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INTRODUCTION

What Is Radiomics?
The development of imaging techniques has led to the 

rapid expansion of medical imaging data for the diagnosis, 
staging, treatment planning, and response evaluation 
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in patients with lung cancer. Although conventional 
interpretations provide information on lung cancer 
phenotypes, researchers have suggested that a great deal 
of biologic or prognostic information remains embedded 
within images. Radiomics is a field of study in which high-
throughput imaging data is analyzed, and a vast amount of 
advanced quantitative features are extracted. By employing 
radiomics, we can capture immensely valuable cancer 
information that might have been overlooked or cannot be 
identified with the naked eye.

In the era of precision medicine, the demand for radio-
phenotyping for accurate patient stratification is greater 
than ever. Ideally, radiomics features and signatures 
can be used as imaging biomarkers. Hence, not only the 
number but also the quality and sophistication of published 
radiomics studies is accelerating, leading to a myriad of 
new radiomics-based evidence in the field of lung cancer. 
Consequently, it is challenging for radiologists to keep 
up with the rapid development of radiomics features and 
clinical applications.

Therefore, the purpose of this review is to elaborate from 
the basics to advanced radiomics for lung cancer guide 
young researchers who are eager to start exploring radiomics 
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via software programs. Currently available radiomics features 
can be classified into multiple categories. Representative 
categories include morphological, histogram-based, texture 
and airway-related radiomics features (Table 1). Due to 
the continual development and refinement of radiomics 
features, the number of extractable features is rapidly 
growing. Finally, feature selection, model development, 
and performance testing are some of the most critical and 
demanding steps of a radiomics study. Feature selection 
may either be performed simultaneously with model 
development as a built-in procedure or may be done 
separately. Although numerous features can be extracted 
from a single tumor, the numerous available features need 
to be reduced to a practical number. Thus, through feature 
selection and model development, the most useful and 
prognostic radiomics features are summarized for clinical 
application. Several classifiers can be used for the model 
development depending on the number of cases, features, 

investigations. In addition, we also include technical issues 
of radiomics, because knowledge of the technical aspects of 
radiomics supports a well-informed interpretation of the use 
of radiomics in lung cancer.

Steps of Radiomics Studies
The radiomics process starts with image acquisition 

(Fig. 1). In general, there is no need to use sophisticated 
techniques for obtaining medical imaging scans. Most 
radiomics studies are retrospective and use conventional 
medical images obtained from routine clinical protocols. 
Nevertheless, different acquisition parameters may affect 
the extracted radiomics features, which might lead to 
questions regarding the stability of radiomics.

Following image acquisition, the tumor region of interest 
(ROI) is defined for analysis (i.e., tumor segmentation), 
and generally includes the entire tumor area. Next, from the 
defined ROI, a variety of radiomics features are extracted 

Table 1. Category of typical radiomics features in thorax
Category Implications

Morphological features Features reflecting shape and physical characteristics of ROI
Histogram-based features Features based on intensity histogram of ROI. These features do not retain spatial information
Texture features Features based on pixel neighborhood information. These features consider pixel and its neighbors.  

  GLCM features belong to this category
Airway features Feature that model airway property based on skeletonization

GLCM = gray level co-occurrence matrix, ROI = region of interest

Fig. 1. Steps of radiomics: radiomics process starts with image acquisition and tumor segmentation, followed by feature 
extraction and selection, and ends with performance testing. AUC = area under curve, KM = Kaplan–Meier
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Lung Cancer Prognostic Stratification and Treatment 
Response Evaluation

Aerts et al. (5), in their pioneering study, used a large 
number of radiomics features to demonstrate prognostic 
power in independent data sets of lung and head-and-neck 
cancer patients and suggested that there is prognostic and 
biologic information enclosed in routinely acquired CT scans. 
Hence, after allowing that tumor heterogeneity demonstrates 
the prognostic significance and may influence response 
to treatment, a large body of radiomics literature has 
focused on this subject (6). Evidence shows that radiomics 
features and signatures reflect the tumor microenvironment 
in terms of behavior and progression, thus emphasizing 
the role of radiomics for prognostication and assessing 
treatment response. Ganeshan et al. (7) found that tumor 
heterogeneity can be assessed by texture analysis of non-
contrast CT scans and has the potential to provide an 
independent predictor of survival for patients with non-
small cell lung cancer (NSCLC). In another study by the same 
authors, texture parameters identified relevant associations 
and demonstrated the potential for those to act as imaging 
correlates for tumor hypoxia and angiogenesis (8).

