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ABSTRACT

Interferon-gamma (IFNG) is a pleiotropic cytokine that modulates both innate and adaptive 
immune networks; it is the most potent activator of macrophages and a signature cytokine 
of activated T lymphocytes. Though IFNG is now appreciated to have a multitude of roles in 
immune modulation and broad-spectrum pathogen defense, it was originally discovered, 
and named, as a secretory factor that interferes with viral replication. In contrast to the 
prototypical type I interferons produced by any cells upon viral infection, only specific 
subsets of immune cells can produce IFNG upon infection or stimulation with antigen or 
mitogen. Still, virtually all cells can respond to both types of interferons. This makes IFNG 
a versatile anti-microbial cytokine and also gives it a unique position in the antiviral defense 
system. The goal of this review is to highlight the direct antiviral mechanisms of IFNG, 
thereby clarifying its antiviral function in the effective control of viral infections.
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INTRODUCTION

Interferon-gamma (IFNG) was first discovered as a soluble macromolecule with antiviral 
activity (1). In contrast to virally induced interferon (IFN) (2), it was produced from 
leukocytes upon stimulation with phytohemagglutinin, a mitogenic plant lectin (1). IFNG is 
now known to be produced by antigen-activated T lymphocytes and cytokine-activated group 
1 innate lymphoid cells (ILC1) (3,4). Secreted IFNG stimulates adaptive antigen-specific 
immunity and activates innate cell-mediated immunity, particularly through the activation of 
macrophages (5-7). In fact, IFNG is a well-known broad-spectrum anti-microbial agent and 
a crucial regulator of overall inflammatory responses to pathogens (3). Ironically, despite its 
prominence, the original antiviral functions of IFNG remain poorly understood.

Interferons were originally named after their interfering effect on viral replication (2). 
Depending on the cellular receptor, three types of IFNs have been identified: types I, II, and 
III (8). Virtually all cells have the receptor for prototypical type I IFNs (e.g., IFN-α, IFN-β) and 
can produce them upon detection of viral or microbial invasion. Type II IFN receptors are also 
ubiquitously expressed, though only the aforementioned limited subsets of immune cells 
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produce IFNG, the type II IFN. In contrast, type III IFN receptors are only expressed in certain 
types of cells, such as mucosal epithelial cells, but most cells can produce type III IFNs (e.g., 
IFN-lambda) (9). In antiviral defense, type I IFNs are predominant, yet many viruses have 
multiple ways to evade their actions (10). Other IFNs can complement or synergize with type I 
IFNs, without the significant pathogenic risk associated with a type I IFN response (11,12).

Antiviral mechanisms of IFNG have not been well characterized. This is partly due to its 
overlapping antiviral effect with type I IFNs (8,13). IFNs activate an overlapping set of genes 
via similar Janus kinase/signal transducer and activator of transcription (JAK/STAT) protein 
signal transduction pathways, and thus antiviral activities of IFNs are somewhat redundant 
(14). In addition, type I IFNs can even be induced by IFNG and can contribute to the antiviral 
activity of IFNG (15). Certainly, IFNG possesses type I IFN-independent antiviral activity (16-
18). Gene expression analysis of virus-infected cell lines and organisms, revealed overlapping 
yet not identical gene induction patterns between type I IFNs and IFNG (19).

Another contributing factor to the poor characterization of antiviral IFNG is its broad 
immunomodulatory activity. IFNG from ILC1s can confer prompt host protection at the 
initial site of viral infection (20). IFNG from antigen-activated T lymphocytes plays crucial 
roles in establishing an antiviral state and coordinating immune responses for the long-
term control of viral infection (21-23). Functionally, IFNG can exert direct antiviral effects 
on infected cells and neighboring cells (17,24). It can also activate local immune cells, like 
tissue-resident dendritic cells, macrophages and NK cells, for augmented inflammation and 
antiviral functions (20,25-27). Moreover, IFNG can control the antiviral state by modulating 
the differentiation and maturation of T cells and B cells (28-31). In most cases, it is not easy 
to separate the direct antiviral function of IFNG from indirect antiviral function through its 
immunomodulatory activity (32-34).

