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INTRODUCTION

In order to compare outcomes between different subject 
groups, it is important to first assure that the groups 
are comparable. In other words “comparing apples and 
oranges” should be avoided. For example, assume a study 
comparing the effect of oral hypoglycemic agents to insulin 
in type 2 diabetes patients. Due to differences between the 
prescription requirements (such as the severity or duration 
of disease), insulin would be reported for poor outcome 

Propensity Score Matching: A Conceptual Review for 
Radiology Researchers
Seunghee Baek, PhD1, Seong Ho Park, MD, PhD2, Eugene Won, MD, MS3, Yu Rang Park, PhD4,  
Hwa Jung Kim, MD, PhD1, 5

1Department of Clinical Epidemiology and Biostatistics, Asan Medical Center, Seoul 138-736, Korea; 2Department of Radiology and Research 
Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, Korea; 3Department of Radiology, NYU Langone 
Medical Center, New York, NY 10016, USA; 4Office of Clinical Research Information, Asan Medical Center, Seoul 138-736, Korea; 5Department of 
Preventive Medicine, University of Ulsan College of Medicine, Seoul 138-736, Korea

The propensity score is defined as the probability of each individual study subject being assigned to a group of interest 
for comparison purposes. Propensity score adjustment is a method of ensuring an even distribution of confounders between 
groups, thereby increasing between group comparability. Propensity score analysis is therefore an increasingly applied 
statistical method in observational studies. The purpose of this article was to provide a step-by-step nonmathematical 
conceptual guide to propensity score analysis with particular emphasis on propensity score matching. A software program 
code used for propensity score matching was also presented.
Index terms: Propensity score; Matching; Observational study; Indication bias

Received July 8, 2014; accepted after revision November 28, 2014.
Corresponding author: Hwa Jung Kim, MD, PhD, Departments of 
Preventive Medicine and Clinical Epidemiology and Biostatistics, 
Asan Medical Center, University of Ulsan College of Medicine, 88 
Olympic-ro 43-gil, Songpa-gu, Seoul 138-736, Korea. 
• Tel: (822) 3010-5636 • Fax: (822) 477-2898
• E-mail: hello.hello.hj@gmail.com
This is an Open Access article distributed under the terms of 
the Creative Commons Attribution Non-Commercial License 
(http://creativecommons.org/licenses/by-nc/3.0) which permits 
unrestricted non-commercial use, distribution, and reproduction in 
any medium, provided the original work is properly cited. 

Korean J Radiol 2015;16(2):286-296

(1). Likewise, in a study comparing the effect of 2 different 
treatments on 2 groups of patients, the patients in each 
group should have the same baseline characteristics. If 
one group consists of many easy-to-treat patients, while 
the other group includes difficult-to-treat patients (i.e., 
the 2 groups are not comparable in terms of therapeutic 
difficulty), a better treatment outcome in the former 
group could merely be a result of differences in population 
characteristics rather than due to any true difference in 
treatment efficacy. 

The issue of intergroup comparability is generally not 
a concern in typical prospective studies of diagnostic 
test accuracy (commonly conducted in radiology), since 
different imaging examinations are usually performed in 
the same patient for an intra-subject comparison. However, 
in therapeutic research studies each patient only receives 
one treatment. Nevertheless, intergroup comparability 
remains an important consideration in radiology research, 
particularly in interventional radiology that is a discipline 
of therapeutic medicine, research commonly involves 
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different subject groups. Additionally, diagnostic imaging 
studies can also be designed to evaluate patient outcomes 
associated with different diagnostic imaging methods/
strategies in order to provide higher order evidence beyond 
mere diagnostic accuracy (2-6). Multiple diagnostic tests 
in such studies cannot be performed on the same patient, 
similar to treatment protocols in therapeutic research 
studies. Moreover, retrospective diagnostic studies often 
involve multiple patient groups. Because patients rarely 
undergo similar multiple imaging studies in clinical practice, 
including only those patients who have undergone all 
imaging examinations of interest is often difficult.