Meanwhile, Win et al. (9) evaluated tumor heterogeneity 

and characteristics. Commonly used methods are the 
random forest, principle component analysis, and least 
absolute shrinkage and selection operator. Lastly, testing 
the performance of the selected radiomics features is crucial 
to popularize radiomics in clinical research. Both internal 
and external validation is essential to ensure reliable 
radiomics results. Another prominent issue for radiomics 
analysis is overfitting and lack of generalizability, hence 
proper validation is imperative.

Clinical Applications of Radiomics

Employing radiomics features has been found to be useful 
in differentiating solitary pulmonary nodules, assessing 
tumor prognosis, correlating with genomics, and much 
more. In this section, we briefly review the currently 
available radiomics studies and applications in the thorax.

Pulmonary Nodule Evaluation
Several studies have shown that radiomics approaches 

may help lung nodule characterization when distinguishing 
between benign and malignant lung nodules. For example, 
a radiomics signature developed by He et al. (1) facilitates 
the differential diagnosis of solitary pulmonary nodules. 
Interestingly, the radiomics signature based on non-
contrast computed tomography (CT) images showed better 
performance compared to the signatures using contrast-
enhanced CT images. He et al. (1) suggested that the 
biologic heterogeneity within the tumor, depicted by 
radiomics features, may be confounded by intravenous 
contrast agents, leading to inferior discrimination between 
benign and malignant tumors.

Similarly, several studies used radiomics features in efforts 
to distinguish adenocarcinomas from granulomas. A prior 
study using Haralick texture features showed a sensitivity of 
88% for distinguishing adenocarcinomas from granulomas 
but lacked external validation (2). In another study, three-
dimensional (3D) shape-based radiomics features were used 
to discriminate adenocarcinomas from granulomas with 
an area under the curve (AUC) of 0.72 in an independent 
validation cohort (3). In a recent article, radiomics features 
from the intranodular and perinodular regions of nodules 
were used to distinguish adenocarcinomas from benign 
granulomas in non-contrast CT (4). Figure 2 demonstrates 
an example of generating the intratumor and peritumoral 
contours based on segmented tumor ROI.

Fig. 2. Generation of intratumor and peritumoral regions of 
lung adenocarcinoma in 57-year-old woman. Yellow arrows 
indicate region of interests. Lower table demonstrates decrease of 
median Hounsfield units and increase in standard deviation from 
intratumor to 5 mm peritumoral and 10 mm peritumoral regions, 
suggesting reflection of tumor microenvironment. 

Features Original 5 mm expanded 10 mm expanded

Median -416 -854 -860

Standard deviation 225.59 97.54 115.78

Kurtosis 2.30 22.17 21.66

Variance 50900 9510 13400
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fibrosis can be quantitatively analyzed from conventional CT 
images, by using histogram-based quantification, texture-
based quantification, and deep learning (DL) (Fig. 4). 
Several studies have shown that automated quantification of 
radiological patterns of interstitial lung disease can predict 
lung function, disease severity, and progression, including 
normality, ground-glass opacity (GGO), reticular opacity, 
honeycombing, emphysema, and consolidation (17-21).

Mediastinal Lymph Node Evaluation
Lymph node metastasis is a crucial factor related 

to survival and recurrence in lung cancer patients. 
Traditionally, the evaluation of lymph node status was 
dependent upon morphological changes such as the size and 
presence of necrosis in CT scans and increased metabolic 
uptake in PET scans.

Radiomics analysis of the primary tumor helps predict 
lymph node metastasis in lung cancer patients. Yang et 
al. (22) built a radiomics signature using 14 radiomics 
features selected from a set of 94 features. The model was 
able to significantly correlate the nature of these features 
with lymph node metastasis of lung cancer, with an AUC 
of 0.871 in the training group and an AUC of 0.856 in the 
validation cohort (22). Zhong et al. (23) extracted 300 
radiomics features from a large study group of 492 lung 
adenocarcinoma patients. The accuracy of the radiomics 
signature for predicting lymph node metastasis was 

