Detecting M-Protein via Mass Spectrometry and Affinity Beads: Enrichment With Mixed Kappa-Lambda Beads Enables Prompt Application in Clinical Laboratories

Jikyo Lee, M.D.^{1, 2*}, Jung Hoon Choi, M.S.^{3, 4*}, Eun-Hee Kim, M.S.², Jihyun Im, B.S.², Heeyoun Hwang, Ph.D.³, Seojin Yang, B.S.⁵, Joon Hee Lee, M.D.^{1, 6}, Kyunghoon Lee, M.D.⁶, Junghan Song, M.D., Ph.D.^{1, 6}, Seungman Park, M.D.⁷, and Sang Hoon Song, M.D., Ph.D.^{1, 2}

¹Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea; ²Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea; ³Digital OMICs Research Center, Korea Basic Science Institute, Cheongju, Korea; ⁴College of Pharmacy, Chungnam National University, Daejeon, Korea; ⁵Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea; ⁶Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam, Korea; ⁷Department of Laboratory Medicine, National Cancer Center, Goyang, Korea Supplemental Data Table S1. Molecular weight differences observed via high-resolution MS using daratumumab and cetuximab, treated with

or without IAA

Sample	Average MW	Mass observed with high- resolution MS (DTT)	Difference in the average MW	Mass observed with high-resolution MS (DTT-IAA)	Difference in the average MW
1+ LC of daratumumab	23,384.0	23,384.4	0.4	23,441.8	57.8
1+ LC of cetuximab	23,427.0	23,427.4	0.4	23,483.4	56.4

Abbreviations: DTT, dithiothreitol; DTT-IAA, dithiothreitol with iodoacetamide treatment; IAA, iodoacetamide; 1+ LC, single-charged light chain; Melon-MALDI-TOF, Melon Kit with C4 ZipTip combined with matrix-assisted laser desorption/ionization time-of-flight; MS: mass spectrometry; MW: molecular weight.

Preparation method	Sample	LC charge	m/z range	
	Normal	1+	23,271.8	23,356.1
Melon Kit+C4 ZinTin	Abnormal	1 '	23,052.6	23,098.7
	Normal	2+	11,495.5	11,699.6
	Abnormal	2+	11,390.4	11,596.6
	Normal	1+	23,305.3	23,387.9
MD	Abnormal	1+	23,282.7	23,394.7
MD	Normal	2+	11,415.9	11,749.2
	Abnormal	2+	11,412.2	11,791.2
	Normal	1.	23,277.3	23,444.6
ND	Abnormal	IŦ	23,052.6	23,171.9
IND	Normal	2	11,480.1	11,728.4
	Abnormal	2+	11,389.1	11,610.8

Supplemental Data Table S2. Range and differences in the m/z ratios found during precision testing

Abbreviations: LC, light chain; MB, magnetic beads; NB, nanobody affinity beads.

LC charge	Sample —	CV, %			
		Melon Kit+C4 ZipTip	MB	NB	
1+	Normal	0.09	0.05	0.08	
-	Abnormal	0.07	0.04	0.06	
2+	Normal	0.08	0.07	0.09	
	Abnormal	0.03	0.04	0.12	

Supplemental Data Table S3. CVs observed with five replicates tested in 1 day

Abbreviations: LC, light chain; MB, magnetic beads; NB, nanobody affinity beads.

LC charge	Sample	Statistics	Melon Kit+C4 ZipTip	MB	NB
1+		Mean	23,340.29	23,319.02	23,342.06
	Normal	SD	32.97	24.17	20.69
		CV (%)	0.1%	0.1%	0.1%
		Mean	23,095.72	23,079.06	23,322.4
	Abnormal	SD	23.46	13.6	36.46
		CV (%)	0.1%	0.1%	0.2%
2+		Mean	11,611.21	11,606.24	11,640.54
	Normal	SD	76.95	65.38	110.9
		CV (%)	0.7%	0.6%	1.0%
		Mean	11,497.15	11,495.83	11,634.58
	Abnormal	SD	72.36	66.95	113.24
		CV (%)	0.6%	0.6%	1.0%

Supplemental Data Table S4. Results of five replicates of normal and abnormal samples, tested over 5 days

