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INTRODUCTION

Fractional flow reserve (FFR) is currently the gold standard for 
detecting lesion-specific myocardial ischemia.1-3 Prior studies 
have demonstrated that ischemia-causing lesions detected us-
ing FFR portend poor prognosis.1 Furthermore, FFR-guided 
percutaneous coronary intervention (PCI) has shown survival 
benefits over invasive coronary angiography (ICA)-guided PCI 
alone.2,3

Coronary computed tomography angiography (CTA) is a 
noninvasive method for accurate detection and exclusion of 
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Purpose: To evaluate the diagnostic accuracy of a novel on-site virtual fractional flow reserve (vFFR) derived from coronary com-
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onary angiography. Coronary lumen segmentation and three-dimensional reconstruction were conducted using a completely 
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was 0.75 [95% confidence interval (CI) 0.65 to 0.83], and Bland-Altman analysis showed a mean bias of 0.005 (95% CI -0.011 to 
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tive value, and negative predictive value were 78.0%, 87.1%, 72.5%, 58.7%, and 92.6%, respectively, using the FFR cutoff of 0.80. 
They were 87.0%, 95.0%, 80.0%, 54.3%, and 98.5%, respectively, with the FFR cutoff of 0.75. The area under the receiver-operating 
characteristics curve of vFFR versus obstructive CTA stenosis was 0.88 versus 0.61 for the FFR cutoff of 0.80, respectively; it was 
0.94 versus 0.62 for the FFR cutoff of 0.75.
Conclusion: Our novel, fully automated, on-site vFFR technology showed excellent diagnostic performance for the detection of 
lesion-specific ischemia.
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high-grade coronary stenoses, hence it may serve as a gate-
keeper for invasive catheterization.4-7 However, CTA tends to 
overestimate the severity of coronary artery stenosis, resulting 
in low specificity and positive predictive values (PPVs).8,9

Non-invasive CTA-derived FFR, which applies computa-
tional fluid dynamics (CFD) onto three-dimensional (3D) cor-
onary lumen geometry derived from CTA, has demonstrated 
high diagnostic accuracy, as well as improved specificity and 
PPVs, according to three prospective multicenter trials.10-12 Ul-
timately, this novel technique allows for comprehensive ana-
tomic and physiologic diagnosis of coronary artery disease 
(CAD).13 However, current non-invasive FFR techniques have 
several major limitations when applied to day-to-day clinical 
practice: The required simulation has to be performed outside 
of the hospital because it necessitates a supercomputer, there-
fore requiring transfer of patient data potentially leading to ex-
posure of personal patient information.14 Furthermore, the 
processing time can take several hours, and the service can be 
expensive.14-18

Therefore, we aimed to develop a new non-invasive on-site 
vFFR computing system derived from CTA that would allow 
for instantaneous utilization in clinical practice that is timelier 
and cost efficient. This technique uses a novel parallel com-
puting method with a completely automated lumen segmen-
tation algorithm without the need for a supercomputer.

MATERIALS AND METHODS

Study population
We consecutively enrolled clinically stable adult patients from 
September 2015 to February 2016 at Severance Cardiovascu-
lar Hospital who underwent clinically indicated ICA within 30 
days following CTA with no intervening coronary events. In-
stitutional Review Board (Severance Hospital, IRB Number 
1-2017-0031) approval was obtained for this retrospective 
study and informed consent was waived. Patients were ex-
cluded if they met any of the following criteria: history of cor-
onary artery bypass graft surgery; prior PCI with suspected in-
stent restenosis; old myocardial infarction; complex congenital 
heart disease; prior pacemaker or defibrillator; prosthetic 
heart valve; significant arrhythmia; body mass index greater 
than 40; or evidence of active clinical instability or life-threat-
ening disease.