and permeability in pretreatment CT scans of positron-
emission tomography (PET)/CT and found that in the radical 
treatment group, CT-derived textural heterogeneity was the 
only factor associated with survival, and in the palliative 
treatment group, CT-derived textural heterogeneity along 
with tumor stage and permeability was associated with 
survival. In the same context, Fried et al. (10) extracted 
texture features from pretreatment CT scans before 
undergoing definitive chemoradiation therapy, and found 
that radiomics features may provide prognostic information 
beyond what is obtained from conventional prognostic 
factors in NSCLC patients. Finally, Cherezov et al. (11) 
proposed a method for revealing tumor habitats using 
texture features based on the well-known concept that 
tumors are heterogeneous, and the level of heterogeneity 
may help to identify the malignancy and aggressiveness of 
tumors. Those results demonstrated an AUC of 0.9 and an 
accuracy of 85% to discriminate long-term and short-term 
survival rates among patients with lung cancer (11).

In addition, numerous studies have presented evidence 
that radiomics features extracted from pretreatment 
fluorodeoxyglucose (18F-FDG) PET scans are associated 
with prognosis and treatment response. For example, 
in an earlier study, texture features of PET scans were 
associated with nonresponse to chemoradiotherapy by 
Response Evaluation Criteria in Solid Tumors and with 
poorer prognoses (12). In another study, Cook et al. (13)
reported that reduced heterogeneity on PET was associated 
with response to erlotinib and that changes in first-order 
entropy were independently associated with overall survival 
and treatment response in patients with NSCLC. Figure 3 
demonstrates a case of clustering approach by combining 
FDG-PET and CT to identify intratumor heterogeneity in 
pretreatment and posttreatment lung adenocarcinoma.

Quantification of Severity in Diffuse Lung Disease 
The prediction of postoperative lung function is 

mandatory in the preoperative evaluation of lung cancer 
patients, especially in those with reduced lung function 
(14). The current standard for predicting postoperative 
lung function uses spirometry, such as forced expiratory 
volume in one second, and diffusing capacity of the lung 
for carbon monoxide or radionuclide lung scanning (15). In 
much earlier research, Wu et al. (16) used quantitative CT 
and found that it correlated well with postoperative lung 
function in patients with lung cancer. Nowadays, in the 
emerging era of radiomics, the pattern and severity of lung 

Fig. 3. Clustering approach achieved by combining FDG-PET 
and contrast-enhanced CT to identify intratumor heterogeneity 
in 63-year-old woman with lung adenocarcinoma. Pretreatment 
image exhibits heterogeneous tumor areas of various colors showing 
multiple patterns of tumor vascularity from contrast-enhanced CT 
and glucose metabolism from FDG-PET. One-year posttreatment 
with afatinib reveals tumor with central area of low vascularity 
and low metabolism (blue), suggesting effective treatment. Blue 
area represents low vascularity and low metabolism, yellow area 
represents low vascularity and high metabolism or high vascularity 
and low metabolism, and red area represents high vascularity and 
high metabolism. FDG = 18F-fluorodeoxyglucose, PET = positron-
emission tomography

Pretreatment Posttreatment
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the use of standardized uptake value (SUV)-based radiomics 
features from lymph nodes in comparison to primary tumor 
features, and reported that lymph node features added 
value for predicting overall relapse.

Imaging Genomics
Imaging genomics or radio-genomics refers to the 

identification of genomic profiling within a tumor’s 
deoxyribonucleic acid by using radiomics features. Both 
semantic features and quantitative features have been 
used to recognize the presence of specific mutations 
and alterations, thus leading to treatment decisions and 
outcomes in lung cancer patients. For example, Gevaert 
et al. (28) reported that a final decision tree (semantic 
features of emphysema, airway abnormality, percentage 
of GGO component, and the type of tumor margin) was 
predictive of epidermal growth factor receptor (EGFR) 
mutations. Rizzo et al. (29) reported that there were 
significant associations between qualitative CT features 

91.1% in receiver operating characteristic curve analysis, 
suggesting that the radiomics signature of the primary 
tumor can be used for quantitative and noninvasive 
prediction of lymph node metastasis in patients with lung 
cancer (23).

