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There is persuasive epidemiological and experimental evi-

dence that dietary polyphenols have anti-inflammatory activity.

Aspirin and other non-steroidal anti-inflammatory drugs

(NSAIDs) have long been used to combat inflammation. Re-

cently, cyclooxygenase (COX) inhibitors have been developed

and recommended for treatment of rheumatoid arthritis (RA)

and osteoarthritis (OA). However, two COX inhibitors have

been withdrawn from the market due to unexpected side effects.

Because conventional therapeutic and surgical approaches have

not been able to fully control the incidence and outcome of

many inflammatory diseases, there is an urgent need to find

safer compounds and to develop mechanism-based approaches

for the management of these diseases. Polyphenols are found

in many dietary plant products, including fruits, vegetables,

beverages, herbs, and spices. Several of these compounds have

been found to inhibit the inflammation process as well as

tumorigenesis in experimental animals; they can also exhibit

potent biological properties. In addition, epidemiological

studies have indicated that populations who consume foods rich

in specific polyphenols have lower incidences of inflammatory

disease. This paper provides an overview of the research

approaches that can be used to unravel the biology and health

effects of polyphenols. Polyphenols have diverse biological

effects, however, this review will focus on some of the pivotal

molecular targets that directly affect the inflammation process.
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INTRODUCTION

Inflammation is the immunological defense

mechanism by which the body fights infection or

injury from bacteria, viruses and other pathogens.

The defining clinical features of inflammation are

known in Latin as rubor (redness), calor (warmth),

tumor (swelling) and dolor (pain). These hall-

marks of inflammation were first described by

Aurelius Cornelius, a Roman physician and medi-

cal writer who lived from about 30 B.C. to 45 A.D.

The redness and swelling that occurs at the site

of a wound is due to the widening blood vessels

to allow specialized white blood cells to enter and

battle the pathogens. Following this process, the

inflammation fades and healing begins. Excessive

or inadequate activation of the system can have

serious effects, as can the failure of the inactiva-

tion mechanism. In the early 1970s, aspirin and

other non-steroidal anti-inflammatory drugs

(NSAIDs) were found to inhibit cyclooxygenase

(COX), which produces prostaglandins (PGs), a

class of physiological and pathophysiological inflam-

matory mediators.1 Since then, the biosynthetic

cascade of arachidonic acid (AA) has been the

subject of intense research. This is because AA,

having been previously liberated from phospho-

lipids using various stimuli, can be metabolized

by the COX pathway into PGs and thromboxane

A2, or by the lipoxygenase (LOX) pathways to

hydroperoxyeicosateraenoic acids (HpETEs), hydro-

xyeicosateraenoic acids (HETEs) and leukotrienes

(LTs) (Fig. 1). These two proteins play a vital role

in inflammation by controlling the intensity and

duration of pain, as well as the occurrence of

fever, swelling and heat of an affected area. Al-

though steroidal anti-inflammatory drugs and

NSAIDs are currently used to treat acute inflam-

mation, these drugs have not been successful in
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curing chronic inflammatory diseases, such as

bronchiectasis, rheumatoid arthritis (RA), osteo-

arthritis (OA), and inflammatory bowel disease

(ulcerative colitis and Crohn's disease). Recently,

Vioxx and Celebrex, two blockbuster drugs used

to treat arthritis, were withdrawn from the drug

market due to their cardiovascular side effects.

These cases provide examples of the unknown

side effects produced by synthetic drugs, and

suggest that an evaluation of the long-term effects

of drugs may be required.

Alternatively, a large number of dietary poly-

phenols have been consumed in food, and their

anti-inflammatory activities have been reported.

Polyphenols can be classified into four different

groups: flavonoids, stillbenes, lignas, and phe-

nolic acids (Fig. 2). These compounds have

received considerable attention from the public.

Fig. 1. Arachidonic acid (AA)
pathways. AA can be converted
to either prostaglandins or
leukotrienes, depending on the
enzymes that are present. Each
metabolite affects its biological
action through receptors.