Several different methods can be used to address intergroup 
comparability in research studies. First or all, randomization 
(i.e., random allocation of the study subjects into different 
groups) is the most effective method to achieve balance of 
covariates between groups. Randomization assures that not 
only observed/measured confounders but also unobserved/
unmeasured confounders are equally distributed between 
groups (7). For this reason, in clinical research, randomized 
clinical trials result in the most robust evidence. However, 
randomized research studies are not always feasible or 
practical due to various issues such as ethical considerations, 
generalizability, safety, and cost. Furthermore, they cannot 
be performed on data in a retrospective setting. The 
comparability of study groups in a retrospective observational 
study can be crudely assessed by determining whether the 
distributions of various baseline characteristics are similar 
between the compared groups (8-10). Multiple regression 
analysis is another more sophisticated statistical approach 
to account for confounding variables (11, 12). However, 
comparability cannot always be determined using these 
methods of evaluation. 

Propensity score analysis is a statistical method that 
was introduced in 1983, and applied to various clinical 
researches (13). Propensity score analysis can effectively 
adjust for confounders in a retrospective observational 
study, thus facilitating comparability between patient 
groups. Although still infrequently used in radiology 
research studies (14-23), propensity score analysis is 
increasingly applied in clinical research. The purpose of 
this article was to provide a step-by-step nonmathematical 
conceptual guide to propensity score analysis from a 
radiology research point of view with particular emphasis 
on propensity score matching. A software program code 
used for propensity score matching was also presented 
(Supplement in the online-only Data Supplement).

When and Why Does Comparability Become an 
Issue?

Throughout this review, a hypothetical observational study 
was used as an example i.e., a retrospective comparison of 
the accuracy of dynamic contrast-enhanced liver MRI and 
dynamic contrast-enhanced CT for diagnosis of benign vs. 
malignant hepatic nodules detected on ultrasonography 
during annual physical examination or surveillance. A total 
of 940 patients had liver CT (the control group) and 470 
patients had liver MRI (the group of interest, referred to as 
the “intervention” or “treatment” group in methodological 
terms) were consecutively identified from past clinical 
practice during a specified period. Table 1 showed the 
characteristics of the 2 patient groups. Some of the 
characteristics were deemed similar, whereas others were 
seemingly different between the 2 groups. The diagnostic 
accuracy of liver CT and MRI were 73.6% (692/940) and 
83.8% (394/470), respectively. 

Before we could conclude that liver MRI was more 
accurate than liver CT, we first needed to identify 
potential confounders. For example, some clinicians may 
have preferentially referred patients for MRI when a 
malignant hepatic nodule was highly suspected (which 
could have resulted in MRI of many easy-to-diagnose 
malignant nodules) because they believed that highly 
suspicious lesions should be evaluated further with a more 
sophisticated expensive examination. Other physicians 
may have referred patients for MRI when ultrasonographic 
findings were particularly indeterminate/obscure (including 
difficult-to-diagnose lesions at CT or MRI) because they 
believed that MRI is generally more accurate and reliable for 
soft-tissue characterization, as compared to CT. Additionally, 
patients in the MRI group were older than those in the CT 
group, which may have caused an underestimation of MRI 
accuracy as older patients are generally less cooperative 
during imaging examinations (e.g., have more difficulty 
with respiratory control) and because good patient 
cooperation is more important during MRI than during CT. 
Patients are typically not allocated to procedures (diagnostic 
or therapeutic) randomly in clinical practice but are instead 
assigned based on the subjective judgment of the providing 
clinician. Consequently, retrospective analyses of clinical 
data lead to some degree of unequal distribution of various 
clinical factors that may substantially affect the therapeutic 
or diagnostic efficacy across patient groups. Therefore, the 
mere comparison of “face values” without accounting for 
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all potential confounders may lead to a false conclusion, 
such as the superior diagnostic accuracy of MRI to CT in 
our example. This ultimately translates to incorrect medical 
practice, once described as a “scandal of poor medical 
research” (24).

