the TCRδ chains (24). Among 7 Vδ segments, Vδ1 and Vδ2 segment-using γδ TCRs are the 
most common human γδ TCRs (2).

As the most abundant human γδ T cells are Vγ9Vδ2 T cells that recognize unique 
phosphoantigens and Vδ1 T cells have adaptive features distinct from Vγ9Vδ2 T cells, γδ 
T cells are commonly classified into Vδ2 and non-Vδ2 γδ T cells (2,35,38). The Vγ9Vδ2 T 
cells are the most well-known human γδ T cells and have been exploited for anti-cancer 
immunotherapy (10,11). The characteristics and the adaptive features of non-Vδ2 γδ T cells, 
especially Vδ1 γδ T cells, are recently recognized, and these Vδ1 γδ T cells are also thought to 
be a candidate for anti-cancer immunotherapy (35).

THE γδ TCR STRUCTURE AND ACTIVATION OF THE 
HUMAN γδ T CELLS
Although γδ T cells share TCR rearrangement mechanism and memory functions with αβ T 
cells, they differ in the immune response kinetics and mechanisms of target cell recognition 
(39). The γδ T cells do not recognize MHC molecules, but many γδ T cells respond to non-
peptide Ags or MHC-like molecules, such as MHC class I-related chain A (MICA), MICB, 
or UL16-binding protein (ULBP), that are upregulated in cells under stressed conditions 
such as infection or cancer transformation in MHC-unrestricted manner (2,3). Similarly to 
αβ TCRs, γδ TCRs are also associated with CD3 molecules, but differently from murine αβ 
TCRs, murine γδ TCRs contain only CD3γε dimers, not CD3δε dimers (40). Notably, murine 
γδ TCR cells can develop in the absence of CD3ε or CD3δ (41,42), but the expression of CD3γ 
is indispensable for the murine γδ T cell development (43). Furthermore, CD3ζ chain is not 
necessary for the γδ T cell development and FcεRIγ chain, a CD3ζ chain family member 
that can dimerize with CD3ζ, is expressed upon activation and then included in the γδ TCR 
complexes (44). On the other hand, human γδ TCR complex contains CD3δ chain and shows 
a TCRγδCD3ε2δγζ2 stoichiometry similarly to human αβ TCR complex, whereas mouse γδ 
TCR complex has a TCRγδCD3ε2γ2ζ2 stoichiometry (45). Human γδ TCR signaling is less 
dependent on CD3γ chain than CD3δ chain as human patient lacking CD3γ have abundant 
peripheral blood γδ T cells expressing high levels of γδ TCR (46). Interestingly, forced 
expression of human, but not murine, CD3δ transgene rescue the γδ T cell development in 
mice deficient in both CD3δ and CD3γ genes, suggesting the unique role of human CD3δ in 
the TCR signaling (45).

The γδ TCR signaling is qualitatively different from the αβ TCR signaling (44). The γδ TCRs 
self-oligomerize and cause constitutive signaling in the absence of ligands (47). These γδ TCR 
signaling characteristics are similar to those of pre-αβ TCR signaling responsible for the β 
selection during thymic T cell development (48). During the thymic γδ T cell development, 
γδ T cells that encounter strong agonistic ligands obtain the capability of secreting IFN-γ. In 
contrast, γδ T cells that do not encounter strong agonists adopt IL-17-default position (1,47). 
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In the periphery, the stimulation of γδ T cells via γδ TCR and costimulatory receptors or NK 
cell receptors triggers γδ T cells to undergo clonal expansion and differentiation into effector 
cells and to produce large quantities of pro-inflammatory cytokines such as IFN-γ or IL-17. 
Upon activation, γδ T cells can also exert a potent cytotoxic activity without the obligatory 
delay associated with clonal expansion and differentiation (49).

Although γδ TCR is regarded as an activating receptor, γδ TCR may act as an inhibitory 
receptor in certain contexts. The consequence of the constitutive γδ TCR signaling can be 
inhibition of γδ T cell activation when the ligands on target cells are constitutively presented 
(50). In NK cells, the constitutive inhibitory signaling through killer inhibitory receptor 
(KIR) sets up a threshold that NK cells are not easily activated, and a full activation of NK cell 
requires very high concentrations of activating ligands for NK cell-activating receptors and/
or downregulation of inhibitory ligand, MHC class I on the target cells (51). The Vγ5δ1 TCRs 
in mouse DETCs form constitutive immunological synapses with keratinocytes in the steady 
state and are argued to have a role similar to KIR on NK cells (20).

