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SUPPLEMENTAL METHODS

Introduction
Our system generates end-to-end bone mineral density (BMD) 
estimates from abdominal computed tomography (CT) scans 
via three successive steps:

1.  Localization: Given a subject’s abdominal CT scan, the sys-
tem detects the center transverse CT slice from the L1, L2, 
L3, and L4 vertebrae.

2.  Segmentation: For each lumbar vertebra, four CT slices—
the center slice, the slice above the center, and two slices 
below the center—were selected based on the output from 
the localization step and segmented to retain only the verte-
bral bone.

3.  Estimation: Four cropped regions corresponding to each 
vertebra are concatenated counterclockwise to generate a 
BMD using convolutional neural network (DXACNN) pre-
diction for each vertebra independently.

Localization of lumbar spines
Inspired by the work of Belharbi et al. [1] and Kanavati et al. 
[2], we proposed a method for localizing the center L1, L2, L3, 
and L4 axial CT slices using maximum intensity projections 
(MIPs). The MIPs were images generated by taking the highest 
intensity value along a specific axis for each pixel of the projec-
tion. As bones have higher Hounsfield unit (HU) values than 
soft tissues, MIPs from CT stacks can generate two-dimensional 
(2D) representations of the bone structure of a subject. In this 
study, we clipped the intensity values between –100 and 1,000 
HU to project both coronal and sagittal MIPs.

Our system takes a two-stage approach for this subtask: the 
first stage finds the slice corresponding to the top of the L1 ver-
tebra, whereas the second stage outputs the central slice loca-
tions of the top four lumbar vertebrae based on the results of the 
first stage. Both stages were trained separately and combined 
during inference. Channel attention (CA) was employed and 
pre-trained networks were not used for slice localization.

Training details
1) Network architecture
Supplemental Fig. S1A illustrates the network architectures of 
the two models used in the subtask. Our networks are based on 
the Visual Geometry Group 19 (VGG19) architecture [3], which 
consists of 3×3 convolution layers, batch normalization [4], rec-
tified linear unit (ReLU) activations, max-pooling layers for fea-
ture extraction, and a fully connected layer to generate outputs. In 

contrast to standard VGG19 models, CA blocks were applied be-
fore each pooling layer to improve model performance. Supple-
mental Fig. S1B shows the architecture of a CA block. First, the 
global average pooling was applied to the input features. Subse-
quently, the weight of each channel was calculated as a value be-
tween 0 and 1 after the 1×1 convolution and sigmoid layers. The 
calculated weights were then multiplied by the input feature.

2) Implementation
Both the sagittal and frontal MIPs were normalized to a range of 0 
to 1. Horizontal flipping and shifting data augmentations were ap-
plied. An Adam optimizer with a momentum β1=0.9, β2=0.999, 
mean absolute error (MAE) loss, and a batch size of four were 
used. The initial learning rate (LR) is set to 1×10−4 and reduced 
by half for every 200 epochs. In addition, the neural networks in 
the first and second stages were trained for 1,000 epochs. Both 
networks were implemented using PyTorch (https://pytorch.org).

Ablation study for the channel attention
Supplemental Table S1 presents the results of the models trained 
with and without CA on our test set. The model trained with CA 
had lower MAE means and standard deviations, as well as few-
er outliers, than the models trained without attention.

Lumbar spine segmentation
To reduce the cost associated with annotating a vast number of 
2D CT slices and improve the segmentation performance, as 
shown in Supplemental Fig. S2A, a semi-supervised segmenta-
tion method was applied. Since the Mumford-Shah loss [5] does 
not require ground-truth masks, the network uses many unla-
beled CT slices.

Specifically, given an input image x and predicted segmenta-
tion map y, the network is trained by minimizing the following 
loss function:

  Loss=αLCE+βLMS  (1)
where α and β are hyper-parameters, LCE is the cross-entropy 
loss, and LMS is the Mumford-Shah loss. The hyperparameter α 
is 1 if the input contains labeled masks and α=0 otherwise. Ac-
cordingly, as illustrated in Supplemental Fig. S2A, the LCE that 
requires ground-truth labels and predicted segmentation maps is 
computed when the networks use annotated data, whereas the 
Mumford-Shah loss, which requires inputs and network outputs, 
is applied to all training data. The LCE is computed as

  
                                 

(2)

where g is the ground truth label, M is the number of classes, 
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and N is the number of pixels. In addition, under the assumption 
that the segmentation map y is the output of the softmax layer of 
the network, the Mumford-Shah loss can be expressed as: 

 
(3)

where
                                                             (4)

This is the average pixel value of the m-th class of the input 
images. Therefore, the network was trained in a semi-supervised 
manner using the proposed loss Function (1).