Selection bias is the most significant factor among 
many that results from uneven distribution of patient 
characteristics among compared groups in a retrospective 
observational study (23). Indication bias also referred to as 
confounding by indication, is a specific type of selection 
bias that is primarily responsible for the incomparability 
between groups on retrospective analyses of clinical data 
(1, 25). This bias occurs when a patient’s condition that 
determines the selection of any particular treatment or 
diagnostic procedure, is associated with the outcome of 
the treatment/diagnostic procedure. For example, as stated 
earlier, if patients with obviously benign or malignant 
nodules (i.e., easy-to-diagnose cases) were selected 
to undergo MRI or CT, the accuracy of that particular 
examination would be overestimated. Indication bias is 

occasionally loosely defined and used synonymously with 
“referral bias” in radiology literature (26, 27). However, 
referral bias is actually a synonym for Berkson’s bias (i.e., 
a difference in admission rate between subjects exposed to 
a factor and control subjects) or verification/work-up bias 
(i.e., preference for patients with positive index test results 
who undergo reference standard procedures/work-up). 
Selection biases are very difficult to control or adjust in 
retrospective studies because data on certain variables that 
may influence patient selection and the extent of selection 
are often not available for study (28). 

What Is Propensity Score?

Propensity score is the estimated probability for each 
individual in the study to be assigned to the group 
of interest for comparison (i.e., intervention group), 
conditional on all observed confounders. In our example, 
the propensity score was the probability of the study 
patient to receive liver MRI. Propensity score is also an 

Table 1. Patient Characteristics before and after Propensity Score Matching
Before Propensity Score Matching After Propensity Score Matching

Liver CT 
(Control)
(n = 940)

Liver MRI
(Intervention)

(n = 470)

Standardized
Mean

 Difference‡

Liver CT  
(Control)
(n = 293)

Liver MRI 
(Intervention)

(n = 293)

Standardized
Mean

 Difference‡ 

Propensity score* 0.23 ± 0.21 0.53 ± 0.23 -1.331 0.46 ± 0.25 0.47 ± 0.27 -0.033
Age, years (mean ± SD) 53.8 ± 11.7 60.3 ± 11.6 -0.559 58.1 ± 13.3 59.5 ± 11.9 -0.117
Gender, % male 26.0 45.3 -1.324 42.7 44.0 -0.027
Body mass index, kg/m2 
  (mean ± SD)

27.1 ± 5.8 25.9 ± 6.1 0.389 26.3 ± 5.9 26.2 ± 6.1 0.015

Lesion diameter, cm 
  (mean ± SD)

2.3 ± 1.6 2.4 ± 1.8 -0.085 2.4 ± 1.7 2.4 ± 1.6 0.031

History of cancer (%)† 21.3 77.0 1.324 63.8 63.8 0.000

Note.— *Propensity score represent probability of undergoing liver MRI (as opposed to liver CT). Matching was achieved using nearest 
neighbor matching including all five variables listed in table, †Personal or first-degree relative, ‡Standardized mean difference (d) for 
continuous variable is defined as 

where X−intervention and X−control are sample means of variable in intervention and control groups, respectively, and s2 intervention and s2 control are 
sample variances of variable in respective groups. Standardized mean difference (d) for binary variable is defined as 

where p̂intervention and p̂control are sample proportions for variable in intervention and control groups, respectively.
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index that describes how all the observed confounders are 
collectively distributed in each study subject. Therefore, 
subjects with the same or similar propensity scores can be 
considered to have the same or similar distribution of all 
confounding variables used in constructing the propensity 
score (13). Subjects with the same/similar propensity scores 
are comparable or “exchangeable”, as the confounding 
variables are balanced. As a result, one can make an 
unbiased clearer comparison between subjects of the groups 
compared (e.g., CT vs. MRI) with same or similar propensity 
scores. Statistically stated, we can draw a causal inference 
and estimate the unconfounded effect of the variable of 
interest. 

Estimation of the Propensity Score

Multivariable/multiple logistic regression modeling is a 
method commonly used for constructing a propensity score 
model, in which potential confounders to be adjusted are 
included as independent variables (“x” variable), and the 
group assignment (CT vs. MRI in our example) is included 
as the dependent variable (“y” variable). It is important 
to remember that, unlike randomization in clinical trials, 
the propensity score can be used to balance out only those 
confounders included in estimating the propensity score. 
The propensity score method cannot overcome any bias 
caused by confounders that were not observed/measured 
and, therefore, not included in the model. Thus, it is 
generally better to include as many potential confounders 
in the propensity score model as independent variables. 

