~ .		-				Me	ta-analys	is. Grade	I-II	
Study	total number	Proportion (%)	95% CI		LL.	1	1	1	I	1
Stelloo et al. 2016	219		54.853 to 68.115	Stelloo et al. 2016				-		
An et al. 2007	17		44.042 to 89.686	An et al. 2007			_			
Black et al. 2006	93	77.419	67.578 to 85.446	Black et al. 2006				-	-	
Kommoss et al. 2018	127	80.315	72.328 to 86.837	Kommoss et al. 2018						
Mackay et al. 2010	32	65.625	46.807 to 81.428	Mackay et al. 2010			-			
Mills et al. 2014	40	65.000	48.316 to 79.372	Mills et al. 2014			-	-	_	
Djordjevic et al. 2013	46	60.870	45.374 to 74.912	Djordjevic et al. 2013			-	-	-	
Ruiz et al. 2014	64	90.625	80.703 to 96.481	Ruiz et al. 2014						
Talhouk et al. 2016	16	62.500	35.435 to 84.802	Talhouk et al. 2016				-		
Talhouk et al. 2017	64	18,750	10.082 to 30.462	Talhouk et al. 2017		-				
Total (fixed effects)	718		63.209 to 70.179	Total (fixed effects)				+		
Total (random effects)			52.602 to 77.714	Total (random effects)				-	-	
Q	108.4822	001110	52.002 10 77.771							
DF	9				0.0	0.2	0.4	0.6	0.8	1.0
Significance level	P < 0.001						Prop	ortion		
I^2 (inconsistency)	91.70%		(A)				mop	ormon		
1 (meonsistency)	91.7070		(\mathbf{n})							
					Meta-analysis. Grade III					
						Meta-an	alysis. Gr	ade III		
Study	Sample size	Proportion (%)) 95% CI			Meta-an	alysis. Gr	ade III	1	1
Study Stelloo et al. 2016	Sample size 834	Proportion (%) 26.259		Stelloo et al. 2016		Meta-an	alysis. Gr	ade III		
Stelloo et al. 2016 An et al. 2007	834 100	26.259 17.000	23.301 to 29.38610.226 to 25.818	Stelloo et al. 2016 An et al. 2007		Meta-an	alysis. Gr	ade III		
Stelloo et al. 2016 An et al. 2007 Black et al. 2006	834 100 473	26.259 17.000 19.662	 23.301 to 29.386 10.226 to 25.818 16.173 to 23.534 	Stelloo et al. 2016 An et al. 2007 Black et al. 2006		Meta-an	alysis. Gr	ade III ∎-		
Stelloo et al. 2016 An et al. 2007	834 100 473 452	26.259 17.000 19.662 28.097	 23.301 to 29.386 10.226 to 25.818 16.173 to 23.534 23.998 to 32.486 	Stelloo et al. 2016 An et al. 2007 Black et al. 2006 Kommoss et al. 2018		Meta-an	alysis. Gr	ade III 		
Stelloo et al. 2016 An et al. 2007 Black et al. 2006 Kommoss et al. 2018 Mackay et al. 2010	834 100 473 452 163	26.259 17.000 19.662 28.097 19.632	 23.301 to 29.386 10.226 to 25.818 16.173 to 23.534 23.998 to 32.486 13.833 to 26.569 	Stelloo et al. 2016 An et al. 2007 Black et al. 2006 Kommoss et al. 2018 Mackay et al. 2010		Meta-an	alysis. Gr 	ade III 		
Stelloo et al. 2016 An et al. 2007 Black et al. 2006 Kommoss et al. 2018 Mackay et al. 2010 Mills et al. 2014	834 100 473 452 163 605	26.255 17.000 19.662 28.097 19.632 6.612	 23.301 to 29.386 10.226 to 25.818 16.173 to 23.534 23.998 to 32.486 13.833 to 26.569 4.765 to 8.895 	Stelloo et al. 2016 An et al. 2007 Black et al. 2006 Kommoss et al. 2018 Mackay et al. 2010 Mills et al. 2014		Meta-an	alysis. Gr 	ade III 		
Stelloo et al. 2016 An et al. 2007 Black et al. 2006 Kommoss et al. 2018 Mackay et al. 2010 Mills et al. 2014 Djordjevic et al. 2013	834 100 473 452 163 605 186	26.259 17.000 19.662 28.097 19.632 6.612 24.731	 23.301 to 29.386 10.226 to 25.818 16.173 to 23.534 23.998 to 32.486 13.833 to 26.569 4.765 to 8.895 18.711 to 31.575 	Stelloo et al. 2016 An et al. 2007 Black et al. 2006 Kommoss et al. 2018 Mackay et al. 2010 Mills et al. 2014 Djordjevic et al. 2013		Meta-an	alysis. Gr	ade III 		