CTA data acquisition
CTA images were acquired using two 64-slice multi-detector 
row computed tomography systems (Somatom Sensation 64, 
Siemens Medical Solutions, Forchheim, Germany) with pro-
spective or retrospective electrocardiographic gating. All pa-
tients with a heart rate of 65 beats per minute or higher received 
100 mg of atenolol orally prior to the CT, unless contraindicat-
ed. In addition, all patients received a 0.3-mg sublingual dose 

of nitroglycerin just prior to scanning, unless contraindicated. 
Bolus tracking was used for contrast injection. The scan pa-
rameters for the machines were as follows: 64×0.6-mm section 
collimation and a 330-ms rotation time. Depending on body 
habitus, tube voltages and currents were adjusted as follows: 
80, 100, or 120 kVp and 150–500 mAs. The median radiation 
dose was 3.92 mSv [95% confidence interval (CI) 2.56 to 5.65], 
with 9 patients receiving less than 1 mSv.

Invasive FFR measurement
Fractional flow reserve was measured in vessels deemed clini-
cally indicated for evaluation. After administration of nitro-
glycerin, a pressure-monitoring guidewire was advanced distal 
to a lesion. Hyperemia was induced by administration of intra-
venous or intracoronary adenosine at a rate of 140 mg/kg/min, 
and FFR was calculated by dividing the mean distal coronary 
pressure by the mean aortic pressure during hyperemia. FFR 
at a threshold of ≤0.80 or ≤0.75 were considered hemodynam-
ically significant leading to ischemia.

Fully automated lumen segmentation algorithm
We reconstructed patient-specific coronary geometry auto-
matically using in-house software on CTA images (Fig. 1A). 
The fully automatic segmentation was performed with the fol-
lowing four steps: at first, aorta and ostia were detected by our 
algorithm, which uses a Bayesian formulation in a pairwise 
fashion using anatomical and geometrical information.19 The 
detected points were used as seeds for coronary artery track-
ing. Second, the centerlines of the left and right coronary arter-
ies (RCA) were extracted starting from the detected ostia by 
our vessel tracking method based on stochastic geometric 
processes using an active branch search.20 The tracking meth-
od could better find the branches, any stenotic lesions, and 
seemingly disconnected vessels that may be occluded by ath-
erosclerotic plaque by modeling the statistical branch occur-
rence and the vessel disconnection. Third, luminal boundaries 
for all vessels were automatically delineated every cross-sec-
tional plane based on the image gradient and prior CT infor-
mation on the number of plaques. Finally, we generated the 
surface mesh of the coronary structure with the estimated lu-
minal boundaries. The connections of bifurcated vessels were 
processed smoothly using a mesh merging method that merged 
the vessel mesh and the divaricating branch mesh.21

Computational fluid dynamics for vFFR
To calculate vFFR, 3D blood flow dynamics were simulated us-
ing the CFD technique for patient-specific coronary geometry 
(Fig. 1B). The continuity and Navier-Stokes equations for un-
steady incompressible Newtonian fluid flow were solved with 
appropriate boundary conditions. A fully implicit four-step 
fractional method with a regular Crank-Nicolson scheme for 
time advancement and a P2P1 finite element method for spa-
tial discretization were employed. In order to accommodate 
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the specific time-varying pressure-flow characteristics of cor-
onary flow, which is affected by intramyocardial pressure sub-
ject to cyclic contraction of the left ventricle and microcircula-
tion in coronary distal networks, zero dimensional lumped 
parameter network (LPN) models were integrated into the 3D 
CFD model at all coronary outlets in a fully implicit manner. 
The patient-specific total resistances and capacitance for the 
distal coronary bed in a resting condition, as well as a hyper-
emic condition (i.e., the maximum flow condition resulting from 
the minimal microvascular resistance), were determined as de-
scribed by Sankaran, et al.22 and Sharma, et al.23 The distribu-
tion of flow rates between left anterior descending artery (LAD) 
and left circumflex artery (LCX) was determined according to 
the total volume of the corresponding vessel tree. Flow divi-
sion into further distal branches was approximated by allome-
tric scaling laws based on the coronary lumen cross-sectional 
area.24 The aortic pressure and flow rate were acquired by solv-
ing the LPN models with constraints that matched the systolic 

and the diastolic blood pressure of the individual patients.
To expedite simulation time, a parallel computing procedure 

based on a domain decomposition method was applied (Fig. 
1B).25 The P2P1 unstructured mesh of the whole computation-
al domain was decomposed into multiple subdomains using 
a k-way partition method,26 and the computing work for each 
subdomain was equally distributed to corresponding proces-
sors. Simulations were carried out on a parallel cluster system 
(two nodes, 40 cores), where each node comprised two CPUs 
(E5-2680V2, 2.8 GHz, 25 MB L3 cache) and 64 GB RAM, with 
an Infiniband interconnect network between nodes.