However, few studies have extracted radiomics features 
from mediastinal lymph nodes itself. Bayanati et al. (24) 
assessed radiomics features of mediastinal lymph nodes and 
found that combined textural and shape features identified 
malignant lymph nodes with 81% sensitivity and 80% 
specificity (AUC of 0.87). Similarly, Andersen et al. (25) 
reported that texture analysis demonstrated a significant 
difference between malignant and benign lymph nodes with 
an AUC of 83.4% and excellent reproducibility. Interestingly, 
Coroller et al. (26) performed radiomics analyses on both 
the primary tumor and the lymph nodes and demonstrated 
that the lymph node phenotype could present essential 
information in addition to that offered by the primary tumor 
site alone. Regarding PET/CT scans, Li et al. (27) explored 

Fig. 4. Interval CT images of 70-year-old man with idiopathic pulmonary fibrosis. Compared to histogram of initial CT scan, 
histogram of CT scan obtained three years later demonstrates right-side shifting of Hounsfield unit pixels due to microscopic interstitial 
fibrosis, suggesting progression of idiopathic pulmonary fibrosis.
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into smaller subregions provides quantitative information 
regarding intratumoral heterogeneity (35). Using a data-
driven partitioning approach with PET and DWI, intratumor 
subregions with high SUVs and low apparent diffusion 
coefficients reflect high aggressiveness of a tumor and are 
significant predictors of survival in lung adenocarcinoma 
(35). Another study divided the subregions using imaging 
of metabolic activity (FDG-PET/CT), hypoxia (HX4 PET/CT), 
and tumor vasculature (DCE-CT) in NSCLC patients treated 
with definitive chemoradiation (36). According to that 
study, metabolically active subregions that were highly 
hypoxic and demonstrated intermediate tumor perfusion 
were related to high-risk tumor type and worse survival, and 
data-driven sub-regional analysis for multimodal imaging 
may be used as a biomarker to predict the prognosis of 
the NSCLC patients (36). Thus, although significant work 
remains to be done, the role of the radiologist is expanding 
to the combined application of medical images obtained 
from multiple modalities, leading to an informed decision 
for better diagnosis, staging, and treatment response.

Technical Issues

Segmentation Issues
Segmentation is defined as the process of separating the 

tumor from the surrounding lung tissue by hand (manual 
segmentation), machine (automated segmentation), or 
both (semiautomated segmentation). Usually, this process 
is performed without difficulty, but in some cases, it may 
be challenging due to indistinct tumor margins. 

Largely, there are three methods of tumor segmentation 
before radiomics feature analysis. Although it is considered 
most accurate when drawn by a chest radiology expert, 
manual segmentation may not be appropriate for routine 
clinical usage because it is a time-consuming, labor-
intensive task, and is prone to inter- and intrareader 
variability (Fig. 5). On the other hand, semiautomatic 
segmentation refers to tumor margin editing, by an 
experienced expert, of the automatically selected volume 
of interest. According to Parmar et al. (37), in a study 
comparing manual and semiautomatic segmentation, the 
radiomics features derived from the latter demonstrated 
significantly higher reproducibility (p = 0.0009; intraclass 
correlation coefficients 0.85 and 0.77 for semiautomatic 
segmentation and manual segmentation, respectively). 
They were more robust than those derived from manual 
contouring (37). Given the reduced contrast of hazy, 

and EGFR, anaplastic lymphoma kinase (ALK), and Kirsten 
rat sarcoma viral oncogene homolog (KRAS) mutations 
in 285 NSCLC patients. Yoon et al. (30) showed that 
adenocarcinomas with ALK, c-ros oncogene 1 (ROS1), or 
rearranged during transfection (RET) fusion phenotypes 
could be identified from CT and PET images. Finally, a 
recent study presented a radio-genomics map of NSCLC, 
which linked image phenotypes with ribonucleic acid (RNA) 
signatures captured by metagenes, showing their association 
with molecular pathways (31). In that study, Zhou et al. (31) 
assessed 87 semantic features and RNA sequencing in 113 
patients with NSCLC to find multiple associations between 
35 semantic features and the top 10 metagenes. According 
to that study, a metagene representing the EGFR pathway 
was significantly associated with GGO and irregular nodules 
or nodules with poorly defined margins (31).

In terms of PET, Nair et al. (32) reported that among 
several prognostic metagene signatures, the most predictive 
one correlated with survival at both external validation 
sites. Thus, a crucial goal for imaging genomics research 
is to improve the knowledge of tumor biology and develop 
imaging surrogates for genetic testing. In the era of 
precision medicine and targeted therapy, we believe that 
the role of the radiologist will expand and incorporate 
genomic and phenotypic information along with the 
conventional interpretation of lung cancers.