Stelloo et al. 2016 An et al. 2007 Black et al. 2006 Kommoss et al. 2018 Mackay et al. 2010 Mills et al. 2014 Djordjevic et al. 2013 Ruiz et al. 2014	834 100 473 452 163 605 186 212	26.259 17.000 19.662 28.097 19.632 6.611 24.731 30.189	 23.301 to 29.386 10.226 to 25.818 16.173 to 23.534 23.998 to 23.486 13.833 to 26.569 4.765 to 8.895 18.711 to 31.575 24.090 to 36.851 	Stelloo et al. 2016 An et al. 2007 Black et al. 2006 Kommoss et al. 2018 Mackay et al. 2010 Mills et al. 2014 Djordjevic et al. 2013 Ruiz et al. 2014		Meta-an	alysis. Gr	ade III 	_	
Stelloo et al. 2016 An et al. 2007 Black et al. 2006 Kommoss et al. 2018 Mackay et al. 2010 Mills et al. 2014 Djordjevic et al. 2013 Ruiz et al. 2014 Talhouk et al. 2016	834 100 473 452 163 605 186 212 57	26.259 17.000 19.662 28.097 19.632 6.612 24.733 30.189 28.070	 23.301 to 29.386 10.226 to 25.818 16.173 to 23.534 23.998 to 32.486 13.833 to 26.569 4.765 to 8.895 18.711 to 31.575 24.090 to 36.851 16.973 to 41.543 	Stelloo et al. 2016 An et al. 2007 Black et al. 2006 Kommoss et al. 2018 Mackay et al. 2010 Mills et al. 2014 Djordjevic et al. 2013 Ruiz et al. 2014 Talhouk et al. 2016		Meta-an	alysis. Gr	ade III 	_	
Stelloo et al. 2016 An et al. 2007 Black et al. 2006 Kommoss et al. 2018 Mackay et al. 2010 Mills et al. 2014 Djordjevic et al. 2013 Ruiz et al. 2014 Talhouk et al. 2016 Talhouk et al. 2017	834 100 473 452 163 605 186 212 57 319	26.259 17.000 19.662 28.097 19.632 6.612 24.731 30.188 28.070 20.063	 23.301 to 29.386 10.226 to 25.818 16.173 to 23.534 23.998 to 32.486 13.833 to 26.569 4.765 to 8.895 18.711 to 31.575 24.090 to 36.851 16.973 to 41.543 15.807 to 24.884 	Stelloo et al. 2016 An et al. 2007 Black et al. 2006 Kommoss et al. 2018 Mackay et al. 2010 Mills et al. 2014 Djordjevic et al. 2013 Ruiz et al. 2014 Talhouk et al. 2016 Talhouk et al. 2017		Meta-an	alysis. Gr	ade III 	_	
Stelloo et al. 2016 An et al. 2007 Black et al. 2006 Kommoss et al. 2018 Mackay et al. 2010 Mills et al. 2014 Djordjevic et al. 2013 Ruiz et al. 2014 Talhouk et al. 2016 Talhouk et al. 2017 Total (fixed effects)	834 100 473 452 163 605 186 212 57 319 3401	26.259 17.000 19.662 28.097 19.632 6.612 24.731 30.188 28.077 20.063 20.479	 23.301 to 29.386 10.226 to 25.818 16.173 to 23.534 23.998 to 32.486 13.833 to 26.569 4.765 to 8.895 18.711 to 31.575 24.090 to 36.851 16.973 to 41.543 15.807 to 24.884 9.135 to 21.872 	Stelloo et al. 2016 An et al. 2007 Black et al. 2006 Kommoss et al. 2018 Mackay et al. 2010 Mills et al. 2014 Djordjevic et al. 2013 Ruiz et al. 2014 Talhouk et al. 2016 Talhouk et al. 2017 Total (fixed effects)		Meta-an	alysis. Gr	ade III 	_	
Stelloo et al. 2016 An et al. 2007 Black et al. 2006 Kommoss et al. 2018 Mackay et al. 2010 Mills et al. 2014 Djordjevic et al. 2013 Ruiz et al. 2014 Talhouk et al. 2017 Total (fixed effects) Total (random effects)	834 100 473 452 163 605 186 212 57 319	26.259 17.000 19.662 28.097 19.633 6.612 24.731 30.188 28.070 20.066 20.477 21.529	 23.301 to 29.386 10.226 to 25.818 16.173 to 23.534 23.998 to 32.486 13.833 to 26.569 4.765 to 8.895 18.711 to 31.575 24.090 to 36.851 16.973 to 41.543 15.807 to 24.884 9.135 to 21.872 	Stelloo et al. 2016 An et al. 2007 Black et al. 2006 Kommoss et al. 2018 Mackay et al. 2010 Mills et al. 2014 Djordjevic et al. 2013 Ruiz et al. 2014 Talhouk et al. 2016 Talhouk et al. 2017 Total (fixed effects)		Meta-an	alysis. Gr	ade III 	_	