Statistical analysis
Data are reported as a mean±SD for continuous variables and 
as proportions (%) for categorical variables. Pearson correla-
tion coefficients using two-sided p-values, with p-values<0.05 
considered statistically significant, and Fisher’s Z transforma-
tion statistics were applied for comparing correlations. Bland–

Fig. 1. Workflow of the automated segmentation algorithm and the novel parallel computing method. (A) A fully automated lumen segmentation algorithm 
was applied to reconstruct patient-specific coronary geometry. (B) A novel parallel computing procedure based on a cluster with 40 cores decomposing 
the domain into 40 sub-domains and assigning a sub-domain to each computing core was applied.
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Altman plots with 95% CIs for correlations were calculated. 
FFRs were each dichotomized at a threshold of 0.80 and 0.75, 
with FFR values ≤0.80 and ≤0.75, respectively, considered he-
modynamically significant and causal of ischemia. The diag-
nostic accuracy, sensitivity, specificity, PPV, and negative pre-
dictive value (NPV) between vFFR and FFR at 0.80 and 0.75 
were presented as proportions and 95% CIs. The areas under 
receiver operating characteristic curves (AUC) were com-
pared according to the method proposed by DeLong, et al.27 
Statistical analyses were performed using Medcalc software 
(version 17.6; MedCalc Software, Mariakerke, Belgium).

RESULTS

Three out of 60 patients analyzed (5%) were excluded based on 
failure of lumen segmentation due to severely calcified lesions 
or motion artifacts. We subsequently analyzed 100 lesions from 
57 patients (42 men and 15 women, mean age: 67.3±8.5 years). 
Baseline patient characteristics are presented in Table 1. The 

lesions were primarily located in the LAD (47%), followed by 
the RCA (23%), LCX (18%), diagonal branch (DG, 5%), obtuse 
marginal branch (OM, 4%), left main (LM, 2%), and ramus in-
termedius (RI, 1%). The plaque composition profiles of the le-
sions were as follows: mixed plaque (59%), non-calcified 
plaques (29%), and calcified plaques (12%). Forty percent of 
plaques were located in the proximal segments of coronary 
arteries.

The average time for generating patient-specific 3D coronary 
geometry was 233 seconds (min=175 s, Q1=196 s, median=212 s, 
Q3=221 s, max=386 s). CFD simulations were carried out up to 
two cardiac cycles to damp initial transients and most runs 
were able to be completed within 20 minutes (average=514.7 s, 
min= 232 s, Q1=380 s, median=439 s, Q3=544 s, max=1370 s). 
The run time was highly dependent on the smoothness of cor-
onary lumen surface and computational mesh quality. The 
representative simulation case of vFFR is shown in Fig. 2.

The correlation coefficient between vFFR and FFR was 0.75 
(95% CI 0.65 to 0.83), and Bland-Altman analysis reavealed a 
mean bias of 0.005 (95% CI -0.011 to 0.021), with 95 % limits of 
agreement of -0.16 to 0.17 between vFFR and FFR (Fig. 3). Di-
agnostic performance was evaluated separately using FFR cut-
offs of 0.80 and 0.75. The accuracy, sensitivity, specificity, PPV, 
and NPV when the FFR cutoff of 0.80 was used were 78.0% (95% 
CI 64.0–87.0), 87.1% (95% CI 70.2–96.4), 72.5% (95% CI 60.4–
82.5), 58.7% (95% CI 48.6–68.1), and 92.6% (95% CI 83.2–96.9), 
respectively. In addition, the AUC value for vFFR was signifi-
cantly higher [0.88 (95% CI 0.80–0.94) vs. 0.61 (95% CI 0.51–
0.71)] than CTA ≥50% stenosis (Fig. 4A). Moreover, when a 
FFR cutoff of 0.75 was used the diagnostic performance signifi-
cantly improved, with accuracy, sensitivity, specificity, PPV, 