Special Considerations Regarding Multimodal 
Applications

As new diagnostic imaging methods continue to develop, 
each imaging technique provides unique information 
that reflects tumor biology or tumor behavior (33). For 
instance, PET/CT provides both metabolic and anatomic 
information about the tumor, diffusion-weighted magnetic 
resonance imaging (MRI) can demarcate tissue cellularity 
or tumor differentiation, and dynamic contrast-enhanced 
(DCE) CT and MRI captures tumor vascularity. A study 
showed that combining metabolic and functional imaging 
biomarkers using PET and diffusion-weighted imaging 
(DWI) leads to more useful stratification of patients in 
lung adenocarcinoma compared to the results of each 
image type alone (34). Likewise, a multimodal approach 
yields comprehensive information to better assess the 
biological status of the tumor compared to that from a 
single modality. Intratumoral heterogeneity affecting the 
prognosis could be expressed as imaging phenotypes. The 
partitioning-based approach to dividing the whole volume 
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slice thickness may impact subsequent feature analyses 
to a great extent (Fig. 6). According to a phantom study 
calculating 14 radiomics features, all features were 
significantly different between 1.25 mm slice and 5 mm 
slice images (43). The authors suggested that thinner (1.25 
mm and 2.5 mm) slices were better than thicker slices, 
and that thin and thick slice images should not be used 
interchangeably. Similarly, in a study of 240 lung cancer 
patients using 150 extracted radiomics features, a radiomics 
signature based on thin slices (1.25 mm) showed better 
diagnostic performance than that applied to thick slices (5 
mm) (1). In addition, Zhao et al. (44) obtained repeated CT 
scans from 32 lung cancer patients, and the reproducibility 
of radiomics features was evaluated in terms of slice 
thickness and reconstruction algorithms. As a result, thinner 
slices (1.25 mm and 2.5 mm) and a smoother reconstruction 
algorithm were more favorable for reproducibly extracting 
radiomics features. Zhao et al. (44) suggested that the 
smoother reconstruction algorithm reduces more noise and 
may hold back useful texture details compared to the sharp 
reconstruction algorithm. Accordingly, agreement levels 
were worse when changing both the reconstruction kernel 
and the slice thickness (44).

Second, in terms of respiratory variability, PET images are 
influenced more by respiration due to longer acquisition 
times compared to chest CT scans. Yip et al. (45) reported 
that texture features were significantly blurred out by 
respiratory motion during conventional 3D PET acquisition 

increased attenuation in CT images (particularly GGO), 
semiautomatic segmentation may be of particular use for 
part-solid adenocarcinomas, which have GGO components 
(38).

Meanwhile, fully automatic segmentation can be 
considered a rapid and accurate method of tumor 
segmentation. However, it is generally accepted that 
there is variation among software packages and should 
not be used interchangeably (39, 40). Recently, several 
investigators have incorporated DL technology in tumor 
segmentation by training convolutional neural networks 
and showing that DL is capable of performing accurate 
localization and segmentation of tumors in multiple organs 
(41, 42). Though most of these studies were based on MRI 
scans, such as those of the brain, prostate, and rectum, DL 
shows the potential to improve the accuracy and robustness 
of tumor segmentation.

Measurement Variability Issues
By definition, radiomics features are objective, 

quantitative measurements, and ideally, extracted radiomics 
features may provide accurate anatomical and biological 
information about the tumor. However, the radiologist must 
keep in mind that variability exists, even in “objective” CT 
metrics, and any combination of these factors may affect 
extracted radiomics features, thus altering important tumor 
information.

First, it is understood and accepted that variations in 

Fig. 5. Example of tumor volume segmentation by two different reviewers. Results show inter-reader variability.
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radiomics features between interval studies. In a study by 
Fave et al. (51), the inclusion of delta radiomics features 
had a statistically significant impact on the model for 
overall survival compared to a model with only clinical and 
pretreatment radiomics features; however, the impact on 
the model’s prognostic abilities was generally negligible. 
Another study, by Alahmari et al. (52), showed that delta 
radiomics features improved the performance of the models 
in a lung cancer screening setting.

Although published research using delta radiomics in lung 
cancer studies is scarce and does not yet show convincing 
evidence, delta radiomics demonstrates the fact that 
radiomics features change during treatment. Ideally, delta 
radiomics may be used as imaging biomarkers for evaluating 
treatment response between interval medical images. In 
turn, a point that needs to be addressed, for which future 
research is needed, is that the concept of delta radiomics 
requires high accuracy during the process of image 
registration.