Fig. 2. The structure of four
major polyphenols found in the
diet.
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In fact, 12 out of the 40 anti-inflammatory drugs

approved between 1983 and 1994 were derived

from or based on these natural products.2 These

molecules are secondary metabolites of plants

and are generally involved in the defense mech-

anism against ultraviolet radiation and insects.

Some of the polyphenols found to be beneficial to

health were characterized as naturally-occurring

toxicants in plants. In excess, some polyphenols

resulted in growth depression in poultry,

livestock and laboratory animals. However, the

intake of small amounts of polyphenols in food

has a potent effect on reducing chronic diseases

in animal models. Epidemiological studies have

indicated that populations who consume foods

rich in specific polyphenols have a lower

incidence of chronic inflammatory diseases.

Kuhnau et al. calculated that dietary polyphenol

intake in the US was ~1 g/day.3 Some studies

have subsequently provided more precise in-

dividual data regarding the intake of various

classes of dietary polyphenols. Flavonols (one of

the flavonoids) have been more extensively

studied, and the consumption of these substances

has been estimated at 20-25 mg/day in the US.4

The plasma concentrations of flavonoids are

usually <10 μM and the steady-state levels are

typically <1 μM.5 However, the concentrations of

total polyphenols may be higher than those of

flavonoids.

We have been studying the effects of several

dietary polyphenol compounds (including resve-

ratrol, genistein, catechin, and indole-3-carbinol)

on chronic diseases in humans, such as inflam-

mation and cancer.6-9 The potential molecular

mechanisms of their anti-inflammatory activities

have also been suggested to include, but not

limited to, the inhibition of enzymes related to in-

flammation, such as cyclooxygenase and lipoxy-

genase, and many others including PPAR, NOS,

NF-κB, and NAG-1. Thus, polyphenols can in-

fluence many pathways, and other compounds

may also affect the same pathways. The detailed

mechanisms by which each polyphenol induces

anti-inflammation remain to be elucidated. In this

review, we summarized the current findings of

the molecular targets of polyphenols as anti-in-

flammatory compounds. We focused on two mo-

lecular aspects: the arachidonic acid (AA)-depen-

dent pathway and the AA-independent pathway.

Cyclooxygenase, lipoxygenase, and PLA2 are dis-

cussed as AA-dependent pathway proteins by

polyphenols, whereas NOS, NF-κB, PPAR, and

NAG-1 are discussed as AA-independent pathway

proteins. There is great potential for dietary poly-

phenols to become the next generation of dietary

factors to confer health effects for inflammation

beyond synthetic drugs. Further, dietary poly-

phenols may provide an excellent model system

for the development of more effective drugs in the

future.

ARACHIDONIC ACIDDEPENDENT PATHWAY

COX inhibition

An anti-inflammatory effect is believed to result

from inhibiting the formation of prostaglandins by

prostaglandin H synthase (COX, also called

cyclooxygenase), which converts arachidonic acid

(AA) released by membrane phospholipids into

prostaglandins. Two isoforms of prostaglandin H

synthase, COX-1 and COX-2, have been identified,

and one variant form (COX-3) has recently been

reported as well.10 COX-1 is constitutively ex-

pressed in many tissues, while the expression of

COX-2 is regulated by mitogens, tumor promo-

ters, and growth factors.11 NSAIDs are widely

used in the treatment of inflammatory diseases.

Since aspirin was synthesized, a number of as-

pirin-like drugs have also been developed. As-

pirin and other NSAIDs (also known as conven-

tional NSAIDs that block COX-1 and COX-2)

induce gastric ulcerization and kidney failure due

to COX-1 inhibition. COX-1 is necessary for the

protection of the stomach lining, so interfering

with its activity can cause gastrointestinal distur-

bances ranging from simple discomfort to

bleeding ulcers. This hypothesis was confirmed

when newly developed drugs that specifically in-

hibited COX-2 were shown to have a lower rate

of gastrointestinal bleeding when compared to

conventional NSAIDs.12 However, the “good” COX-1

versus “bad” COX-2 dichotomy has proven overly

simplistic. COX-2 has been shown to exert normal

physiological effects, including the regulation of

vascular and renal blood flows.13 The identifica-
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tion of COX-2 was not expected to increase the

effectiveness of NSAID therapy, since conven-

tional NSAIDs inhibited both COX-1 and COX-2.

