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ABSTRACT

One-fifth of cancer deaths are associated with obesity. Because the molecular mechanisms 
by which obesity affects the progression of ovarian cancer (OC) are poorly understood, we 
investigated if obesity could promote the progression of OC cells using the postmenopausal 
ob/ob mouse model and peritoneal dissemination of mouse ID8 OC cells. Compared to lean 
mice, obese mice had earlier OC occurrence, greater metastasis throughout the peritoneal 
cavity, a trend toward shorter survival, and higher circulating glucose and proinflammatory 
chemokine CXCL1 levels. Ascites in obese mice had higher levels of macrophages (Mφ) and 
chemokines including CCL2, CXCL12, CXCL13, G-CSF and M-CSF. Omental tumor tissues in 
obese mice had more adipocytes than lean mice. Our data suggest that obesity may accelerate 
the peritoneal dissemination of OC through higher production of pro-inflammatory 
chemokines and Mφ recruitment.
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INTRODUCTION

The prevalence of obesity is rapidly and globally increasing (1). Obesity reduces human 
life expectancy and increases risks of multiple malignancies (2,3). In 2018, approximately 
22,240 new cases and 14,070 deaths from ovarian cancer (OC) are expected in the United 
States (4). Despite OC being the 5th leading cause of cancer deaths among U.S. women and 
frequent spread through the peritoneal cavity rather than blood vessels (5), how obesity 
influences the progression of OC is not fully understood. Epidemiological evidence indicates 
controversial results between obesity and OC survival: both a positive relationship (6-9) and 
no relationship (10-12) have been reported. Despite this controversy, obesity appears as a risk 
factor for OC (13-15) and leads to poorer quality-of-life outcomes in patients with OC (16-18). 
Interestingly, obesity in early adulthood is linked with higher mortality in OC (12,19,20). 
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Obesity induces chronic inflammation which can lead to adverse health conditions such 
as cardiovascular disease, diabetes and some cancers. Obesity-associated inflammatory 
mediators may modify the tumor microenvironment, leading to cancer progression (21,22). 
Adipose tissues release growth factors and cytokines such as adiponectin, leptin, TNF-α, IL-6 
and IL-8/CXCL8 (23). Chronic inflammation has been shown to involve a chemokine network 
that influences the migration and invasion of cancer cells (24,25), which support the tumor 
microenvironment for cancer progression by increasing inflammatory burden. We found 
that obesity could launch an inflammatory burden for OC progression via CXCR2-mediated 
signaling. OC cells produce high levels of CXCR2-specific chemokines such as CXCL1-3 and 
8 (26,27) in a NF-κB-dependent manner (28,29). Furthermore, CXCR2-mediated signaling 
could be a central adipocyte-driven chemokine network (30), linking obesity and OC. Our 
recent study shows that CXCR2 is a negative regulator of p21 via Akt-mediated Mdm2 in 
OC, contributing to OC proliferation (31). High-grade serous ovarian cancer (HGSOC), the 
most common OC subtype, has highly mutated p53 tumor suppressor protein (up to 96%) 
(32). CXCR2-deriven progression of OC further enhances CXCR2-specific chemokines by 
potentiating NF-κB via epidermal growth factor receptor-transactivated Akt signaling (33). 
Functional restoration of p53 repressed CXCR2-specific chemokines CXCL1-3 and 8 in p53 
mutant (p53m) OC cells (26). Our recent study indicates that CXCR2 associates with poor 
overall survival in p53m HGSOC (34), suggesting an involvement of CXCR2 in the high 
mortality of HGSOC compared to other OC subtypes. These facts indicate that obesity-
induced chronic inflammation may enhance the inflammatory burden in OC followed by a 
high mortality via the accelerated progression of OC.

Because the relationship between obesity and OC survival remains controversial, we 
investigated if obesity could promote the progression of OC cells using the postmenopausal 
obese mouse model and the peritoneal dissemination of mouse ID8 OC cells, focusing on 
immune cell profile and cytokine signature in OC-induced ascites.

MATERIALS AND METHODS

Generation of stable ID8 luciferase (ID8Luc) OC cell line and culture
ID8Luc cells were generated from parental ID8 OC cells as described previously (35). Cells 
were cultured at 37°C in a water-saturated atmosphere of 95% air and 5% CO2 with DMEM 
containing penicillin/streptomycin (each 100 U/ml) and 4% FBS. All liquid culture media 
were acquired from Invitrogen (Grand Island, NY, USA).

