Supplementary information

Fig. S1. PSCs-derived ECs have similar differentiation efficiency by using another chemically-defined medium (CDM). (A) and (C) Repeating the PSCs-derived ECs differentiation plus DMSO and Y27632 for three days. (B) and (D) Statistics of CD31 ${ }^{+}$ $\mathrm{CD} 34^{+}, \mathrm{CD}_{3}{ }^{+}, \mathrm{CD} 34^{+}$and CD43 ${ }^{+}$ cells. Data are represented as mean \pm SD. $n=4 \sim 6$, the experiments were repeated more than three independent times.

Fig. 2. Representative flow cytometry results of surface markers CD31, CD34, KDR and NRP1 between IPAH-EPCs (IPAH-EPC1, IPAH-EPC2 and IPAH-EPC3), normal EPCs (normal EPC1, normal EPC2, normal EPC3) and PSCs-derived EPCs (H1EC).

C
H1EC-Day9-P1

Fig. S3. Isolated CD31 ${ }^{+}$cells are PSCs-derived EPCs. (A) Detection of expression level of VE-cadherin by qRT-PCR on day 5 and day 7. (B) CD133 expresses highly in normal EPCs (normal EPC1, normal EPC2) and PSCs-derived EPCs (202EC, H9EC) using Immunofluorescence assay (scale bars: $20 \mu \mathrm{~m}$). (C) PSCsderived EPCs can form colonies (scale bars: $500 \mu \mathrm{~m}$).

Table S1. The sequences of oligonucleotide primers used for qRT-PCR are listed in the table

Gene name	$\mathrm{F}\left(3^{\prime}\right.$ to $\left.5^{\prime}\right)$	$\mathrm{R}\left(3^{\prime}\right.$ to $\left.5^{\prime}\right)$
$N R P 1$	ACCCAAGTGAAAAATGCGAATG	CCTCCAAATCGAAGTGAGGGTT
GAPDH	AACAGCCTCAAGATCATCAGC	GGATGATGTTCTGGAGAGCC
CD133	TTCTTGACCGACTGAGACCCA	TCATGTTCTCCAACGCCTCTT
$E F N B 2$	TTCAGCCCTAACCTCTGGGG	CCTCCAAAGACCCATTTGATGTA
$E P H B 4$	CTGTGAACCTGACTCGATTCC	CTCGGCACTTGGTGTCCC
$V E-C A D ~$	TGTGGGCTCTCTGTTGTG	CGACGATGAAGCTGTATTGC

Table S2. VE-cadherin (CDH5/CD144) expressed highly based on microarray analysis

	Con1.	Con2.	Con3.	H7EC.	H9EC.	202EC.
Gene symbol	rma.chp	rma.chp	rma.chp	rma.chp	rma.chp rma.chp Signal	Signal