Since γδ T cells have a lot of NK cell-activating receptors such as NCRs and NKG2D (8,9), the 
functional roles of γδ TCR should be carefully investigated in heterogeneous subpopulations 
of γδ T cells since the NK receptors, not γδ TCR, could be main receptors for γδ T cell 
activation. The NK cell-activating receptors can be considered as costimulatory receptors if 
γδ TCR and NK cell receptors induce synergistic signaling for γδ T cell responses (52). The 
list of costimulatory receptors for αβ T cells has been expanded and includes a prototype 
costimulatory molecule CD28 (53). The relevance of costimulatory molecules for αβ T cells in 
γδ T cells remains debatable. About 40%–60% of γδ T cells express CD28, and the expression 
of CD28 is decreased upon the activation of γδ T cells (54,55). Since anti-CD28 agonistic 
Abs enhance human γδ T cell proliferation, the role of CD28 as a costimulatory molecule 
is valid in a subpopulation of human γδ T cells. Considering the phenotypes of memory 
and effector CD8+ αβ T cells (56), it may be hypothesized that the expression of CD28 is lost 
upon the prolonged activation of a subpopulation of γδ T cells. It is noteworthy that a higher 
proportion of Vδ1 γδ T cells do not express CD28 than that of Vδ2 γδ T cells, but the most of 
Vδ2 γδ T cells express CD28 similarly to naïve αβ T cells (35,57).

THE γδ T CELLS IN THE TUMOR MICROENVIRONMENT 
(TME)
Recruitment of human γδ T cells into the TME
Cancer is characterized not only by transformed cancer cells but also by non-cancer cells, 
such as immune cells, fibroblasts, and endothelial cells, and the extracellular matrix that 
establishes the TME. Initially, the cellular stresses experienced by transformed cancer cells 
trigger the upregulation of ligands for NK cell receptors (58). Although initially recruited 
NK cells can kill cancer cells, the cytotoxic activity of NK cells is not sustained but exhausted 
when cancer cells outnumber NK cells in the advanced stage of cancer (59). The persistent 
chronic inflammation associated with cancer recruits many kinds of immune cells, including 
Treg cells and myeloid-derived suppressor cells into the TME. It is a common consensus that 
the TME inhibits the anti-tumor immune responses in most clinical situations (60-62).

The γδ T cells also infiltrate into a variety of the tumors in the early and late stages of cancer 
development, where they are known to modulate the anti-tumor response through pro- or 
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anti-inflammatory cytokines and their interactions with different types of innate and adaptive 
immune cells in the TME (7,49,63,64). The γδ T cells migrate into the TME in response to CC 
chemokines such as MCP-1, regulated on activation normal T cell expressed and secreted, 
MIP-1α and MIP-1β (11,35,65).

Major tumor-infiltrating γδ T cell subsets: human Vδ1 and Vγ9Vδ2 T cells
In humans, Vδ1 and Vγ9Vδ2 T cells are 2 main populations of γδ T cells in the tissues and 
peripheral blood. In tumors, one subset can be predominant over the other depending on the 
types and origin of the tumors (7,11,49,64-67). Both Vδ1 and Vγ9Vδ2 T cells have the cytotoxic 
capability and can have anti-cancer activity (11,36). The 2 subsets of γδ T cells express distinct 
chemokine receptors and cell adhesion molecules, suggesting different homing mechanisms 
that can be selectively utilized for cancer immunotherapy (35,68,69). A diagram is displayed 
in Fig. 1, which shows their differential involvement in the anti-cancer immunity.