Mouse peritoneal syngeneic model
Mouse peritoneal syngeneic model was performed under guidelines approved by the 
Institutional Animal Care and Use Committee at Meharry Medical College and the National 
Institutes of Health (NIH) guide for the Care and Use of Laboratory Animals. Wild-type (WT, 
C57BL/6J) and ob/ob mice (OB, B6.V-Lepob/J) were obtained from Jackson Laboratory (Bar 
Harbor, ME, USA). The mice were maintained in a specific pathogen free animal housing 
facility at 22°C±2°C and 40%–60% humidity under a 12:12 light: dark cycle. Nine-week 
old female mice were ovariectomized (OVX) for the peritoneal dissemination model of 
postmenopausal obesity and the OVX mice were maintained on a standard diet throughout 
the experimental period. ID8Luc OC cells (3×106 cells/mouse in a volume of 0.2 ml PBS) were 
injected intraperitoneally into WT and OB mice after complete recovery from OVX procedure 
and confirmation of weight gain. Bioluminescence imaging were monitored weekly for 
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tumor growth. Briefly, mice anesthetized with 3% isoflurane were administered D-Luciferin 
(Cayman Chemical, Ann Arbor, MI, USA) intraperitoneally at 125 mg/kg, 5 min before 
acquisition of the image. Mice were then placed in the chamber of an In-Vivo MS FX PRO 
optical imaging system (Carestream, Rochester, NY, USA), and photons were collected for 
a period of 1 min. The luminescent intensity of the region of interest were quantified using 
Molecular Imaging software (Carestream). We monitored body weight and terminated the 
mice upon irreversible accumulation of ascites (up to 8–10 ml). Mice were monitored 3 times 
weekly to assess animal health such as hunched posture, lethargy and inactivity, impaired 
ambulation, shallow or labored breathing, hair coat condition and change in the body weight. 
In particular, mice showing clinical signs of ascites fluid production with constant increase of 
body weight and changes in appearance and activity were observed daily. When 20% increase 
in the body weight, extensive ascites accumulation or sluggish activity were observed, 
animals were terminated for humane reasons. Particularly, solid tumors from the diaphragm, 
omentum and pelvic sites were investigated for spreading index followed by histological 
examination using H&E staining. The survival time of the mice were compared between WT 
and OB mice with ID8Luc OC cells.

ELISA
CXCL1 levels in ascites and serum were measured by murine KC (CXCL1) ELISA kit (900-
K127; PeproTech, Rocky Hill, NJ, USA) according to the manufacturer's instructions. The 
optical density of each well was determined using a microplate reader set to 405 nm with 
wavelength correction at 570 nm. Glucose levels in ascites and serum were measured by 
Glucose Colorimetric Assay Kit (Cayman Chemical). The optical density of each well was 
determined using a microplate reader at 514 nm wavelength.

FACS
Immune cell profiles in ascites were evaluated by FACS with the following specific antibodies 
for leukocyte subtypes: PerCP-Cy™ 5.5 Rat Anti-Mouse CD335 [NKp46] for NK cells; Alexa 
Fluor® 647 Rat Anti-Mouse F4/80 for macrophages (Mφ); PE Rat Anti-Mouse CD4 for CD4 T 
cells; and APC Rat Anti-Mouse CD8a for CD8 T cells (BD Biosciences, San Jose, CA, USA).

Proteomic array for cytokine signatures
Cytokine signatures in ascites were evaluated using Proteome Profiler Mouse Cytokine Array 
(ARY006; R&D Systems, Minneapolis, MN, USA).

PCR array and quantitative RT-PCR
PCR array for customized mouse chemokines (CAMP10242) was obtained from Qiagen 
(Frederick, MD, USA). After isolating total RNA from tumor samples and eliminating 
genomic DNA, the RT reaction was performed at 42°C for 15 min followed by 94°C for 5 min. 
A real-time PCR for chemokines was performed according to manufacturer's instructions 
using a Bio-Rad CFX96 (Hercules, CA, USA) and the following 2-step cycling program: 1 
cycle at 95°C for 10 min, and 40 cycles at 95°C for 15 s and at 60°C for 1 min. Data analysis was 
performed based on a Data Analysis Center (https://www.qiagen.com/us/shop/genes-and-
pathways/data-analysis-center-overview-page/) provided by Qiagen.