Furthermore, several well-known antiviral functions of IFNG mostly lack a specific antiviral 
mechanism. For instance, IFNG is a potent inducer of indoleamine 2,3-dioxygenase (IDO) and 
nitric oxide synthase (NOS) (35,36). The resultant depletion of tryptophan and production of 
nitric oxide (NO) due to IDO and NOS expression, respectively, show strong antiviral effects. 
However, the molecular details are mostly unclear (37-45). IFNG can also exert non-cytolytic 
antiviral activity against several viruses, including hepatitis B virus (HBV) (46), Measles virus 
(47), Sindbis virus (SINV) (48), and West Nile virus (49). Nevertheless, the specific targets and 
effector proteins of the IFNG-mediated antiviral responses are largely unknown (50-52).

The goal of this review is to highlight the specific antiviral mechanisms of IFNG, thereby 
clarifying the antiviral function of IFNG in the effective control of viral infections. Principally, 
our focus here is to delineate the step of viral life cycle specifically inhibited by IFNG and to 
illuminate the antiviral effector proteins utilized by IFNG, whenever possible. We will discuss 
them along each step of the viral life cycle in the following sections (Table 1).

ENTRY

Viral infection starts with the attachment of a virus to its host cell surface, specifically via its 
receptor and/or non-specifically via cell surface molecules like glycans. Some viruses release 
their genomes directly into the cell after fusing its envelope with the plasma membrane, 
while some viruses enter the cells through cellular endocytosis (53,54). In the case of 
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endocytosis, the virus is sequestered inside the endosome until appropriate conditions (e.g., 
acidification of the organelle) are established, allowing the virus to release its core virion, 
containing the viral genome, or its genome directly into the cytoplasm (54). The released 
genome, either naked or still associated with viral proteins, then moves to specific sites in the 
cytoplasm or nucleus for its replication (53).

IFNG can directly inhibit viral invasion by controlling the expression and/or distribution of 
receptors required for virus entry (55,56) (Fig. 1). Hepatitis C virus (HCV) enters cells via a 
multistep process involving several receptors: CD81, scavenger receptor class B type I (SR-BI), 
claudin-1 (CLDN1), and occludin (OCLN) (57). IFNG hinders the entry of HCV by reducing 
the expression of CLDN1, a necessary HCV receptor that is particularly upregulated in the 
HCV-infected liver (58). Furthermore, IFNG alters the surface distribution of HCV receptors, 
like CD81 and SR-BI, thereby reducing the susceptibility of the cells to HCV infection (56). 
Similarly, IFNG inhibits the entry of human immunodeficiency virus (HIV) by downregulating 
the surface expression of its entry receptor CD4 in human monocytes (55,59).

IFNG can also inhibit viral entry at the transfer step of the invading virus from the endosome 
into the cytoplasm (Fig. 1). For the infection of human papillomavirus (HPV), the minor capsid 
protein (L2)/viral genome complexes need to be dissociated from major capsid proteins (L1) 
in the late endosome. Subsequently the dissociated L2/genome complexes translocate into the 
nucleus for genome replication (60,61). IFNG can obstruct this dissociation step by reducing 
the proteolysis of L1, leading to retention of L2/genome complex in the late endosome (60). 
In addition, IFNG-inducible lysosomal thiolreductase (GILT) localizes specifically to the 
endosomal/lysosomal compartments. GILT can break disulfide bonds within the envelope 
protein of several endocytosed viruses, including murine leukemia virus (MLV), vesicular 
stomatitis virus (VSV), and HIV-1 HXB2 strain. Since the Env protein is critical for the 
endosome-to-cytoplasm transition, the action of GILT inhibits viral entry and subsequent viral 
replication (62,63).
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Table 1. Viral life cycle targeted by IFNG
Targeted life cycle Virus Class of virus* References
Entry HCV IV (56)

HPV 16 pseudovirus I (60)
MLV VI (63)

Replication SINV IV (48,65)
PRRSV IV (66)
HCV IV (68)
VV I (38)

MNV IV (18,71)
Gene expression BKV I (72)

HSV-1 I (73)
MCMV I (15)
HPIV-3 V (74)
EBOV V (75)