However, the identification of cyclooxygenase 3

(COX-3) may contribute to the elucidation of the

inflammatory process.10 COX-3 has also raised

many questions by researchers studying the ef-

fects of acetaminophen. The weak level of COX-3

inhibition induced by acetaminophen probably

does not occur with standard oral dosages of acet-

aminophen (0.5-1 g/day). Thus, other hypotheses

regarding acetaminophen's mechanisms of action

should be considered. Although the marketing of

new COX-2 inhibitors has emphasized the advan-

tages of not blocking the necessary COX-1 path-

way, infrequent reports of gastrointestinal pro-

blems still exist from the use of these medications.

Both Celebrex and Vioxx were withdrawn from

the market in 2005 due to an increase in cardio-

vascular risks, likely caused by the thromboxane

formed via the COX-1 pathway.14 Therefore, a

clinical trial that involves patients switching from

one synthetic agent to a different agent could be

valuable. Several compounds that are consumed

daily in various foods may provide alternative

tools for treating inflammatory diseases by acting

as COX inhibitors.

In 1980, Baumann et al. were the first to report,

in a study that assessed rat medullar COX

activity, that some dietary polyphenols, such as

galangin and luteolin, inhibit AA peroxidation.15

Since then, several researchers have reported that

many dietary polyphenols inhibit COX activity at

the transcriptional level as well as at the enzyme

level. For instance, Landolfi et al. found that fla-

vone, chrysin, apigenein, and phloretin depressed

COX activity and inhibited platelet aggregation.16

The flavonoids, 6-hydroxykaempferol, and quer-

cetagenin isolated from T. parthenium (feverfew),

and 6-hydroxyluteolin and scutellarein isolated

from T. vulgaris (tansy) were shown to inhibit

COX activity in leukocytes.
17

The triterpenes

sasanquol isolated from C. sasanqua (Theaceae)