Abbreviations: LC, light chain; MB, magnetic beads; NB, nanobody affinity beads

Supplemental Data Fig. S1. Examples of IgG, KnL, kappa, and lambda NB-MALDI-TOF mass spectra of single-charged light chains obtained from normal pooled serum and abnormal serum spiked with daratumumab (0.5 g/dL). (A) With the normal serum, polyclonal peaks were

observed after IgG or KnL purification, whereas single peaks were observed after purification with kappa or lambda beads. (B) With the abnormal (IgG/kappa) serum, monoclonal peaks were observed after IgG or KnL purification, whereas single peaks were observed after purification with kappa or lambda beads. The monoclonality of the IgG/kappa type was confirmed by matching the m/z ratio from a single kappa peak.

Abbreviations: KnL, mixed kappa and lambda; 1+ LC, single-charged light chain; NB-MALDI-TOF, nanobody affinity beads combined with matrix-assisted laser desorption/ionization time-of-flight.

Supplemental Data Fig. S2. Negative and positive controls for NB-LC-ESI-qTOF analysis after reduction with TCEP. (A) A normal pooled serum sample was used as a negative control. (B) A sample spiked with daratumumab (0.5 g/dL) was used as a positive control. Abbreviation: NB-LC-ESI-qTOF, nanobody affinity beads combined with liquid chromatography-electrospray ionization-quadrupole time-of-flight.

Supplemental Data Fig. S3. Limit of detection results obtained using NB-LC-ESI-qTOF
after IgG purification. (A) Normal pooled serum spiked with daratumumab (0.01 g/dL)
showed negative results. (B–F) Serum samples spiked with daratumumab (0.025, 0.05, 0.075,
0.1, or 0.2 g/dL) showed positive results with monoclonal peaks. The peak intensity increased
as the daratumumab concentration increased.

8 Abbreviation: NB-LC-ESI-qTOF, nanobody affinity beads combined with liquid chromatography-

9 electrospray ionization-quadrupole time-of-flight.

Supplemental Data Fig. S4. First case of a discrepancy between NB-MALDI-TOF and abnormal IFE results. The IgG/kappa subtype identified via IFE (No. 6) showed a negative result via NB-MALDI-TOF. The kappa: lambda ratio was normal with increased kappa chain levels. Abbreviations: IFE, immunofixation electrophoresis; KnL, kappa and lambda mixed beads; 1+ LC, single-charged light chain; 2+ LC, double-charged light chain; NB-MALDI-TOF, nanobody affinity beads combined with matrix-assisted laser desorption/ionization time-of-flight.

Supplemental Data Fig. S5. Second case of a discrepancy between NB-MALDI-TOF and abnormal IFE results. A suspected case of an IgG/kappa subtype, as determined via IFE (No. 8), showed a negative result via NB-MALDI-TOF. The kappa: lambda ratio was increased, and the kappa light chain level was markedly increased.

Supplemental Data Fig. S6. First case of a discrepancy between NB-MALDI-TOF and normal IFE results. A sample showing a negative result via IFE (No. 3) was positive for IgG/lambda via NB-MALDI-TOF. The kappa: lambda ratio was normal with normal kappa and lambda chain levels.

Supplemental Data Fig. S7. Second case of a discrepancy between NB-MALDI-TOF and normal IFE results. A sample showing a negative result determined via IFE (No. 4) was suspected of the IgA/lambda subtype based on the NB-MALDI-TOF data. The kappa: lambda ratio was normal with normal kappa and lambda chain levels.

Supplemental Data Fig. S8. First case of a correlation between NB-MALDI-TOF and abnormal IFE results. The IgG/lambda subtype was suspected based on the IFE results (No. 9), and peaks indicating the IgG/lambda subtype were found via NB-MALDI-TOF. The kappa: lambda ratio was normal with increased kappa and lambda chain levels.

Supplemental Data Fig. S9. Second case of a correlation between NB-MALDI-TOF and abnormal IFE results. The IgM/kappa subtype was suspected based on the IFE results (No. 22) with a dim band, and IgM/kappa peaks were found via NB-MALDI-TOF. The kappa: lambda ratio was normal with increased kappa chain levels.