Adipogenesis
The mouse fibroblast cell line 3T3-L1 (CL-173) was purchased from the American Type Culture 
Collection. Cells were cultured in DMEM with 10% calf serum (Invitrogen) at 37°C in a water-
saturated atmosphere of 95% air and 5% CO2, avoiding situations in which the cells became 
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too confluent (>70%) before the initiation of differentiation. Differentiation was performed 
as described previously (30). Undifferentiated and differentiated cells were washed with 
sterile Dulbecco's phosphate-buffered saline and cultured for an additional 48 h in complete 
DMEM media followed by centrifuged conditioned media (CM) collection and storage at 
−80°C for future use.

Cell proliferation
Cell proliferation assay was performed using the cleavage of MTT to a colored product as 
described previously (31).

Cell migration
ID8 cells (2×105 cells/ml in serum-free DMEM with 1% BSA) to be used for a migration assay 
were seeded in the 24-well Transwell cell culture insert (VWR Corp., Radnor, PA, USA). The 
bottom chamber contained 0.5 ml DMEM supplemented with 10% FBS as a chemoattractant. 
Cells were treated as indicated in Results and then incubated for 24 h. The cells that remained 
inside the insert were removed with a cotton swab; migrating cells on the filter were fixed 
with 3.7% formaldehyde and stained with 0.1% crystal violet followed by washing of the cells 
with PBS. The number of migrating cells was counted under the microscope (×400) using 5 
randomly chosen fields.

Statistics
Data were expressed as mean±standard error and analyzed by the paired Student's t-test to 
detect statistical significance (p<0.05).

RESULTS AND DISCUSSION

Older women have higher rates of diagnosis and death from OC (36) and activation of 
estrogen receptor prevents fat accumulation (37). Because ovariectomy eliminates the 
protection of female mice from gaining body weight (38), we used OVX WT and OB mice 
on standard diets to reflect a postmenopausal status. In agreement with another study (39), 
obese mice gained 2-fold more body weight than WT mice (Fig. 1A). The OB mouse is leptin-
deficient, resulting in obesity via hyperphagia despite a standard diet (40). We generated 
ID8Luc cells from parental mouse ovarian surface epithelial ID8 OC cells using stable 
transfection. Bioluminescence imaging revealed that tumors in obese mice were detected 
at earlier time points and were more widely spread metastasis of OC cells in the peritoneal 
cavity than lean mice (Fig. 1B). Bioluminescence intensity showed statistical significance in 
obese mice throughout the whole experimental period compared to lean mice (Fig. 1C). Other 
studies using the K18-gT121+/−; p53fl/fl; Brca1fl/fl (KpB) mice for serous epithelial OC model 
revealed that mice fed with a high-fat diet had larger tumor volume and heavier tumor weight 
than mice fed with a low-fat diet (41,42), supporting our results showing more widespread 
metastasis of OC in the peritoneal cavity (Fig. 1B and C). Compared to lean mice (109 days), 
obese mice showed a shorter survival trend (97 days) following termination due to ascitic 
fluid accumulation as defined by humane endpoints (Fig. 2A). Ascitic fluid accumulation 
was easily detected in lean mice, while it was difficult to observe in obese mice due to a 
larger body size. This fact might have caused survival in obese mice to be overestimated. 
Obese mice had higher levels of glucose in both ascites and serum than lean mice (Fig. 2B), 
consistent with increased levels of blood glucose in mice fed with a high-fat diet (42). Obese 
mice had higher serum levels of CXCL1 but similar levels in ascites (Fig. 2C). Higher serum 
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levels of CXCL1 indicate a systemic inflammatory burden in obese mice, which may promote 
cancer progression as suggested by our previous studies (26,33,35). Similarly, increased 
serum CXCL1 and CXCL5 were associated with increased obesity in db/db mice (43). In 
addition, CXCL1 is required for obesity-dependent tumor adipose stromal cell recruitment, 
vascularization and tumor growth promotion (44). Obese mice had more tumor burden in 
the peritoneal cavity, showing the wider peritoneal dissemination of ID8Luc cells, compared 
to lean mice (Fig. 2D). These results are consistent with other report showing enhanced 
intraperitoneal tumor burden in overweight or obese mice (39). Furthermore, histological 
evaluation revealed that omental tumor tissues in obese mice had more adipocytes (Fig. 2D).