Spatial Approach Using Multiple ROIs and Inter-Site 
Modeling

Radiomics studies have typically focused on a single 
primary ROI per subject. There are many cases where a 
given patient has multiple tumor sites, which could be 
primary or metastatic. Focusing on a single ROI makes the 
statistical analyses easier, but such an approach does not 
adequately model the potentially rich interactions between 
tumor sites. Vargas et al. (53) proposed an approach to 

and that respiratory-gated four-dimensional (4D) PET 
texture features may have better prognostic value as they 
are less susceptible to motion. Similarly, Oliver et al. (46) 
extracted 56 radiomics features, including shape as well 
as first-order and second-order texture features, using 
conventional 3D PET protocol and respiratory-gated 4D PET 
protocol. In that study, only 26.6% of all features had a 
percent difference of less than 5% between the two PET 
protocols, while the majority of radiomics features seemed 
to be susceptible to respiration (46). In a recent study, 
Du et al. (47) applied the 4D CT technique to 20 NSCLC 
patients and studied the impact of respiration on 841 
radiomics features.

Last, few studies have investigated the effects of iterative 
reconstruction algorithms on radiomics features, and most 
radiomics features were significantly affected. According 
to Kim et al. (48), the impact of reconstruction algorithms 
was significant for most first-order tumor intensity features 
and second-order gray level co-occurrence matrix (GLCM)-
based features. Similarly, other research also reported 
that radiomics features were dependent upon the iterative 
reconstruction algorithm and radiation dose (49, 50).

Recent Advances in Radiomics

Temporal Approach Using Delta Radiomics
In contrast to most radiomics studies, which are based 

on features extracted at a single time point (usually at the 
time of diagnosis), delta radiomics evaluates changes in 

Fig. 6. Effect of CT slice thickness on tumor visualization. Thick-section CT scan (right) demonstrates more partial volume artifacts 
compared to thin-section CT scan (left).

100

80

60

40

20

58

56

54

52

50

Z Z

340
340400

380

380

360

360

Y Y340

340

320

320

300260 260
280 280

300 300

X X

320
320

Slice thickness: 0.625 mm Slice thickness: 5 mm



167

Radiomics in Lung Cancer

https://doi.org/10.3348/kjr.2019.0630kjronline.org

gradient of intensity can be defined for each voxel. Gradient 
by definition is a vector with magnitude and angle. The 
magnitude of the gradient is already captured with an 
edge detecting filter. Prasanna et al. (55) exploited the 
angle information similar to GLCM, where co-occurrences 
of gradient directions (intensities in GLCM) were used 
to compute texture. They named the approach the co-
occurrence of local anisotropic gradient orientations and 
demonstrated its efficacy in radiation necrosis for brain 
tumor patients, different molecular subtypes of breast 
cancer, and NSCLC. Gradient direction captures distinct 
aspects of heterogeneity, and we expect many future 
radiomics studies to include this type of direction-based 
texture.

capture inter-site variations in texture features using 
multidimensional scaling for ovarian cancers. They were 
able to identify imaging markers of overall survival and 
incomplete surgical resection. Similar efforts in lung cancer 
are scarce but are expected to emerge. There is a rich body 
of literature in computer vision for modeling inter-object 
(our case inter-tumor) relationships using graph theory, 
including stochastic neighbor embedding and spectral 
clustering (54). Using these methods will almost certainly 
help improve inter-site relationship models (Fig. 7).

Multidimensional Textural Approach Beyond the Intensity
Texture information plays a leading role in the radiomics 

field. Typically, the texture is computed from the intensity 
distributions from neighborhood voxels (compared to a 
single voxel) in the form of a GLCM. Besides intensity, the 

Fig. 7. Tracking cancer evolution from primary tumor to metastases using multi-region radiomics and inter-site modeling. 
A. Multi-region radiomics extraction from patient with primary lung cancer in LLL and multiple metastatic nodules in LLL, LUL, and RUL. 
(B) Inter-site similarity matrix and (C) phylogenetic tree (based on inter-site similarity matrix) demonstrate degrees of dissimilarity with each 
other, which indicates evolutional sequences through all lesions. Numbers indicate numeric codes for lesion locations. LLL = left lower lobe,  
LUL = left upper lobe, RUL = right upper lobe
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obvious and only solution, and we as a research community 
need to agree on a plan to do this. In the meantime, one 
short-term solution is not to share the anonymized raw data, 
but to share the derived radiomics feature data.