and 3β-p-hydroxybenzoyldehydrotumulosic acid

from the fungus P. cocos (Polyporaceae) produced

activity against 12-O-tetradecanoylphobol-13-acetate

(TPA) and also AA-induced ear inflammation in

mice,
18
which was probably caused by the COX-

2 inhibition. Pre-treatment with green tea extract

enriched with catechin and epigallocatechin gal-

late (EGCG) by gavage inhibited COX-2 expres-

sion that was induced by the tumor promoter

12-O-tetradecanoylphorbol-13-acetate (TPA) in

mouse skin. Similarly, EGCG down-regulated

COX-2 in TPA-stimulated human mammary

epithelial cells (MCF-10A) in culture.19 Both the

green tea catechin and the EGCG displayed COX

inhibition activity in LPS-induced macrophages20

and inhibited IL-1β-dependent pro-inflammatory

signal transduction in cultured respiratory epi-

thelial cells.21 The stillbene compound resveratol

possesses anti-inflammatory activity because it

suppresses carragenen-induced pedal edema via

the inhibition of COX activity.22 Furthermore,

resveratrol inhibits TPA-induced COX-2 expres-

sion at the transcriptional level.23 Thus, the mecha-

nism by which resveratrol exerts anti-inflam-

matory activity may be related to the inhibition of

either COX transcription or COX activity. Studies

using isolated bovine COX-1 and COX-2 enzymes

showed that curcumin had significantly higher

inhibitory effects on the peroxidase activity of

COX-1 than that of COX-2.24 EGCG and resve-

ratrol were the most effective COX-1 inhibitors

among those tested in the study.20 Genistein

down-regulates COX-2 promoter activity in colon

cancer cells transfected with a COX-2 reporter

gene system.25 Wogonin and sophoraflavanone-G

down-regulate COX-2 expression from TNF-α

treated NIH/3T3 cells and LPS treated RAW cells,

respectively. This suggests that the COX-2 down-

regulation of skin fibroblasts may in part be one

of the anti-inflammatory mechanisms these

compounds exert against skin inflammation such

as atopic dermatitis.
26,27

Although many studies

have reported that polyphenols inhibit COX-1 or

COX-2, it has not yet been reported that

polyphenols inhibit COX-3. Collectively, several

polyphenols were reported to have anti-inflam-

matory effects, as assessed by COX inhibition.

COX inhibition by polyphenols may account for

these anti-inflammatory effects, which reduce

prostaglandin synthesis. Therefore, it should be

noted that the concurrent use of polyphenols and

NSAIDs could be beneficial or deleterious, and

thus necessitates constant attention by healthcare

providers.
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LOX inhibition

LOXs are the enzymes responsible for gene-

rating hydroxyl acids and leukotrienes (LTs) from

AA (Fig. 1). There are three distinct LOX isozymes

in that affect different cells and tissues. 15-LOX

synthesizes anti-inflammatory 15-HETE, 5; 12-LOX

is involved in provoking inflammatory/allergic

disorders; and 5-LOX produces 5-HETE and LTs,

which are potent chemoattractants and lead to the

development of asthma. 12-LOX synthesizes 12-

HETE, which aggregates platelets and induces the

inflammatory response. Therefore, the effect of

polyphenols on 5- and 12-LOXs has been exten-

sively studied in order to elucidate the anti-in-

flammatory properties. Flavonols, including

kaempferol, quercetin, morin and myricetin, were

found to be 5-LOX inhibitors.28 With IC50 values

ranging from 1.0 to 18.7 M, hamamelitannin andμ

the galloylated proanthocyanidins were found to

be the most potent inhibitors of 5-LOX.29 Some

prenylated flavonoids, such as artonin E, are the

most effective inhibitors of porcine leukocyte 5-

LOX.30 An anti-inflammatory neolignan sibyllen-

one from Ocotea bullata (black stinkwood) was also

active against 5-LOX.31 Baicalein was reported to

selectively inhibit platelet 5-LOX.32 Curcumin

blocks the activity of human recombinant 5-LOX.24

In contrast, there are few reports regarding 12-

LOX inhibition. Using bovine PMNs and 12-LOX

from bovine platelets, kuwanson C and quercetin

potently inhibit 12-LOX activity,33 with IC50 values

of 19 and 12 M, respectively. In comparison, theμ

IC50 value of the known LOX inhibitor nordihy-

droguaiaretic acid (NDGA) is 2.6 M.μ

COX and LOX inhibitions

The LOX pathway produces leukotrienes. When

only COX-2 is blocked, the LOX pathway still

produces the potent mediators of inflammation.