Proper selection of independent variables during the 
propensity score estimation is extremely crucial for the 
validity of the propensity score method. There is controversy 
about which variables should be included while constructing 
the propensity score model. The following sets of variables 
should be carefully considered for possible inclusion in the 
propensity score model: 1) all observed baseline covariates, 
2) all baseline covariates associated with group assignment, 
3) all covariates affecting the study outcome (e.g., correct 
vs. incorrect imaging diagnosis in our example), and 4) all 
covariates affecting both group assignment and outcome. 
These variables must also be present prior to the assignment 
to comparative procedures. 

Including every confounder, i.e., those variables that 
are related to both group assignment and outcome, in 
estimating the propensity score, can satisfy ignorable 
group assignment and minimize study bias (29). This can 

generate a randomized study-like dataset by removing all 
sources of incomparability between groups. Unfortunately, 
this approach may not be feasible in real-world clinical 
research. Fewer variables may be observed/measured in 
certain cases. However, even including variables related 
only to outcomes but not to group assignment in the 
propensity score model can more precisely assess the 
intervention effect (i.e., intergroup differences) without 
increasing bias. On the other hand, including variables 
related only to group assignment but not to study outcomes 
may actually reduce the precision in evaluating intergroup 
difference without a substantial reduction in bias (30). 
Accordingly, in a diagnostic study such as in the example 
discussed, all confounding variables that might affect the 
diagnostic accuracy (outcome) should be considered for 
inclusion rather than only variables that are associated with 
assignment of the subjects to either diagnostic test group 
(liver CT or liver MRI). Whether the covariate should be 
classified as confounder is frequently confusing in practice. 
Thus, researchers should carefully examine the relationship 
between baseline covariates and the outcome to identify 
true confounders and construct an efficient model. 

Data on 5 different potential confounding variables, 
including age (year), gender, body mass index (kg/m2), 
lesion diameter as measured at ultrasonography (cm), 
and previous personal or first-degree relative history of 
malignancy were retrospectively available in the illustrating 
example. We obtained the estimated probability of 
each patient undergoing liver MRI instead of liver CT by 
fitting the multivariable logistic regression model. All 5 
potential confounding variables measured were included 
as independent variables in the model (as also known as 
“covariates”). The ultimate goal of a propensity score model 
is to efficiently control for confounding effects instead 
of merely predicting the probability of group assignment. 
Although we only considered 5 confounding variables in the 
regression model for illustration purposes, in actual research 
analyses would require identification of all variables that 
are potential confounders. 

The c-index (the area under the receiver operating 
characteristic curve of the logistic regression model) is 
often used to assess the adequacy of the propensity score 
model, a process also known as discrimination (which 
indicates the ability to correctly differentiate between 
2 outcome classes). A c-index of 0.8 is often considered 
an adequate model fit. The logistic model including the 
5 variables yielded a c-statistic of 0.803 in our example. 
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The Hosmer-Lemeshow test (p value were 0.083) showed 
that the propensity score model had an adequate level of 
calibration (how closely the predicted probabilities agree 
with the actual outcomes).

Evaluation of Propensity Score Distribution

It is important to examine the distribution of propensity 
scores of the 2 groups, as well as to assess the extent of 
overlap before using the estimated propensity scores for 
further analysis. The distributions of propensity scores were 
shown in Figure 1. If the distributions of propensity scores 
are very different and share little overlap, the 2 groups may 
not be comparable in clinical settings. Thus, if it is already 
clear who will receive one procedure instead of another 
(liver CT rather than liver MRI, for example), comparison 
of the different procedures is not required as they would 

not be used interchangeably/alternatively in practice, and 
the clinical indications for either procedures are apparently 
different. If there is extensive overlap in the distributions of 
the propensity scores, several different analytic approaches 
using the propensity score such as stratification, matching, 
modeling, and weighting can be applied and would all 
produce similar results. However, each analysis should be 
implemented beyond the specific study hypothesis: while 
matching is adopted to ensure the comparability between 
groups (15-19, 22), weighting dilutes the effect from rare 
situations among the total patients including both groups 
(31, 32). However, weighting the entire study sample by 
inverse probability of treatment weighting derived from 
the propensity score, which is called inverse probability of 
treatment weighting, should be performed with caution. 
Weighted methods have poor performance when the 
weights for a few subjects are very large. The estimated 

Fig. 1. Distribution of propensity scores.
A. Distribution of propensity scores among total study subjects (940 and 470 patients who had liver CT and liver MRI, respectively).  
B. Distribution of propensity scores after matching for age, gender, body mass index, lesion diameter, and history of cancer (293 pairs of liver CT 
and liver MRI).
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standard-error-of-treatment effect may underestimate 
the true difference between the weighted estimator and 
the population parameter it estimates (33). When there 
is partial overlap in the distribution of propensity scores 
between groups, analytic methods should be chosen 
according to the population of interest. If a small portion 
of the entire study sample is chosen for the final analysis, 
generalization of the results to the whole study population 
may be limited. Figure 1 showed a partial overlap in the 
propensity score distributions suggestive of the presence 
of 2 clusters of patients (bimodal distribution) in the 
histogram of propensity scores.