Training details
1) Network architecture
Supplemental Fig. S2B illustrates the U-Net-like architecture 
used in the segmentation network. U-Net consists of encoder 
and decoder paths with skip connections between them and is 
widely used in image segmentation. The encoder was composed 
of four repeated convolution blocks for down-sampling. The 
convolution block has two-unit blocks formed by a series of 3×

3 convolutions: batch normalization [4] and ReLU activation. 
The decoder was configured similarly to the encoder, with the 
convolution module containing a convolution transpose layer 
with a stride of two for up-sampling, which was repeated four 
times. For each up-sample, the number of channels was halved. 
The skip connections link the features from the encoder to the 
up-sampled features by concatenation. In the last layer of the 
network, a convolution layer with 1×1 kernels and a softmax 
layer was applied to generate probability maps for segmenta-
tion.

2) Implementation
The proposed semi-supervised vertebral segmentation method 
was implemented in Python using the PyTorch library. We 
down-sampled the 2D CT images from 512×512 to 256×256 
by sub-sampling and augmented the data using horizontal or 
vertical flipping and 90° rotations. The network was trained us-
ing an Adam optimizer [6] with an initial LR of 1×10−5. The 
LR was decreased by half after every 20 epochs. The batch size 
was set to four and the hyperparameter β to 0.01. The parame-
ters of the network were initialized by the weights of a pre-
trained network using only labeled data, and the network was 
trained for 100 epochs using a single NVIDIA Quadro RTX 
6000 GPU (NVIDIA, Santa Clara, CA, USA).

Additional experimental results
Supplemental Table S2 presents the cross-validation results. 
When comparing the proposed semi-supervised method to the 
baseline supervised method, the Dice scores of the proposed 
method across all validation sets were higher than those of the 
comparative method. In addition, the average global Dice score 
of the validation sets using the proposed method showed a 
0.12% gain over the baseline.

 
1) Qualitative segmentation results
Supplemental Fig. S3 illustrates the qualitative evaluation re-
sults for vertebral segmentation. For both male and female sub-
jects, all lumbar vertebral regions were segmented more accu-
rately using the proposed method than with the supervised 
method. Comparing the Dice score results of the test dataset for 
the two models, the proposed semi-supervised method outper-
formed the baseline.

Bone mineral density estimation
The inputs for the estimation task are based on the results of the 
two preceding steps. Four central axial CT slices were selected 
from each of the top four lumbar vertebrae and binary vertebral 
segmentation masks were acquired for the 16 images from the 
segmentation subtask. The Hadamard product of the mask and 
CT slice were taken, the pixel intensity values were clipped to 
(0,1000) HU, and a 196×196-pixel area in the image centered 
on the center of mass of the segmentation mask was cropped. 
These four images were then concatenated clockwise to gener-
ate a 392×392-pixel image that was resized to 98×98-pixels 
and min-max normalized by the sample to (0,1).

Network architecture
The regression network used for BMD estimation was based on 
the DenseNet169 architecture [7], with the output layer replaced 
by four blocks of successive fully connected layers with ReLU 
activation and batch normalization [4]. The fully connected lay-
ers (from bottom to top) had 1,024, 512, 128, and 8 nodes, re-
spectively. The final output layer is a fully connected layer with 
a single node and linear activation. All layers in the model were 
initialized using the Glorot uniform initialization [8].

Implementation
The regressor was trained using CT-dual-energy X-ray absorpti-
ometry pairs from 158 subjects and validated using data from 15 
subjects. In line with other studies on deep learning in medical 
imaging [9,10], 30 regressors with a fixed random seed, archi-
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tecture, dataset splits, and training procedure were trained and 
the five models with the lowest validation loss were assembled. 
The sliding window method generated 4,727 training and 417 
validation samples. During the training, rotation (between –10° 
and 10°), horizontal and vertical shifts (by a factor of 0.05), hori-
zontal flipping, and zooming (between 0.95 and 1.05) augmenta-
tions were randomly applied. The regressor models were trained 
using MAE loss with a batch size of 32 and an Adam optimizer 
[6] with an initial LR of 0.01, a β1 of 0.9, a β2 of 0.999, and an ϵ 
of 10–7 for 200 epochs. Both learning-rate scheduling and early 
stopping were applied based on the validation loss. LR was re-
duced by a factor of 0.33 if the validation loss did not improve 
for five epochs, when the LR was greater than 0.0001, and train-
ing was stopped if the validation loss did not improve for 15 ep-
ochs. The model was trained using Python 3.6, TensorFlow 1.13 
(https://www.tensorflow.org/?hl=ko), and CUDA 10.0 (https://
developer.nvidia.com/cuda-10.0-download-archive) on an Ubuntu 
18.04 (https://releases.ubuntu.com/18.04/) workstation with an 
Intel i9-10940X processor (https://www.intel.co.kr/), 128 GB of 
memory, and an NVIDIA RTX Titan GPU.
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