Stability of gene expression and genome maintenance HBV VII (45,78,79,81)
Release and transmission HIV-1 VI (63)

HSV-1 I (83,84)
Reactivation HHV-8 I (89,92)

MHV 68 I (90,91)
HSV-1 I (93,94)
JCV I (95)

*Baltimore classification: Class I, double-stranded DNA viruses; Class IV, positive-sense single-stranded RNA viruses; Class V, negative-sense single-stranded 
RNA viruses; Class VI, positive-sense single-stranded RNA viruses that replicate through a DNA intermediate; Class VII, double-stranded DNA viruses that 
replicate through a single-stranded RNA intermediate.
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In sum, IFNG can inhibit viral entry at both extracellular and intracellular stages. In most 
cases, however, the downstream effectors are unclear, a frequent theme regarding the 
antiviral activity of IFNG.

REPLICATION

Viral replication is the fundamental goal of the virus life cycle (64). Inhibiting any step of 
the life cycle could result in the inhibition of viral genome replication during viral infection. 
Accordingly, it is difficult to pinpoint which steps of replication are specifically targeted 
by IFNG-mediated antiviral mechanisms. Here, we focus on the reports that showed viral 
genome replication as the most likely target of IFNG action.

The process of viral genome replication is tailored to the type of viral genome. The expression 
and function of viral proteins is an integral part of viral genome synthesis. Viruses with positive-
sense RNA genomes express viral proteins from the incoming genome immediately upon entry 
using the translation machinery of the host cell. In contrast, viruses with negative-sense RNA 
genomes must transcribe positive-sense RNAs first from the incoming viral genome using viral 
polymerases packaged together in infectious virions. In both cases, a polyprotein is translated 
from a positive-sense viral RNA and then processed into individual proteins that function 
during viral replication (64). While most RNA viruses replicate in the cytoplasm, most DNA 
viruses replicate in the nucleus of the host cell. Cellular RNA polymerases are used to synthesize 
viral mRNAs, but genomic DNA synthesis is usually performed via viral proteins (8).

IFNG inhibits the genomic and sub-genomic RNA syntheses of SINV (48). A neuronal cell 
line (dCSM14.1) can be persistently infected with SINV, but IFNG treatment results in viral 
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Figure 1. Antiviral mechanisms of IFNG. IFNG obstructs the various stages of viral life cycle in the cells stimulated with IFNG. Representative examples are 
depicted here: IFNG inhibits viral entry at both extracellular and intracellular stages, replication by disrupting replication niche, gene expression by hindering 
translation, stability by impeding nucleocapsid assembly, release by breaking the disulfide bond of a necessary cellular interaction partner, and reactivation 
by suppressing the transcription of a viral master regulator. Refer to the main text for the details of the antiviral mechanism. Red color bars signify inhibiting 
function of IFNG.

https://immunenetwork.org


clearance and improved survival of the cells (48,65). Viral RNA synthesis is transiently 
increased by 6 hour-post-infection (hpi) but markedly decreases after 18 hpi in the IFNG 
treated cells. As expected, the anti-SINV activity of IFNG in different types of neurons is 
dependent on the JAK/STAT signaling pathway (65). However, effector proteins working 
downstream of the JAK/STAT pathway were not identified. IFNG also decreases the level of 
genomic and sub-genomic RNA of porcine reproductive and respiratory syndrome virus 
(PRRSV) (66). This inhibitory effect is exerted at both the single cell and population levels, 
reducing the virion production and the cytopathic effect of PRRSV. The decrease in viral 
RNA accumulation is partially restored by protein kinase R (PKR) inhibitor, 2-aminopurine 
(2-AP). PKR is a common antiviral effector protein against many viruses, used by both type I 
IFNs and IFNG (67). The restoration of PRRSV replication upon 2-AP treatment suggests that 
IFNG utilizes PKR to inhibit viral RNA synthesis, but the incomplete restoration indicates the 
existence of another effector mechanism involved in this inhibition (66).