Propensity Score Matching 

Propensity score can be used in several different ways, 
including restriction, stratification, matching, modeling, 
or weighting to account for confounding effects. Among 
such methods, we discussed the propensity score matching 
method that is commonly used in medical research 
studies. Propensity score matching pairs each subject 
in the intervention group (e.g., patients who underwent 
liver MRI), with a subject in the comparison group (e.g., 
patients who underwent liver CT) based on the similarity 
of their propensity scores. Therefore, all covariates used for 
developing the propensity scores were collectively matched. 

There are several points to consider regarding propensity 
score matching. First, a 1:1 ratio between matched 
subjects is most commonly used. However when the control 
group includes many more subjects that the intervention 
group, other ratios may be used. McAfee et al. (34), used 
a matching ratio of 1:4 for a larger number of control 
subjects than test subjects in order to improve study power. 
Second, propensity score matching is generally performed 
“without replacement”, i.e., a subject cannot be included in 
more than one matched set. Third, 2 matching algorithms, 
including greedy (also known as nearest neighbor matching) 
and optimal, are mainly used. In greedy matching, a subject 
is first selected at random from the intervention group and 
subsequently paired with a subject in the control group 
with the closest propensity score, even if that subject in 
the intervention group would have been a better match for 
a subsequent subject in the control group (35). This process 
is repeated until all subjects in the intervention group are 
matched to subjects in the control group. Nearest neighbor 
matching within a caliper involves a slight modification. 
Here, the caliper refers to the allowable difference in 

propensity scores eligible for use in matching. Using this 
approach, the propensity scores of the matched sample 
lie within a specified width of calipers. As an analogy, 
we can permit a maximum 2-year difference when simply 
matching for patient age. The choice of caliper involves 
a tradeoff: a narrower caliper will form more similarly 
matched pairs but may result in a reduced number of 
matched subjects. Thus, one may need to experiment with 
different calipers to optimize the number of balanced pairs. 
One recommended method is to use a caliper width equal to 
0.2 of the standard deviation of the logit of the propensity 
scores (36). Optimal matching is another method aimed at 
creating matches that will minimize the sum of within-pair 
differences in the propensity scores (37). Optimal matching 
may not necessarily create more balanced matched pairs 
than greedy matching, and greedy and optimal matching 
methods mostly find the same sets of control subjects 
(38). Overall, the most commonly used approach in medical 
literature is probably the nearest neighbor matching without 
replacement (37). We chose 1:1 matching using nearest 
neighbor matching with a caliper width of 0.05 standard 
deviation of the logit of the propensity scores. The choice 
resulted in a reduction of the standardized mean difference 
between groups of < 20% (0.2) for all covariates after 
propensity score matching (Table 1). A smaller standardized 
mean difference between groups indicated a greater mean 
comparability, but can result in less matched pairs. 

Assessment of the Balance in Covariates 
between Groups after Propensity Score 
Matching

Effectiveness of propensity score matching can be judged 
by the degree of balance in all the measured baseline 
covariates between the 2 groups after matching. The 
standardized mean difference that is not affected by the 
samples size and represents properties of the sample, is 
proposed as an adequate method to assess this balance 
(39). In the current example, the standardized differences 
decreased to < 0.2 after matching, as shown in Table 1.