More recently, researchers have initiated collaborative 
efforts for radiomics-based biomarkers, and several imaging 
repositories with hundreds of thousands of medical images 
with correlating clinical information are available. The most 
extensive database is the National Lung Cancer Screening 
Trial American College of Radiology Imaging Network 
Biomarker Repository (61). This repository consists of lung 
cancer screening patient CT scans along with blood, urine, 
sputum, and tissue specimens. Other large databases or 
study cohorts are the Dutch-Belgian Randomized Lung 
Cancer Screening Trial (Dutch acronym: NELSON study) and 
the Pamplona International Early Lung Cancer Detection 
Program (62, 63).

Limitations of Radiomics Analysis

Investigations employing radiomics approaches show 
promising results of radiomics features or signatures as 
sources of robust imaging biomarkers for assessing tumor 
prognosis and predicting treatment response by correlating 
with genomics. Nevertheless, a critical weakness of the 
radiomics approach is the lack of reproducible research. 
Radiomics analysis is quantitative; the features are often 
defined using mathematical formulae. However, the 
full details of the feature computation are not clearly 
disclosed, thus limiting model validation. Therefore, there 
is a clear need to make the radiomics models available 
to the researchers. In this regard, using an open-source 
software package and uploading the codes to GitHub (for 
preprocessing or modeling) would be the first practical 
steps for the development and validation of radiomics 
analysis across multiple institutions. Pyradiomics is an 

Deep Learning Approach
DL is a subset of machine learning that has shown 

remarkable performance gains in various domains (Fig. 
8). The adoption of DL is occurring in all specialties in 
radiology, and the lung is no exception. Recent radiomics 
studies have used DL in novel features, feature selectors, 
classifiers, and predictors, as described in review articles 
(56, 57). However, the DL approach in medical imaging has 
limitations that must be solved. DL is capable of learning 
relevant features from the data and thus could be applied 
to any data in theory. However, the learned features are 
challenging to interpret, in stark contrast to radiomics 
features, where each feature has an analytical formula with 
possible physical interpretations. Many efforts have been 
made to address this interpretability issue (58, 59). Another 
issue is the scarcity of pre-trained DL networks for medical 
imaging. DL models are made from many layers of artificial 
neurons, and we need to solve for thousands of millions 
of parameters. Such effort requires a massive amount of 
training data; thus, a common approach is to transfer a 
model already trained from a similar domain to the target 
domain, so that optimization of the parameters becomes 
feasible. There are many well-established models for natural 
images (e.g., dogs, cats, flowers), but established pre-
trained models in medical imaging are scarce, and in lung 
imaging even more so. Many efforts have been made to 
address the construction of pre-trained models specific to 
medical imaging (60).

Task of Data Sharing
Radiomics analysis is a high-dimensional analysis 

technique. The statistical power of radiomics studies 
improves with an increased sample size. With the expected 
adoption of DL, this becomes even more important. A 
team of researchers is likely to have limited resources, and 
accruing many samples could be difficult. Data sharing is the 

Fig. 8. Example of deep learning architectures for lung cancer classification based on multi-layers.
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open-source package for extracting radiomics features. 
Similar to physical libraries, Pyradiomics provides a 
comprehensive radiomics library made up of a collection 
of radiomics in the Python language (https://www.python.
org). Insight ToolKit (www.Itk.org) is another open-
source software package developed in C++ which provides 
a subset of radiomics features, which may be used with 
other segmentation tools. Imaging biomarker Explorer is an 
open infrastructure software platform developed using the 
MATLAB (The MathWorks, Inc., Natick, MA, USA) and C/C++ 
that flexibly supports common radiomics workflow tasks.

CONCLUSION

Current clinical workflows require most lung cancer 
patients to undergo medical imaging such as CT and PET. 
Although these conventional modalities provide crucial 
information for lung cancer diagnosis and phenotypes, a 
great deal of genetic and prognostic information remains 
unrevealed. However, the subjective interpretation of 
medical images by humans is naturally biased, and it is 
impossible to decode the entire tumor biology from imaging 
data. In this regard, radiomics may help radiologists 
discover and unravel this important tumor information 
embedded within the medical images. We believe that 
radiomics will not replace the radiologists’ role; instead, 
radiomics will become a powerful tool for radiologists and 
a strategy to improve the knowledge of tumor biology and 
develop imaging surrogates for genetic testing that will 
advance precision medicine.
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