HCV replication, as well as entry, is also highly inhibited by IFNG in the human 
hepatocellular carcinoma cell line, Huh-7 (68); even in a Huh-7 derived HCV replicon cell 
line, where entry is bypassed, viral RNA and protein expressions are reduced upon IFNG 
treatment. Likewise, HCV replication in Huh-7 cells, as measured by a transiently transfected 
reporter plasmid, is inhibited by IFNG. Intriguingly, this antiviral effect of IFNG functions 
in Huh-7, but not in the hepatoblastoma cell line, Huh6 (68,69). Microarray-based gene 
expression analysis identified DExD/H box helicase DEAD box polypeptide 60-like (DDX60L) 
as an effector molecule responsible for the different antiviral activity of IFNG in Huh-7 and 
Huh6 cells (68). Gene expression of DDX60L is about three-times higher in IFNG-treated 
Huh-7 than in IFNG-treated Huh6 cells, whereas expression of other general ISGs is not 
altered. Consistently, knockdown of DDX60L attenuates the IFNG effect on HCV replication in 
Huh-7 cells (68). Further studies revealed that DDX60L exerts an antiviral effect specifically on 
viral RNA synthesis but not on internal ribosome entry site-mediated translation, assembly, 
release, or RNA stability of HCV (68).

IFNG can also inhibit viral replication by disrupting the replication niche of viruses (Fig. 1). 
Recently, this was exemplified by the effect of IFNG on the replication complex/compartment 
(RC) of positive-sense RNA viruses. Characteristic of all known positive-sense RNA viruses, 
the vesicle-like structure of the RC is created by the reorganization of cellular membranes 
and serves to provide a favorable microenvironment for viral RNA synthesis and protein 
translation/processing (70). Upon activation of macrophages by IFNG, the entry and pilot 
protein expression of murine norovirus (MNV) is not affected, but its replication is blocked 
at the step of RC formation (17). Consistently, the expression of the MNV capsid protein, 
which is translated from the sub-genomic RNA of MNV after genome replication, is also 
blocked by IFNG treatment (17). Unexpectedly, this anti-RC function of IFNG depends on 
a noncanonical function of autophagy proteins (17,71). Microtubule associated protein 
1 light chain 3 (LC3) is a ubiquitin-like autophagy protein, normally conjugated to the 
growing autophagosome by a set of core proteins known as the LC3-conjugation system of 
autophagy. Remarkably, independent of its canonical function of sequestering and delivering 
cytoplasmic materials to the lysosome for degradation, the LC3-conjugation system marks 
the RC of MNV with LC3. This in turn recruits IFN-inducible GTPases, such as immunity 
related GTPases and guanylate binding proteins, to the MNV RC. These recruited GTPases 
are essential to disrupt the RC of MNV and consequently to inhibit MNV replication in vitro 
and in vivo (71). The RC of another positive-sense RNA virus, encephalomyocarditis virus, 
is also tagged with LC3 and the IFN-inducible GTPases. However, the general applicability 
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to other positive-sense RNA virus RCs and the exact mechanism of RC inhibition needs 
further investigation.

IFNG inhibits the genome replication of vaccinia virus (VV) (38). VV infection proceeds 
sequentially in the order of early gene expression, DNA replication, late gene expression, and 
virion production, while shutting down the expression of cellular proteins (38). Treatment 
of murine macrophage-like RAW 264.7 cells with IFNG does not significantly inhibit the 
expression of VV early gene products. However, viral DNA synthesis, subsequent expression 
of late gene proteins and viral particle production are completely suppressed by IFNG (38). 
Shut down of cellular protein expression by VV infection is also completely blocked by IFNG. 
Induction of iNOS by IFNG and consequent production of NO was shown to mediate this 
blocking of VV replication after early gene expression, although the functional target of NO is 
elusive (38). Remarkably, IFNG-mediated production of NO also inhibits the replication of VV 
in bystander cells.