Table 1. Baseline Characteristics of the Study Population

Baseline characteristics (n=57)
Mean age, yrs 67.3±8.5
Male, % 73.7
Mean body-mass index 25.1±2.7
Hypertension, % 56.1
Diabetes, % 31.6
Dyslipidemia, % 45.6
Family history, % 7
Current smoker, % 29.8
Vital signs

Systolic blood pressure, mm Hg 135.9±15.5
Diastolic blood pressure, mm Hg 77.0±10.0
Heart rate, beat/min 60.7±8.9

Laboratory measures
Hemoglobin, mg/dL 13.9±1.5
Hematocrit, % 41.0±4.5
Creatinine, mg/dL 0.89±0.22
Total cholesterol, mg/dL 159.5±39.8
LDL cholesterol, mg/dL 88.7±33.3
HDL cholesterol, mg/dL 44.6±11.7
Triglycerides, mg/dL 124.1±79.6

Medications, %
Aspirin 50.9
Clopidogrel 28.1
Beta-blocker 26.3
Nitrate 19.3
Statins 57.9
ACE inhibitors/ARB 22.8
Calcium channel blocker 36.8

LDL, low-density lipoprotein; HDL, high-density lipoprotein; ACE, angiotensin-
converting enzyme; ARB, angiotensin II receptor blocker.

Fig. 2. Example simulation case of on-site virtual fractional flow reserve 
(vFFR). A noninvasive on-site vFFR simulation defined the distal portion of 
the right coronary artery (A) as an ischemic lesion (0.76) and the middle 
portion of the left anterior descending artery (B) as a non-ischemic lesion 
(0.84). These simulation derived values matched perfectly with the inva-
sively measured FFR values.
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and NPV of 87.0% (95% CI 77.0–95.7), 95.0% (95% CI 75.1–
99.9), 80.0% (95% CI 69.6–88.1), 54.3% (95% CI 43.1–65.1), 
and 98.5% (95% CI 90.4–99.8), respectively. In addition, the 
AUC value for vFFR was excellent [0.94 (95% CI 0.88–0.98) vs. 
0.62 (95% CI 0.52–0.71)], compared with CTA ≥50% stenosis 
(Fig. 4B). Fig. 5 shows the comparison of the diagnostic perfor-
mances between vFFR and FFR at 0.8, between vFFR and FFR 
at 0.75, and between CTA ≥50% stenosis and FFR at 0.8.

The diagnostic performances according to vessel size were 
also evaluated by separating large vessels (n=70), such as the 
LM, LAD, and RCA, from small vessels (n=30), such as LCX, DG, 
OM, and RI. Large vessels showed higher accuracy than small 
vessels both with FFR cutoffs of 0.80 (80.5% vs. 73.3%) and 0.75 

(88.9% vs. 83.3%).

DISCUSSION

In the present study, we developed a novel non-invasive CTA-
derived on-site vFFR method and demonstrated its excellent 
correlation with invasively measured FFR. In addition, this 
method exhibited excellent diagnostic performance for de-
tecting ischemia producing lesions, compared to invasive FFR 
as a reference standard. Furthermore, vFFR had significantly 
higher diagnostic performance and improved discriminatory 
power for the detection of lesion-specific ischemia, compared 

Fig. 3. Linear regression (A) and Bland-Altman analysis (B) between vFFR and FFR. Correlation coefficient (r) between vFFR and FFR was 0.75 (95% CI 0.65 
to 0.83), and Bland-Altman analysis showed a mean bias of 0.005 (95% CI -0.011 to 0.021), with 95% limits of agreement of -0.16 to 0.17. vFFR, virtual frac-
tional flow reserve; CI, confidence interval.