We investigated immune cell profiles in ascites produced by OC. Ascites in obese mice 
showed higher levels of Mφ, but similar levels of NK, CD4 T and CD8 T cells compared 
to lean mice (Fig. 3). Multiple lines indicate that tumor-associated Mφ (TAMs) play an 
important role in progression of OC: TAMs constitute over 50% of cells in malignant ascites 
(45); CD163+ TAMs infiltration was associated with poor prognosis of OC (46,47); high level 
of TAMs was associated with metastasis and advance of patients with OC (48); coculture of 
TAMs and SKOV3 OC cells increased the invasion ability of SKOV3 cells (48); M1-Mφ CM 
increased the metastatic potential, such as migration and invasion, in OC cells (49); and 
blocking Mφ function in mice with ID8 OC cells using a CSF-1 receptor kinase inhibitor 
(GW2580) reduced infiltration of M2-Mφ and decreased ascites volume (50). Based on these 
facts, obesity-promoted Mφ infiltration in ascites may accelerate OC progression followed 
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Figure 1. The peritoneal dissemination of OC in postmenopausal obese mouse model. (A) Body weight in WT 
(n=9) and OB (n=8) female mice. OVX WT and OB mice were fed with standard diets and generated mouse ID8Luc 
OC cells were injected intraperitoneally. (B) The tumor burden imaging in the peritoneal cavity of ID8Luc cell 
bearing mice measured by bioluminescence imaging. Representative pictures obtained from 9 WT and 8 OB mice. 
(C) Bioluminescence intensity in in the peritoneal cavity of ID8Luc cell bearing mice.
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by high mortality. Furthermore, we investigated chemokine and cytokine signatures in 
ascites from obese and lean mice. Ascites in obese mice expressed higher levels of CCL2, 
CXCL12, CXCL13, complement component 5 (C5), G-CSF, M-CSF, and tissue inhibitors of 
metalloproteinase-1 (TIMP1) compared to those in lean mice (Fig. 4). Obesity is known to 
promote breast cancer by CCL2-mediated Mφ recruitment (51). Mφ accumulation in adipose 
tissue induced by a high-fat diet were reduced in CCL2 knockout (KO) mice compared to WT 
mice (52). Circulating levels of CCL2 were elevated in human obese subjects (53). These results 
may support obesity-derived CCL2-mediated Mφ recruitment in ascites produced by OC.

Diet-induced obese mice demonstrated a robust increase of CXCL12 expression in white 
adipose tissues, recruiting Mφ (54). CXCL12-induced adipose tissue Mφ chemotaxis was 
mediated by CXCR7 in obesity but not leanness (55). CXCL12-CXCR4/CXCR7 signaling axis 
might drive Myc-induced prostate cancer in obese mice (56). CXCL12 protein was found to 
be up-regulated during differentiation of THP-1 monocytes (57). Polarized CD163+ TAMs 
were associated with increased CXCL12 expression in gastric cancer (58). These results 
also may support obesity-derived CXCL12-mediated Mφ recruitment in ascites produced 
by OC. We found previously that the dominant chemokine in adipocytes was CXCL13 
during adipogenesis in 3T3-L1 cells (30), being consistent with a high level of CXCL13 in 
mature adipocytes (59). Monocyte-like and mature Mφ were found to produce CXCL13 
in inflammatory lesions (60). These facts suggest that CXCL13 in ascites of OC may be 
potentiated by obesity and Mφ accumulation. Although expression levels of C5 are similar 
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in adipocytes from lean and obese subjects (61), obese dogs with obesity-related metabolic 
dysfunction show increased C5 protein levels (62). So far roles of C5 in obesity and OC are 
poorly understood.

Although Mφ may promote colon cancer growth via a GM-CSF/heparin-binding epidermal 
growth factor-like growth factor paracrine loop that is enhanced by CXCL12 (63), ascites from 
OC have low levels of GM-CSF (Fig. 4). G-CSF treatment reduced body weight and increased 
energy expenditure in a diabetic rat model (64). On the other hand, M-CSF KO mice showed 
reduced body weight and monocytes in blood and spleen but no change in neutrophils 
compared to WT mice (65). The small intestinal lamina propria of G-CSF receptor KO mice 
harbored reduced numbers of Mφ compared to those of WT mice, but levels of neutrophil-like 
cells were similar between these mice (66). These results indicate that G-CSF in ascites of OC 
may be potentiated by Mφ accumulation rather than obesity. In high-fat diet-fed mice, mature 
adipocyte-induced CCL2 and M-CSF increase M2-Mφ in melanoma tumors (67). M-CSF 
enhanced OC tumorigenesis and metastasis (68). High-fat feeding increased Mφ infiltration 
into adipose tissues and serum levels of M-CSF and TIMP1 in BALB/c mice (69). On the other 
hand, there was no change in the expression of M-CSF in the adipose tissue from obese mice 
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and only a minor change in Mφ infiltration (70). Mφ recruitment was reduced in the uterus of 
osteopetrotic mutant mice lacking M-CSF (71). Elevated Mφ infiltration into omental fat was 
observable in lean women and exaggerated by obesity, being paralleled by CCL2 and M-CSF 
mRNA levels (72). These results support obesity-derived M-CSF-mediated Mφ recruitment in 
ascites produced by OC. TIMP1 KO mice with high-fat diet had a lower body weight and less 
subcutaneous and gonadal fat mass compared to WT mice (73). TIMP1 was highly secreted by 
omental adipose tissue in human obesity (74) and circulating levels of TIMP1 were higher in 
obese women than in lean women (75). These results indicate that TIMP1 in ascites of OC may 
be potentiated by obesity rather than Mφ accumulation.