The human Vγ9Vδ2 T cells are the most predominant γδ T cells in the adult peripheral 
blood, but they are not a major γδ T cell population at the time of birth as the Vδ1 γδ T cells 
are predominant during fetal and early life (24,31). The Vγ9Vδ2 T cells expand postnatally 
in response to phoshoantigens by microbes. The canonical Vγ9Vδ2 T cells with Vγ9JγP 
sequences recognize phosphoantigens presented by butyrophilin 3A (BTN3A). Interestingly, 
prenyl pyrophosphates (phosphoantigens) bind to the intracellular B30.2 domain of BTN3A1, 
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Figure 1. Differential recruitment of Vδ1 and Vγ9δ2 γδ T cells into the tumor tissue. In blood, Vγ9δ2 γδ T cells 
are predominant over Vδ2 γδ T cells in healthy individuals. Most of the Vγ9δ2 γδ T cells have canonical TCRs 
responding to prenyl pyrophosphates that are elevated in cancer cells and are recruited into the tumor via 
chemokine receptors. In contrast, some clonotypes of Vδ1 γδ T cells are selected from a diverse Vδ1 TCR 
repertoire. Specific Vδ1 γδ T cells migrate into the tumor tissues, expand, and kill cancer cells. The tissue-resident 
Vδ1 γδ T cells may respond to the tissue stress and proliferate to kill cancer cells.
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suggesting that the Vγ9Vδ2 TCR senses the internal changes of mevalonate or non-mevalonate 
metabolic pathways within cancer or infected cells, respectively (70,71). Elevated cytoplasmic 
prenyl pyrophosphate levels as a result of a dysregulation of the mevalonate pathway triggers 
an inside-out signaling leading to a structural change of the extracellular domain of BTN3A1, 
which enhances the binding force between BTN3A1 and Vγ9Vδ2 TCR. It is noteworthy that the 
RhoB activation in cancer cells is another determinant for the relocalization of BTN3A1 and the 
activation of Vγ9Vδ2 γδ T cells (72). Therefore, the canonical Vγ9Vδ2 γδ T cells can be cancer-
killing lymphocytes through the recognition of the altered metabolism of cancer cells and the 
mutation of RhoB. However, the functional role and Ags of non-canonical Vγ9Vδ2 γδ T cells 
are not well understood. The non-canonical Vγ9Vδ2 γδ T cells predominate over the canonical 
Vγ9Vδ2 γδ T cells in the fetal tissues, but the canonical Vγ9Vδ2 γδ T cells become predominant 
in the adult blood. Interestingly, glioblastoma-infiltrating γδ T cells have non-canonical TCR 
repertoire using Cγ2 segment (66). Regarding the ligands for Vγ9Vδ2 γδ TCR, it is needed to 
address the role of a novel ligand for Vγ9 TCR, BTN2A1, in the cancer immunity and whether 
BTN2A1 is upregulated in the cancer cells (73). The Vγ9Vδ2 T cells also recognize cancer cells 
through stress-related proteins that can be upregulated upon malignant transformation, 
including the F1-ATPase, MICA/B, heat shock protein 60, ULBP, human MutS homolog 2, and 
DNAX-associated molecule-1 through NK cell receptors (1,2,74,75).

Whereas most of the Vγ9Vδ2 T cells have restricted canonical TCRs, the Vδ1 T cells have diverse 
repertoires that use various kinds of Vγ chains (35). In most adults, a small number of specific 
clonotypes emerge from an initially unfocused neonatal Vδ1 TCR repertoire, undergo pronounced 
clonal expansion, and ultimately dominate the Vδ1 T cell compartment (69). The TCR-diverse 
CD27high and highly TCR focused CD27low/− populations represent naïve and effector Vδ1 T cell 
subsets, respectively. The transition from naïve to effector Vδ1 T cells is accompanied by a switch 
from lymphoid to peripheral homing receptors. Although ligands detected by Vδ1 TCRs remain 
largely uncharacterized, some peripheral circulating and tissue-resident Vδ1 T cells recognize 
CD1c, the lipid-presenting MHC-like molecule CD1d, or MHC-related protein 1 (2,76-78). In 
addition to the TCR, Vδ1 T cells also respond to a distinct set of cellular stress signals expressed by 
cancerous cells, such as MICA/B, ULBPs, B7-H6, and BAT3 via NKG2D or NCRs (1,77,79). In many 
tumors, Vδ1 γδ T cells are predominant over the Vγ9Vδ2 γδ T cells, which suggests that the Vδ1 γδ 
T cells expand responding to cancer Ags (80). The utilization of the Vδ1 γδ T cells is a promising 
option for cancer immunotherapy. Therefore, the relative importance of Vδ1 γδ T cells and Vγ9Vδ2 
γδ T cells should be considered in the future immunotherapy using γδ T cells (4,10,12,14,16). Non-
Vδ1 non-Vγ9Vδ2 γδ T cells should also be considered as the Vγ4Vδ5 γδ T cells are able to eliminate 
cancer cells by recognizing endothelial protein C receptor (81).