1.0

0.9

0.8

0.7

0.6

0.5

0.4

vF
FR

0.4            0.5            0.6            0.7           0.8           0.9            1.0

FFRA

0.4

0.3

0.2

0.1

0.0

-0.1

-0.2

-0.3

-0.4

FF
R-

vF
FR

0.4         0.5        0.6         0.7         0.8         0.9         1.0         1.1 

-0.16

0.00

0.17

-1.96 SD

+1.96 SD

Mean

FFRB

Fig. 4. ROC demonstrating AUCs for vFFR and obstructive (≥50%) CTA stenosis for the discrimination of lesion-specific ischemia using FFR cutoff values 
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to obstructive (≥50%) CTA stenosis alone. Moreover, we also 
discovered that when an FFR cutoff of 0.75 was used, the diag-
nostic accuracy and discriminatory ability of vFFR for ischemia 
detection was greatly enhanced.

CTA is a robust noninvasive tool for ruling out obstructive or 
high-grade coronary artery stenosis, obviating unnecessary use 
of invasive catheterization.4-7 On the other hand, CTA’s tenden-
cy to overestimate coronary artery stenosis can lead to addi-
tional testing that is often unnecessary due to its low specificity 
and PPV for the detection of ischemia causing stenosis.8,9 Based 
on these limitations, FFR-CT was created, and several FFR-CT 
studies have shown great improvement in the diagnostic per-
formance of ischemia detection by increasing specificity and 
PPV compared with other non-invasive imaging modalities, 
such as stress echocardiography, single photon emission com-
puted tomography, or cardiac magnetic resonance.10-12,28 How-
ever, FFR-CT has several major limitations, including high add-
on costs (approximately $1500), potential risk of exposure of 
personal patient information based on need for off-site post-
processing, and considerable processing time leading to a po-
tential delay in patient care.14-18 Furthermore, a recently intro-
duced on-site CTA derived cFFR (Siemens cFFR, version 1.4; 
Siemens Healthcare, Forchheim, Germany) has been shown 
to have high diagnostic accuracy.29 However, this method re-
quires a semi-automated coronary lumen segmentation pro-
cess (–60 minutes per case), which might be a considerable 
limitation when considering its application to daily practice.30

On the other hand, the vFFR does not require the use of a su-
percomputer to compute coronary flow. Instead, the imple-
mentation of on-site CFD calculation is done using a novel 
parallel computing method. This method is based on a cluster 
with 40 cores, which then decomposes the domain into 40 sub-
domains and assigns a sub-domain to each computing core. 
Additionally, the coronary lumen segmentation and 3D recon-
struction is conducted by a completely automated algorithm 
without any operator intervention, thus making the results 
available within 30 minutes, including segmentation and CFD 

calculation. In addition, the median radiation dose of CTA in 
this study was 3.92 mSv (95% CI 2.56 to 5.65), and 9 patients 
(16%) received less than 1 mSv (using 80 kVp along prospec-
tive electrocardiogram gating). To date, several studies have 
shown that CTA is able to visualize not only stenosis severity 
but also adverse plaque characteristics, which are closely re-
lated with future adverse events, in addition to lesion specific 
ischemia.31-35 For example, Gaur, et al.36 demonstrated that ad-
verse plaque characteristics provide additive valve in FFR-CT 
for prediction of ischemia. Based on these findings, CTA with 
the aid of on-site vFFR could potentially provide a comprehen-
sive evaluation of coronary stenosis and adverse plaque fea-
tures, as well as assessment of hemodynamically significant 
CAD, which could lead to a true “one-stop shop” with sub mil-
li-Sievert radiation exposure.

This study is not without limitations. First, this was a retro-
spective pioneering study with a limited number of cases. Pres-
ently, vFFR requires further well-powered validation in pro-
spective multicenter trials. Second, the vessels interrogated by 
FFR were limited to those clinically indicated, introducing po-
tential selection bias. Lastly, we were unable to evaluate 5% 
(3/60) of patients in whom vessels were heavily calcified or there 
were severe motion artifacts that made CTA-derived FFR meth-
ods impossible. CTA image quality was also an important fac-
tor for successful simulation in this study, which is the case in 
most other imaging studies.37,38 Recently developed high spa-
tial resolution and wider CTA detector coverage may provide a 
solution for this issue in the near future.39

In conclusion, a novel on-site vFFR computing system em-
ploying a fully automated segmentation algorithm using a par-
allel computation method showed excellent diagnostic perfor-
mance for the detection of lesion-specific ischemia and was 
significantly faster and cheaper.
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