GENE EXPRESSION

Inhibition of viral gene transcription is an effective antiviral strategy used by IFNG against 
many viruses. IFNG treatment effectively inhibits the acute infection of BK virus (BKV) 
regardless of its strains (72). The transcription of early gene, T-antigen (TAg), and subsequent 
expression of TAg protein is suppressed by IFNG. Consequently, expression of viral late 
genes and virion production are reduced by IFNG. Treatment of IFNG before or after viral 
infection leads to a similar inhibition in viral protein expression and virion production, 
indicating that the antiviral mechanism of IFNG against BKV is independent of viral entry 
(72). Accumulation of mRNAs during herpes simplex virus type 1 (HSV-1) infection is also 
inhibited by IFNG (73). Consequently, subsequent steps of viral life cycle including early and 
late gene expression, viral DNA synthesis and viral replication, are also inhibited. However, 
IFNG does not inhibit the stages of HSV-1 infection after its genome replication, such as 
virion maturation or release.

In the case of murine cytomegalovirus (MCMV) infection, IFNG inhibits the immediate-
early (IE) gene transcription directly by controlling the activity of the MCMV major IE gene 
promoter (15). IFNG blocks the expression of MCMV IE transcripts and proteins much more 
efficiently in primary bone marrow derived macrophage than in mouse embryonic fibroblasts 
(15). This inhibitory effect appears very rapidly within an hour of IFNG treatment and is 
reversible upon removal of the stimulus. Remarkably, when type I IFN signaling is impaired, 
IFNG does not have a significant antiviral effect on MCMV (15). Thus, functional type I IFN 
signaling is required for the establishment of a full IFNG-induced antiviral state against 
MCMV. In contrast, IFNG inhibits the transcription of mRNAs from the negative-sense RNA 
genome of human parainfluenza virus type 3 (HPIV-3) without cross-talk with the type I IFN 
signaling pathway (74). The corresponding inhibitory mechanism is unknown, but a well-
known viral RNA degradation mechanism via the 2-5A synthetase/RNase L pathway is not 
involved in this antiviral action of IFNG against HPIV-3 (74).

Viral protein synthesis is also an effective target of IFNG (Fig. 1). The pilot transcription of 
positive-sense RNA from the negative-sense RNA genome of Ebola virus (EBOV) does not 
need new viral protein expression; however, subsequent viral genome replication requires 
viral protein synthesis (75). EBOV replication is inhibited upon blocking of protein synthesis 
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by cycloheximide (CHX) treatment, and IFNG shows CHX-like effects on EBOV genome 
replication (75). Co-treatment of CHX and IFNG results in a similar effect to the single 
treatment of either CHX or IFNG, suggesting that IFNG blocks the life cycle of EBOV through 
the inhibition of protein synthesis after its entry and before its genome replication. This 
inhibitory effect of IFNG is identical in the peritoneal macrophages from type I IFN receptor 
knock-out mouse, indicating a type I IFN-independent antiviral activity of IFNG (75).

STABILITY OF GENE EXPRESSION AND GENOME 
MAINTENANCE
Weakening the stability of expressed viral genes is an effective antiviral mechanism used by 
IFNG. HBV is a double-stranded DNA virus that replicates through a single-stranded RNA 
intermediate (76). Upon HBV infection of hepatocytes, the viral capsid containing its genome 
is transported to the nucleus and the genome of HBV is released (77,78). Subsequently the 
HBV genome transforms from a relaxed circular DNA (rcDNA) into a covalently closed 
circular DNA (cccDNA) in the nucleus. This cccDNA functions as a template to transcribe 
viral mRNAs and pre-genome RNA (pgRNA). Interestingly, the HBV RNAs released to the 
cytoplasm are degraded faster than their nuclear counterpart (79). This is mediated by 
the IFNG-induced DEAD box polypeptide 60 (DDX60), which is involved in a viral RNA 
degradation pathway (79,80). Knockdown of DDX60 delays the degradation of cytoplasmic 
HBV RNA but not nuclear viral RNA (79).

Produced pgRNA of HBV is further encapsidated and acts as a template for viral reverse 
transcriptase to synthesize the DNA genome (76). This HBV genome replication is post-
transcriptionally suppressed by IFNG in human hepatoma cells (45,81) (Fig. 1). Expression 
of pgRNA itself is not decreased by IFNG, but subsequent synthesis of single-stranded 
DNA (ssDNA) intermediate and rcDNA genome are reduced upon IFNG treatment (81). 
The expression of HBV capsid proteins to form the capsid assembly is modestly reduced. 
However, assembled capsids, encapsidated pgRNA, and capsid-associated intermediate 
DNAs are dramatically reduced by IFNG (81). A subsequent study found that IFNG inhibits 
the process of HBV capsid assembly, resulting in the degradation of the capsid protein and 
consequent decrease of pgRNA encapsidation and DNA replication.