We compared chemokine signatures and functional roles between preadipocyte and 
adipocyte CM-treated ID8 OC cells. A short-term treatment (1 h) of adipocyte-CM in ID8 
OC cells showed above 5-fold induction in CCL7, CCL17, CCL20, CCL25, CCL27, CXCL1, 
CXCL2, CXCL3 and CXCL10 compared to preadipocyte-CM (Fig. 5A). Dominant chemokines 
(above 15-fold) induced by adipocyte-CM were CXCL2 and CXCL3 (Fig. 5A). Long-term 
treatment (24 h) with adipocyte-CM diminished chemokines induced by short-term 
treatment, although maintaining above 2-fold induction in CCL7 and CCL17 (Fig. 5A). 
High-fat diet fed mice bearing prostate tumors showed higher levels of CXCL1 and CXCL2 
expression compared to low-fat fed mice (76). CXCL1 is required for the obesity-dependent 
tumor adipose stromal cell recruitment, vascularization and tumor growth promotion 
in prostate cancer (44). OC cell lines expressed highly CXCL1-3 and 8 (35), while ovarian 
tumor tissues expressed highly CCL20 (35) and CXCL10 (34). The differential chemokine 
signatures between adipocyte-CM on ID8 cells and ascites from obese mice with ID8 OC 
cells may be due to tumor heterogeneity including cancer cells, adipocytes, stromal cells and 
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immune cells. Interestingly, adipocyte-CM prefers cell migration to viability compared to 
preadipocyte-CM in ID8 OC cells (Fig. 5A and B). Adipocyte-CM increased the proliferation 
and migration of ID8 cells compared to basal media not preadipocyte-CM (77). In B16F1 
melanoma and E0771 breast cancer cells, adipocyte-CM supported cell proliferation and 
migration compared to basal media not preadipocyte-CM (78). In RM1 prostate cancer 
cells, adipocyte-CM increased cell proliferation but had no effect on migration compared to 
preadipocyte-CM (79). MCF7 and MDA-MB-231 breast cancer cells showed higher migration 
in a cancer-associated adipocyte-CM than in normal breast adipocyte-CM but no change in 
cell proliferation (80). In LNCaP prostate cancer cells, periprostatic explants CM enhanced 
cell motility but inhibited proliferation compared to stromal-vascular fraction CM (81). 
Despite cancer type-specific effects of adipocyte-CM on cancer cells, generally it looks like to 
enhance cell migration and somewhat proliferation in obesity-related cancer.

Based on our findings and other studies, obesity may accelerate the peritoneal dissemination 
of OC through systemically higher production of proinflammatory chemokines and increased 
Mφ recruitment in ascites.
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Figure 5. Chemokine signatures and functional roles in preadipocyte- and adipocyte-CM treated ID8 OC cells. (A) Chemokine signatures in preadipocyte- and 
adipocyte-CM treated ID8 OC cells using PCR array containing complementary sequences for human chemokine genes. Expression levels of chemokines were 
defined as absent (light green), low (green area) and high (red area) on average threshold cycles. (B) Cell viability in preadipocyte- (PreA) and adipocyte-CM 
(Ad) treated ID8 OC cells n=3). (C) Cell migration in preadipocyte- (PreA) and adipocyte-CM (Ad) treated ID8 OC cells (n=3). 
*Chemokines with >5 (1 h treatment) and >2 (24 h treatment)-fold increase were recognized as the major differences between preadipocyte- and adipocyte-CM; 
†p<0.05.
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