The condition may even be exacerbated by

blocking only the inflammatory cascade of COX-2,

which allows the LOX branch to accelerate the

formation of leukotrienes. Dual inhibition of

LOX/COX has been suggested to be a desirable

approach in the development of new drugs for

anti-inflammation.34 Thus far, researchers have

not been able to bypass certain limiting barriers to

produce such a medication. This is important

since some researchers have found that COX-2

inhibition alone will exacerbate the production of

pro-inflammatory cytokines such as TNF-α and

IL-1β, both of which cause destructive damage to

inflammatory sites. Hong et al. demonstrated that

curcumin fits in this category of agents.24 Many

other polyphenols are also the inhibitors of both

COX and LOX. Subsequently, a general structure

rule has been found: more COX inhibitions and

less LOX inhibitions with polyphenols contain few

hydroxyl substituents.35

PLA2 inhibition

Phospholipase A2 (PLA2), the enzyme that

cleaves phospholipids producing lysophospho-

lipids and free fatty acids, was originally iden-

tified as an intracellular protein involved in cell

signaling and in the production of free fatty acids,

such as arachidonic acid.36 It is known that PLA2

plays an important role in the inflammation pro-

cess. The inhibition of PLA2 could be a potential

therapeutic agent for curing human inflammatory

diseases (Fig. 1). Phospholipases are mainly clas-

sified into three large groups: secretory PLA2

(sPLA2), cytosolic PLA2 (cPLA2), and calcium-in-

dependent PLA2 (iPLA2). It is now known that

this family is comprised of at least 10 members

with distinct cellular distributions and growing

therapeutic potential.37 Specifically, sPLA2-V and

sPLA2-X are selectively expressed in the epithe-

lium of the human airway. sPLA2-IIA is low but

becomes highly expressed during inflammation

and sepsis as a result of LPS, cytokine and NF-κB

induction. This enzyme is now associated with

allergic rhinitis, rheumatoid arthritis, and septic

shock. Finally, the selective expression of sPLA2-V

and sPLA2-X suggests that these enzymes should

be evaluated as targets for airway dysfunction.

Thus, the PLA2 family represents a therapeutic

target with ever-increasing potential. It is likely

that PLA2 is an important intra- and extracellular

mediator of inflammation. The modulation of

sPLA2 and/or cPLA2 activity is important in con-

trolling the inflammatory process.

Quercetin was found to be an effective inhibitor

of PLA2 in human
38
and rabbit

39
leukocytes. It was

also demonstrated that quercetin selectively inhi-
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bited sPLA2-II, compared to its lower inhibition of

sPLA2-IB.
40 Quercetagetin, kaempferol-3-O-galac-

toside, and scutellarein inhibited human recom-

binant synovial PLA2 with IC50 values ranging

from 12.2 to 17.6 M.μ 41 Morelloflavone inhibited

sPLA2 with its selectivity for Group II and III

enzymes in vitro, including a high potency for the

human recombinant synovial PLA2.
42 Curcumin

affects AA metabolism by blocking the phospho-

rylation of cPLA2, resulting in decreased COX-2

expression.24 Since PLA2 is coupled with COXs

and LOXs (depending on the cells), the inhibitors

of PLA2 may also cause the inhibition of COX or

LOX activity. PLA2 inhibition of some poly-

phenols may contribute to their anti-inflammatory

property in vivo as well.43

AA-INDEPENDENT PATHWAY

Peroxisome proliferator activated receptors

(PPARs)

Many inflammatory cytokines are produced

and regulated at the transcriptional level, which

can either enhance or inhibit the inflammation

process. One such molecular link between pro-

inflammatory cytokines and transcription factor is

peroxisome proliferator-activated receptors (PPARs).

PPARs are nuclear hormone receptors that are

activated by specific endogenous and exogenous

ligands.44 Three isoforms (α, /β δ, and γ) have been

identified and are encoded by separate genes.

Among those, PPAR activation is responsible forα

the pleiotropic effects of peroxisome proliferators,

such as enzyme induction, peroxisome

proliferation, liver enlargement and anti-inflam-

mation.45 PPAR also plays a critical role in theα

regulation of cellular uptake and β-oxidation of

fatty acids.46 In contrast, PPARδ (also known as

PPARβ) is widely expressed with relatively higher

levels in the brain, colon, and skin. Although

there have been extensive studies on PPAR andα

inflammation, very little is known about the effect

of PPARδ on inflammation. In contrast, PPARγ has

been further divided into three subtypes: PPARγ1,

γ2, and γ3.47,48 All PPAR isotypes form a

heterodimeric complex with the retinoid X

receptor (RXR), and the complex binds to the

PPAR response element (PPRE), which functions

as the central regulator of cellular differen-

tiation,49 apoptosis,50,51 inflammatory responses,52,53

lipid metabolism and metabolic disease.54 The first

study that provided evidence of a potential role

for PPARs in the inflammatory response showed

that the duration of the inflammatory response is

prolonged in PPARα-KO mice in response to

LTB4.55 Since then, a growing body of evidence

has suggested that PPAR ligands inhibit pro-in-

flammatory cytokines in monocytes.52 Thus, the

activation of PPAR results in anti-inflammatory

activity.