IFNG-induced IDO expression and proteasomal degradation were suggested as the 
mechanism by which IFNG inhibits HBV encapsidation and core protein expression. IDO is a 
well-known IFNG-inducible effector molecule, which catalyzes tryptophan degradation (45). 
The reduction of HBV DNAs in cells expressing IDO is caused by a decrease in capsid protein 
synthesis, an essential component for the formation of HBV nucleocapsids. In addition, 
proteasome activity is altered by IFNG and associated with the antiviral state induced by 
IFNG (81,82). The IFNG-mediated reduction of HBV capsids and capsid-associated viral DNA 
is restored by the treatment of epoxomicin, a proteasome inhibitor (81), indicating a crucial 
role of proteasome activity in the antiviral function of IFNG against HBV.

IFNG can also decrease nuclear HBV cccDNA, the persistent form of the HBV genome, 
in the HBV-infected cell line (78). After encapsidation, rcDNA-containing capsids are 
either enveloped and released as progeny virions or reimported to the nucleus, resulting 
in the accumulation of cccDNA (77,78). The accumulation of cccDNA is very important for 
maintaining HBV persistence in infected cells. IFNG-induced intracellular pathways reduce 
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the amount of this nuclear HBV cccDNA as well as the maturation of HBV capsids (78). The 
IFNG-induced reduction of cccDNA is due to the destabilization of cccDNA through DNA 
deamination, which is promoted by the IFNG-induced APOBEC3A or APOBEC3B (78).

As demonstrated in the inhibition of HBV by IFNG, IFNG can decrease the stability of viral DNA, 
RNA, and proteins by degrading them through IFNG-induced effectors directly and indirectly.

RELEASE AND TRANSMISSION

After genome replication and virion assembly, progeny virions are released out of the 
originally infected host cell. IFNG can directly inhibit viral shedding and transmission to the 
next host cell (63,83,84) (Fig. 1). Induction of GILT by IFNG significantly restricts enveloped 
viruses, like MLV and VSV (63). However, some strains of HIV-1 are resistant to the IFNG-
mediated restriction, because their Env protein can inhibit the signal transduction pathway 
of IFNG (63,85). Interestingly, even these HIV-1 strains, of which Env protein hinders IFNG 
signals, can be inhibited by GILT at the step of virion release (63). HIV-1 is released out of the 
cell through the formation of Gag-CD63 complexes. IFNG-induced GILT can significantly 
decrease the amount of HIV-1 Gag protein and virion production by breaking the disulfide 
bonds in cellular CD63 (63). Upon the cleavage of disulfide bonds in CD63 by GILT, HIV-1 Gag 
protein is unable to make a complex with CD63, and therefore is not released.

IFNG also attenuates neuronal transmission of HSV-1 (83,84). HSV-1 and other alpha-
herpesviruses establish latency in the sensory nervous system (86). Periodical reactivation 
prompts the production of infectious virus in sensory ganglia, leading to the transport of 
virions to the axon of the neurons and subsequently to surrounding epithelial tissue (86). 
Thus, movement from neuronal cell bodies to axon termini, called anterograde transport, is 
an essential characteristic of alpha-herpesviruses for survival and propagation to other hosts. 
The action of IFNG on epidermal cells strongly inhibits HSV-1 during the initial transmission 
and subsequent spread via anterograde transport (84). Mikloska and Cunningham (84) and 
Mikloska et al. (87) developed an in vitro dual-chamber model consisting of human dorsal root 
ganglia (DRG) neurons and autologous epidermal cells (ECs) (DRG-EC model) in 2 separate 
compartments to study the anterograde axonal transport of HSV-1. IFNG treatment to the 
EC compartment, after axonal transmission of HSV-1 infection, inhibits infection and spread 
of HSV-1 (84). Both the number and size of viral cytopathic plaques in ECs are dramatically 
decreased by IFNG treatment in an outer chamber of the DRG-EC model when HSV-1 is 
transported as cell-free viruses or thru axon termini (84). These results suggest that IFNG can 
impede HSV-1 infection after axonal transmission and the subsequent spread of HSV-1 in ECs 
by its direct antiviral effect on the virus, although the nature of the IFNG-mediated change to 
the virus is unknown.