Stelloo et al. 2016 An et al. 2007 Black et al. 2006 Kommoss et al. 2018 Mackay et al. 2010 Mills et al. 2014 Djordjevic et al. 2013 Ruiz et al. 2014 Talhouk et al. 2016 Talhouk et al. 2017 Total (fixed effects) Total (random effects) Q	834 100 473 452 163 605 186 212 57 319 3401	26.259 17.000 19.662 28.097 19.632 6.612 24.731 30.189 28.070 20.063 20.479 21.525 151.1757	 23.301 to 29.386 10.226 to 25.818 16.173 to 23.534 23.998 to 32.486 13.833 to 26.569 4.765 to 8.895 18.711 to 31.575 24.090 to 36.851 16.973 to 41.543 15.807 to 24.884 9.135 to 21.872 	Stelloo et al. 2016 An et al. 2007 Black et al. 2006 Kommoss et al. 2018 Mackay et al. 2010 Mills et al. 2014 Djordjevic et al. 2013 Ruiz et al. 2014 Talhouk et al. 2016 Talhouk et al. 2017 Total (fixed effects)		Meta-an	alysis. Gr	ade III 	_	
Stelloo et al. 2016 An et al. 2007 Black et al. 2006 Kommoss et al. 2018 Mackay et al. 2010 Mills et al. 2014 Djordjevic et al. 2013 Ruiz et al. 2014 Talhouk et al. 2016 Talhouk et al. 2017 Total (fixed effects) Q DF	834 100 473 452 163 605 186 212 57 319 3401	26.259 17.000 19.662 28.097 19.632 6.612 24.731 30.189 28.070 20.063 20.479 21.529 151.1757 9	 23.301 to 29.386 10.226 to 25.818 16.173 to 23.534 23.998 to 32.486 13.833 to 26.569 4.765 to 8.895 18.711 to 31.575 24.090 to 36.851 16.973 to 41.543 15.807 to 24.884 9.135 to 21.872 	Stelloo et al. 2016 An et al. 2007 Black et al. 2006 Kommoss et al. 2018 Mackay et al. 2010 Mills et al. 2014 Djordjevic et al. 2013 Ruiz et al. 2014 Talhouk et al. 2016 Talhouk et al. 2017 Total (fixed effects)	0.0	Meta-an	0.2	ade III		0.5
Stelloo et al. 2016 An et al. 2007 Black et al. 2006 Kommoss et al. 2018 Mackay et al. 2010 Mills et al. 2014 Djordjevic et al. 2013 Ruiz et al. 2014 Talhouk et al. 2017 Total (fixed effects) Total (random effects) Q DF Significance level	834 100 473 452 163 605 186 212 57 319 3401	26.259 17.000 19.662 28.097 19.632 6.612 24.731 30.189 28.070 20.063 20.479 21.529 151.1757 9 P < 0.001	 23.301 to 29.386 10.226 to 25.818 16.173 to 23.534 23.998 to 32.486 13.833 to 26.569 4.765 to 8.895 18.711 to 31.575 24.090 to 36.851 16.973 to 41.543 15.807 to 24.884 19.135 to 21.872 15.930 to 27.718 	Stelloo et al. 2016 An et al. 2007 Black et al. 2006 Kommoss et al. 2018 Mackay et al. 2010 Mills et al. 2014 Djordjevic et al. 2013 Ruiz et al. 2014 Talhouk et al. 2016 Talhouk et al. 2017 Total (fixed effects)	0.0	-	0.2	0.3	0.4	0.5
Stelloo et al. 2016 An et al. 2007 Black et al. 2006 Kommoss et al. 2018 Mackay et al. 2010 Mills et al. 2014 Djordjevic et al. 2013 Ruiz et al. 2014 Talhouk et al. 2016 Talhouk et al. 2017 Total (fixed effects) Q DF	834 100 473 452 163 605 186 212 57 319 3401	26.259 17.000 19.662 28.097 19.632 6.612 24.731 30.189 28.070 20.063 20.479 21.529 151.1757 9	 23.301 to 29.386 10.226 to 25.818 16.173 to 23.534 23.998 to 32.486 13.833 to 26.569 4.765 to 8.895 18.711 to 31.575 24.090 to 36.851 16.973 to 41.543 15.807 to 24.884 9.135 to 21.872 	Stelloo et al. 2016 An et al. 2007 Black et al. 2006 Kommoss et al. 2018 Mackay et al. 2010 Mills et al. 2014 Djordjevic et al. 2013 Ruiz et al. 2014 Talhouk et al. 2016 Talhouk et al. 2017 Total (fixed effects)	0.0	-	0.2		0.4	0.5

Supplementary Fig. S9. Grade analysis in mismatch repair deficiency in endometrial carcinoma

[2,3,13,15,16,18,19,21,24,25]: (A) grade I–II and (B) grade III. CI, confidence interval.