The γδ T cells have both anti-tumor and pro-tumor activities
Upon migration to the TME, γδ T cells exert potent anti-tumor effects via multiple mechanisms 
(77,82). The γδ T cells can eliminate cancer cells via cytolytic receptor-ligand interactions 
including Fas ligand (83) and TNF-related apoptosis-inducing ligand (84) in addition to 
granzyme B and perforin and also have cytostatic anti-cancer activities by releasing IFN-γ 
or TNF-α (82,85). The γδ T cells are also able to kill Ab-coated cancer cells by Ab-dependent 
cellular cytotoxicity using cell surface CD16 (FcγRIII) similar to NK cells (86). Lastly, γδ T cells 
exhibit indirect anti-tumor responses by modulating different immune cell types including 
DCs, NK cells, neutrophils, αβ T cells and B cells in the TME (1,4,22,75,77,82,85).

In general, the extent of intratumoral γδ T cell infiltration is highly associated with the CD8+ 
T cell signature and patients' prognosis, suggesting that γδ T cells largely perform anti-tumor 
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activity rather than pro-tumor activity (87,88). However, complex interactions between TME 
and intratumoral γδ T cells can result in the diversion of anti-tumor γδ T cells into pro-
tumor cells. Therefore, the precise role of γδ T cells in each individual patient may depend 
on the specific γδ T cell subsets and their functional polarization in the TME (63,77,82,85). 
Regarding T cell polarization, it is generally stated that Th1 and follicular Th (Tfh) cells have 
anti-tumor activity, whereas Th17 and Treg cells have pro-tumor activity (89). As the γδ Tfh 
cell-driven GC response tends to induce autoreactive B cells instead of pathogen-specific B 
cells, the anti-tumor activity of Tfh cells is not well established (90), but the involvement of 
Tfh cells in cancer tissues indicates an organized anti-tumor immunity with tertiary lymphoid 
tissue (91). Effector γδ T cells can also be classified as γδ Th1, γδ Th2, γδ Th17, γδ Tfh, and 
γδ Treg cells based on their functional polarization (1,7,22,35,49,75,77,85,92). Interestingly, 
in response to different cytokines, γδ T cells can trans-differentiate from one phenotype to 
another (1,7,22,35,49,75,77,85,92). Both Vδ1 and Vγ9Vδ2 T cells can be polarized into γδ Th1 
cells, γδ Tfh cells, γδ T17 cells, γδ Treg cells, and γδ Th2 cells with distinct cytokines. It is 
important to investigate further whether γδ T cells are a primary driver of T cell polarization 
or whether the immunotherapy targeting γδ T cells can change the overall polarization of αβ 
T cells within the TME.

The γδ T cells are also subjected to immune exhaustion similarly to cancer-reactive cytotoxic 
T cells and NK cells. Although the nature of the γδ T cell immune exhaustion is not well 
reported, prolonged stimulation of γδ T cells appears to trigger their immune exhaustion. 
Since the immune exhaustion is reviewed extensively elsewhere (93-95), it will not be 
discussed here. It would be important and interesting to address how easily and deeply γδ 
T cells are exhausted and whether exhausted γδ T cells can be easily reawakened by strong 
stimuli, including cytokines or Ags such as phosphoantigens.