Genistein increased the expression of genes

involved in lipid catabolism; this effect is not

estrogen receptor-dependent, but instead is PPAR

-dependent.α 56 EGCG also binds to PPARα.57

Amentoflavone up-regulates PPARγ expression in

A549 human lung epithelial cells.58 Few studies

have regarded polyphenols as PPAR ligands, but

it is probable that polyphenols may also affect

PPAR protein expression, which results in the

activation of the PPAR pathway. It is notable that

the PPAR pathways are tightly connected to other

inflammatory pathways including NF-κB, COX-2

expression, and pro-inflammatory cytokines. These

results demonstrate that the activation of PPARs

by certain polyphenols represent another possi-

bility the treatment of chronic inflammatory

diseases.

Nitric oxide synthase (NOS)

Nitric oxide (NO), a gaseous free radical, is

released by a family of enzymes, including endo-

thelia NOS (eNOS), neuronal NOS (nNOS) and

inducible NOS (iNOS), with the formation of stoi-

chiometric amounts of L-citrulline from L-arginine.59

Excessive and prolonged iNOS-mediated NO

generation has attracted attention because of its

relevance to inflammation. Since NO is one of the

inflammatory mediators, the inhibition of NO by

the extracts of edible plants has been reported.60

Using LPS/cytokine-treated macrophages or macro-

phage-like cell lines, quercetin was found to in-

hibit the production of NO.61 However, mecha-

nism studies have shown that compounds down-

regulate iNOS expression, which subsequently

results in reducing the amount of NO production.
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Several flavonoid derivatives, including apigenin,

quercetin, and morin, have also inhibited NO

production from LPS/interferonγ-activated C6

astrocytes.62 Quercetin markedly inhibits the pro-

duction of TNF-α and NO by LPS-activated macro-

phages, and TNF- inhibition may occur post-α

transcriptionally, whereas iNOS inhibition usually

occurs at the transcriptional level.63 Many poly-

phenols, including 6-gingerol,64 EGCG,65 resvera-

trol,66 indole-3-carbinol,67 and oroxylin A,68 inhibit

NOS expression in LPS-induced RAW264.7 cells.

These effects are probably mediated by NF-κB

inhibition.69

NF- Bκ

Nuclear transcription factor κB (NF-κB), which

was discovered by David Baltimore in 1986, is a

ubiquitous factor that resides in the cytoplasm.

When it becomes activated, it is translocated to

the nucleus, where it induces gene transcription.

NF-κB is activated by free radicals, inflammatory

stimuli, carcinogens, tumor promoters, endotox-

ins, γ-radiation, ultraviolet (UV) light, and X-rays.

Upon activation, NF-κB induces the expression of

more than 200 genes that have been shown to

suppress apoptosis and induce cellular transfor-

mation, proliferation, invasion, metastasis, chemo-

resistance, radio-resistance, and inflammation. The

activated form of NF-κB has been found to medi-

ate cancer, atherosclerosis, myocardial infarction,

diabetes, allergy, asthma, arthritis, and other in-

flammatory diseases. It is not surprising that NF-κ

B has been linked to this wide variety of diseases,

because most diseases are caused by poorly re-

gulated inflammation. Therefore, agents that can

suppress NF-κB activation, in principle, have the

potential to prevent, delay the onset of, or treat

inflammatory diseases.