Hypothesis testing and p values are not recommended to 
check the balance between groups after propensity score 
matching, since a failure to reject the null hypothesis 
(i.e., p > 0.05) does not guarantee successful balance of 
covariates between 2 groups. Instead as described in the 
previous paragraph, using standardized mean differences 
is recommended to determine whether the groups are 
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sufficiently balanced. Graphical diagnostics can also be used 
to assess group balance after propensity score matching, 
such as Q-Q plots of each covariate, as shown in Figure 
2. The points in the Q-Q plots would lie on the 45-degree 
diagonal line if the empirical distributions are identical in 2 
compared groups. Deviations from the diagonal line indicate 
differences in the distribution of the covariates between the 
2 groups. A plot of the standardized differences of means 
before and after propensity score matching, as shown in 
Figure 3, also gives a good overview of the degree to which 
covariate balance improves on propensity score matching. 
The means of propensity scores after matching were 0.46 
for the liver CT group and 0.47 for the liver MRI group. 

Main Analysis of Between-Group Differences 
after Propensity Score Matching

Once an appropriate level of between-group balance of the 

confounders/covariates is achieved, the matched data set is 
ready for the main analysis of between-group difference in 
the study outcome. When all the observed confounders have 
been controlled, an inference of the effect of intervention 
can readily draw (e.g., liver MRI [intervention] vs. liver CT 
[control]). Following the matching process, it is generally 
recommended to conduct the analysis as if the data are 
paired or repeated measures. Therefore, the inter-group 
differences in continuous outcomes should be tested by the 
paired t test or the Wilcoxon signed-rank test. For binary 
outcomes as in our example, conditional logistic regression 
or generalized estimating equations (GEE) for logistic 
regression can be used when the treatment effect (e.g., the 
effect on diagnostic accuracy when liver MR is used instead 
of liver CT in the example) is measured with an odds ratio 
(OR). McNemar’s test can identify a significant association 
between the grouping variables (e.g., CT vs. MRI) and the 
binary outcome. A stratified log-rank test or a stratified 
Cox proportional hazard model can be employed for time-
to-event data. However, dissimilarity in covariates between 
the matched pair (i.e., at the individual level) is still a 
concern despite the collective similarity in distribution of 
each covariate between groups; hence statistical analysis of 
matched pairs may not be “the best practice” as suggested 
by Hill (40).

The OR (MRI-to-CT, where > 1 represents a higher accuracy 
of MRI compared with CT) obtained from the example study 
was shown in Table 2. When the data were analyzed without 
accounting for confounders (i.e., before propensity score 
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matching), MRI appeared to be significantly more accurate 
than CT even after controlling for confounders {adjusted 
OR of 1.76 (95% confidence interval [CI], 1.25–2.47) 
obtained with standard logistic regression analysis}. 
However, statistically significant differences disappeared 
after propensity score matching (adjusted OR of 1.38 
[95% CI, 0.93–2.05] obtained from GEE), indicating that 
the accuracies of liver MRI and liver CT were actually not 
significantly different in this example. 

Precautions and Further Considerations

Propensity score analysis cannot repair the lack of 
comparability between groups but is rather a statistical 
process that creates a balanced distribution of all the 
confounders included in the estimation of the propensity 
scores (described as ”observed/measured confounders“ 
in methodological terms). Therefore, it is of paramount 
importance to collect information on all relevant 
confounders and include them in the estimation of 
propensity scores in order to obtain credible results from 
any analyses using the propensity scores. For instance, in 
the example study, the statistical comparison between liver 
CT and liver MRI groups after propensity score matching 
with the exclusion of 2 variables, i.e., gender and history 
of malignancy, led to a false conclusion that MRI has a 
significantly higher accuracy than CT (Table 3). It is often 

very difficult or near impossible to acquire sufficient 
information on all relevant confounders in retrospective 
observational studies, hence propensity score analysis 
should be applied and interpreted with caution (21). 
After all, the quality and credibility of the data ultimately 
determines the quality and credibility of study results/
conclusion. 

As briefly mentioned earlier, the effects of confounders 
can also be adjusted by multivariable regression analysis. 
Multivariable regression and propensity score matching 
may result in concordant (Table 2) or discordant results 
depending on the data. Multivariable regression analysis 
may not be effective when there are numerous covariates 
because there may not be sufficient power to demonstrate a 
statistically significant effect of the main intervention after 
all adjustments have been made, resulting in misleading 
data due to over-fitting. 