FUTURE DIRECTIONS FOR OPTIMIZING ADOPTIVE 
γδ T CELL TRANSFER AS AN ALTERNATIVE CANCER 
IMMUNOTHERAPY

The ability of γδ T cells to recognize the cellular stress via an MHC-independent mechanism and 
to potentiate other innate and adaptive immune cells makes them attractive mediators of cancer 
immunotherapy with potent and broad anti-tumor cytotoxicity (4,7,11,64,65,68,77,82,85,89). 
Especially, given their potent MHC-unrestricted anti-tumor activities, γδ T cells also can be 
considered as universal allogeneic adoptive T cell transfer for cancer patients. Accordingly, 
recent applications of γδ T cells to solid tumors have yielded promising results with associated 
clinical benefits, but issues of limited efficacy still remain with an average response ratio of 
only 21% and low proportion of complete remissions (7,14-16,85,96,97). Unfortunately, the 
tumor cells are effectively protected from tumor cell-killing immune activities in the immune-
suppressive TME, which may also block the infiltration of infused γδ T cells. Furthermore, 
the anti-tumor function of γδ T cells can be limited by the pleiotropic effects of a mixture of 
heterogeneous populations of immune cells in the TME (4,7,14,16,63,64,85,97).

Therefore, current efforts in favor of a durable anti-tumor benefit from γδ T cell immunotherapy 
lie in the quest to minimize activation-induced γδ T cell death, anergy, and the polarization to 
specific γδ T cells with immunosuppressive function (4,7,14,15,92,98-100). Additionally, several 
cytokines such as IL-15, IL-18, and IL-21 have been found to have the ability to promote the 
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expansion of γδ T cells with a higher proliferative capacity, a more pronounced Th1 polarization, 
and an increased cytotoxic capacity and secretion of immune-stimulating paracrine factors such 
as GM-CSF, IFN-γ, and TNF-α (101-103). In particular, disruption of the immunosuppressive TME 
could be a new strategy for improving the anti-tumor efficacy of γδ T cells. For example, IL-36γ 
acts synergistically with TCR signaling and is able to promote IFN-γ production by CD8+ T cells, 
NK cells, and γδ T cells by transforming the TME in favor of cancer eradication (104).

Up to date, clinical trials have been based on the adoptive transfer of peripheral circulating 
Vγ9Vδ2 T cells after ex vivo expansion and activation (11,15,16,68,82,97,105). Given the 
accumulating pieces of evidence supporting the superior anti-tumor functionality of Vδ1 
T cells compared with that of Vγ9Vδ2 T cells, at least in the context of certain tumors 
(14,67,77,98,99,106-110), Vδ1 T cells may be a potent tool for clinical manipulation in cancer 
immunotherapy, and efforts have been put forth to explore strategies for clinical-grade 
expansion. An interesting property of Vδ1 T cells for the adoptive transfer approach is their 
CCL2-mediated chemotaxis toward tumors (67,111,112). Vδ1 T cells are also less susceptible 
to activation-induced cell death and could persist in the circulation for many years, which 
is in favor of a durable anti-tumor immunity (98,99,110). Intriguingly, IL-4 promotes the 
proliferation of Vδ1 T cells and simultaneously inhibits Vδ2 T-cell growth (77,80,113), thus 
providing a novel basis to develop the preferential expansion approaches for Vδ1 T cells.

CONCLUDING REMARKS

Although γδ T cells are a small population of lymphocytes, they contribute significantly to 
rapid and sustained immune responses against cancer. In order to utilize the inherent activity 
of γδ T cells for cancer immunotherapy, it is critical to better characterize human γδ T cell 
subsets and the engaged mechanisms in various types of cancers. It is also necessary to 
understand the central paradigms that govern the tissue tropism, the stage of differentiation, 
the activation status, and the immune checkpoint receptor expression in γδ T cells so that 
γδ T cells can be durably activated with a potent anti-tumor phenotype. To maintain the 
anti-tumor activity of γδ T cells for a long period of time, the specific depletion of pro-tumor 
γδ T cells before the immunotherapy, the co-transfer of other immune cells that activate γδ 
T cells, and the modification of the cytokine balance in the TME should be considered in the 
immunotherapy using γδ T cells. In summary, as γδ T cells are heterogeneous, the pro-tumor 
or anti-tumor activities of different γδ T cell populations need to be thoroughly delineated 
and utilized to maximize the efficacy of the immunotherapy using γδ T cells.
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