Several sesquiterpene lactones demonstrated

anti-inflammatory properties by inhibiting the

binding of the transcription factor NF-κB, as as-

sessed by a gel shift assay.70 Quercetin was re-

ported to suppress TNF- induced expression ofα

IL-8 and monocyte chemoattractant protein (MCP-

1) due to its ability to inhibit the activation of NF-

κB.71 Quercetin also inhibited the NF-κB pathway

without any modification of c-Jun N- terminal

kinase activity both in vivo and in vitro.72 Caffeic

acid phenethyl ester (CAFE), a natural product

secreted by the honeybee, inhibited cerebral in-

flammatory responses by reducing the activity of

NF-κB.73 Resveratrol has also been known to

inhibit NF-κB activity, although resveratrol may

possess anti-inflammatory properties via an NF-κ

B-independent mechanism.74 Recently, it has been

reported that indole-3-carbinol, found in Brassica

sp. vegetables (such as cabbage, cauliflower, and

brussel spouts), inhibits NF-κB and NF-κB-re-

gulated gene expression.75 The inhibition of NF-κB

by several polyphenols may explain the anti-

inflammatory effects of these compounds.

NAG-1

NAG-1 (NSAID activated gene-1) was identified

by PCR-based subtractive hybridization from an

NSAID-induced library in cyclooxygenase-nega-

tive cells as a divergent member of the TGF-β

superfamily.76 The induction of NAG-1 by NSAIDs

is an important COX-independent mechanism by

which some of these proven anti-inflammatory

compounds mediate their effects.77 NAG-1 has

been identified by other groups, as macrophage

inhibitory cytokine-1 (MIC-1),78 placental transfor-

mation growth factor- (PTGFB),β 79 prostate de-

rived factor (PDF),80 growth differentiation factor

15 (GDF-15),81 and placental bone morphogenetic

protein (PLAB).82 The diversity of biological func-

tions represented by this nomenclature suggests

that the NAG-1 protein has broad activity in in-

flammation, cancer, and differentiation. The mole-

cular mechanisms responsible for these functions

have yet to be determined in detail. Experimental

evidence suggests that NAG-1 may share at least

some of the common functions of TGF-β super-

family cytokines. For instance, TGF-β1 induces

apoptosis and cell growth arrest in epithelial cells,

and mice treated with TGF-β1 died of widespread

inflammation. Indeed, NAG-1 expression reduces

TNF-α secretion in macrophages,78 and inhibits the

proliferation of primitive hemopoietic progeni-

tors
83

and several epithelial cancer cell

lines,76,77,79,84,85 reflecting the activity of a multi-

functional cytokine. In contrast to other members

of the TGF- superfamily, NAG-1 is induced notβ

only by several NSAIDs, but also by several die-

tary compounds. As described in Table 1, NAG-1
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was initiated by many of the polyphenols de-

scribed in this review. All of the listed compounds

induced NAG-1 expression, except EC and EGC,

which indicates the structure-specific expression

of NAG-1 induction. Overall, NAG-1 could prove

to be a good molecular target protein for examin-

ing the anti-inflammatory and/or anti-cancer ac-

tivity of other compounds.

CONCLUSION

Dietary polyphenols comprise a vast array of

biologically active compounds that are ubiquitous

in plants, many of which have been used in

traditional Oriental medicine for thousands of

years. In this review, we summarized the different

targets of dietary polyphenols by their anti-in-

flammatory effects. Given that certain polyphenols

are known to affect more than one protein, it is

necessary consider possibility that any single com-

pound may affect multiple mechanisms. However,

most of the previous clinical studies have used

foods or beverages containing a mixture of dif-

ferent polyphenols, and the exact mechanisms of

the most active polyphenol components remain

largely unknown. Therefore, these factors should

be taken into consideration along with bioavail-

ability in order to improve the experimental

design and interpret the observed effects. In addi-

tion, since absorption, metabolism, and elimina-

tion vary widely among polyphenols, these factors

should also be considered Furthermore, such char-

acterization of these compounds could validate

the importance of dietary polyphenol compounds

in human health and encourage their use as

templates for further structural development of

more effective and safe chemopreventive com-

pounds.
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