Likewise, propensity scores itself can be used as a 
covariate in the regression model. There are potential 
advantages to applying the propensity score for covariate 
adjustment while modeling for outcome: the propensity 
score model can allow complexity in modeling with higher 
order forms and interactions, hence applying the propensity 
score as a covariate allows a less complex model of outcome 
that enables a more reliable fit than if many covariates 
for each were considered. However, Rubin (41) showed 
that covariance adjustment may in fact increase bias if the 

Table 2. Comparison between Liver MRI and Liver CT Using Several Analytic Methods
Odds Ratio† 95% Confidence Interval P

Crude without adjustment for confounders (n = 1410) 1.70 (1.29–2.25) < 0.01
Multivariable logistic regression* (n = 1410) 1.76 (1.25–2.47) < 0.01
Propensity score matching* (nearest neighbor) (n = 586) 1.38 (0.93–2.05) 0.11

Note.— *Both propensity score matching and multivariable regression analysis included all five covariates listed in Table 1 (age, gender, 
body mass index, lesion diameter, and history of cancer), †Odds ratio is MRI (numerator) to CT (denominator), where > 1 represents 
higher accuracy of MRI compared to CT.

Table 3. Effect of Variable Selection on Results of Propensity Score Analysis
Number of Subjects

Odd Ratio‡ 95% Confidence 
Interval

PLiver CT
(Control)

Liver MRI 
(Intervention)

Unmatched but adjusting for all five variables* 940 470 1.76 (1.25–2.47) < 0.01
Propensity score matching (nearest neighbor) using 
  all five variables*

293 293 1.38 (0.93–2.05) 0.11

Propensity score matching (nearest neighbor) using 
  selected variables† 439 439 1.52 (1.09–2.11) 0.01

Note.— *All five variables including age, gender, body mass index, lesion diameter, and history of cancer were considered as 
confounders, †Age, body mass index, and lesion diameter were only considered for estimating propensity score, ‡Odds ratio is MRI 
(numerator) to CT (denominator), where > 1 represents higher accuracy of MRI compared to CT.
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covariance matrices are different among groups.
Alternatively, stratification on the propensity score can 

be considered. Typically, the entire study population in an 
overall study sample is stratified into 5 approximately equal-
size groups using the quintiles of the estimated propensity 
score. This approximates matching but prevents loss of 
unmatched patients, since balance in the proportions of 
experimental and control patients within each stratum are 
not required (33). Rosenbaum and Rubin (13) demonstrated 
that stratifying on the quintiles of the propensity score 
eliminates approximately 90% of the bias. Propensity score 
matching was shown to eliminate a greater proportion of 
the systematic differences between groups, as compared to 
stratification on the propensity score (42).

It is also important to assure that all the variables in 
the multiple regression model satisfy the assumptions 
for the statistical analysis, including linearity. Propensity 
score matching is most effective in dealing with numerous 
covariates as it combines them into one collective variable, 
i.e., the propensity score. However, as the statistical 
comparison after propensity score matching only includes 
a portion of the original study population, the target 
population for generalization may be restricted.

Summary

• Retrospective observational studies are limited by 
various sources of biases and confounders, due to absence 
of the ”balancing principle“ inherent in randomized 
controlled trials. Such limitations affect robust comparison 
of outcomes between treatment and control groups.

• Propensity score adjustment allows the researcher to 
account for comparability between groups by balancing the 
distribution of biases and confounders between groups and, 
when applied properly, can simulate the random assignment 
of subjects seen in a randomized trial.

• The propensity score demonstrates each patient’s 
probability of receiving a specific treatment given a set 
of measured covariates. These covariates usually include 
various clinical characteristics and must be present prior to 
the decision of whether to assign compared procedures. 

• The selection of covariates to calculate the propensity 
score is critical, as the omission of important variables will 
reduce the credibility of the propensity score model.

• Propensity scores between patient groups must overlap 
to allow for appropriate balancing of patients. A lack of 
overlap indicates that the patient groups are too different 

at baseline for suitable comparison.
• Matching is a widely used method for propensity score 

adjustment of which nearest neighbor matching without 
replacement is most commonly employed.

• The dataset after propensity score matching should be 
analyzed using statistical tests for paired data. 

• The target population for generalization could be 
restricted, as the statistical analysis after propensity score 
matching only includes a portion of the original study 
population.

Supplementary Materials

The online-only Data Supplement is available with this 
article at http://dx.doi.org/10.3348/kjr.2015.16.2.286.
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