REACTIVATION

Reactivation is the mechanism by which a latently infected virus shifts its life cycle to a 
lytic replication, leading to productive replication and viral spreading (88). IFNG acts as 
a reactivation regulator for several viruses (89-94). The reactivation of human gamma-
herpesvirus, human herpesvirus 8 (HHV-8; also known as Kaposi's Sarcoma-associated 
herpesvirus) is inhibited by IFNG (89,92). IFNG suppresses the expression of lytic transcripts 
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and consequent reactivation of HHV-8 by inhibiting the promoter activity of ORF50, which 
is necessary and sufficient to drive the lytic replication of HHV-8 in human microvascular 
endothelial cells (92) (Fig. 1). IFNG treatment also inhibits the reactivation of murine gamma-
herpesvirus 68 (MHV-68) from the peritoneal cells of latently infected mice, although IFNG is 
not involved in the inactivation of the infectious virus itself produced through the reactivation 
process (91). Peritoneal macrophages are mainly responsible for this IFNG-mediated 
reduction of MHV-68 reactivation (90). Interestingly, IFNG fails to control the reactivation 
from latently infected B cell reservoirs, indicating a cell-type dependent anti-reactivation 
effect of IFNG (90).

The inhibitory effect on HSV-1 reactivation by IFNG is composed of both direct and indirect 
mechanisms (93,94). IFNG inhibits viral reactivation indirectly through the protective 
mechanism of CD8+ T cells (94). However, even in the absence of CD8+ T cells, IFNG still can 
block HSV-1 reactivation from its latency in trigeminal ganglia cells (93,94). This blockade 
of HSV-1 reactivation from latency in neurons is related to the inhibitory effect of IFNG on 
IE gene expression, which is required for reactivation and viral structural gene expression 
(93). Similarly, IFNG also plays an important regulatory role in regulating JC virus (JCV) 
reactivation by limiting viral gene expression and replication (95). IFNG controls the gene 
expression of JCV by downregulating the major viral regulatory protein, TAg, in the glial cells 
(95). IFNG cannot inhibit viral DNA replication directly but can inhibit it indirectly via post-
transcriptional suppression of TAg expression. Since TAg is essential for transactivation of 
viral promoters and genome replication, suppression of TAg by IFNG can negatively regulate 
JCV reactivation from latency.

CONCLUDING REMARKS

In general, the antiviral mechanisms of IFNG are poorly understood, especially in 
comparison to the immunomodulatory and overall anti-microbial functions of IFNG. 
However, a lesson may be learned from recent studies identifying a parallel function of 
IFNG in the defense against a protozoan parasite Toxoplasma gondii and a positive-sense 
single-stranded RNA virus MNV (71,96-99). Despite the dissimilarity of these 2 pathogens, 
a common IFNG-dependent mechanism underlies both the anti-protozoan and antiviral 
response (100). In this line of thinking, well-known anti-pathogen and immunomodulatory 
mechanisms of IFNG may guide the discovery of lesser-known antiviral mechanisms of IFNG.

Presently, there is no doubt that IFNG is more than a simple antiviral signaling molecule; it 
is also a crucial immunomodulatory cytokine. Based on its prominent role in the immune 
network, one might even name IFNG an interleukin if it were discovered today (3). However, 
over the decades, it has become clear that even the type I IFNs are not just antiviral cytokines 
(101-104). Fundamentally, IFNs can collaborate and complement each other for effective 
antiviral defense as well as immune modulation. Understanding the specific antiviral 
mechanisms of IFNG will help us to find the best antiviral strategy and thus effective 
therapeutic strategies against viral diseases, especially critical against viruses evolved to 
evade the prominent type I IFN-mediated antiviral responses (10).
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