Table S1. Model equation of each measurand

Measurand	Model equation and description of each variable
$\mathrm{L}_{\text {onset }}\left(M_{L_{\text {onset }}}\right)$	$\begin{aligned} & M_{L_{\text {onset }}}=X_{L_{\text {onset }}}+C_{L_{\text {onset }}} \\ & X_{L_{\text {onset }}}: \text { instrument reading value of onset latency } \\ & C_{L_{\text {onset }}}: \text { correction value of onset latency from calibration of instrument } \end{aligned}$
$\mathrm{Amp}_{\text {base-peak }}$ $\left(M_{\text {Amp }}^{\text {base-peak }}\right.$ $)$	$\begin{aligned} & M_{A m p_{\text {base-peak }}}=X_{A m p_{\text {base-peak }}}+C_{A m p_{\text {base-peak }}} \\ & X_{A m p_{\text {base-peak }}}: \text { instrument reading value of base to peak amplitude } \\ & C_{A m p_{\text {base-peak }}: \text { correction value of base to peak amplitude from calibration of instrument }} \end{aligned}$
$\mathrm{Amp}_{\text {peak-peak }}$ ($\left.M_{\text {Amp } p_{\text {peak-peak }}}\right)$	$\begin{aligned} & X_{A m p_{p e a k-p e a k}}+C_{A m p_{p e a k-p e a k}} \\ & X_{A m p_{\text {peak-peak }}}: \text { instrument reading value of peak to peak amplitude } \\ & C_{A m p_{\text {peak-peak }}: \text { correction value of peak to peak amplitude from calibration of instrument }} \end{aligned}$
Aneg ($M_{\text {Aneg }}$)	$M_{\text {Aneg }}=X_{\text {Aneg }}$ $X_{\text {Aneg }}$: instrument reading value of area
Dneg ($M_{\text {Dneg }}$)	$M_{D n e g}=X_{D n e g}$ $X_{\text {Dneg }}$: instrument reading value of duration
$\operatorname{NCV}\left(M_{N C V}\right)$	$M_{N C V}=\frac{L}{M_{L_{\text {onset }}, p^{-}-L_{\text {onset }}}}, L=X_{L}+C_{L}$ L : distance between the proximal and distal stimulation sites $M_{L_{\text {onset }} ;}$: proximal onset latency $M_{L_{\text {onset }}, d}$: distal onset latency X_{L} : instrument reading value of distance C_{L} : correction value of distance from calibration of instrument

$X_{A m p_{\text {base-peak }} p}$: instrument reading value of proximal base to peak amplitude
$X_{A m p_{\text {base-peake }} d}$: instrument reading value of distal base to peak amplitude
$C_{A m p_{\text {peak-peak }}, p \text { : correction value of proximal peak to peak amplitude from calibration of instrument }}$
$C_{A m p_{\text {peak-peak,d }}}$: correction value of distal peak to peak amplitude from calibration of instrument
Ratio $_{\text {Area }}\left(M_{\text {Area, } p / \text { Area, }, d}\right)_{M_{\text {Area }, p / \text { Area }, d}}=\frac{X_{\text {Aneg }, p}}{X_{\text {Aneg }, d}}$
$M_{\text {Aneg, } p}$: instrument reading value of proximal area
$M_{\text {Aneg,d }}$: instrument reading value of distal area

