서론

유방암은 여성에서 갑상선암 다음으로 두 번째로 흔한 암이며 암으로 인한 사망의 주요 원인 중 하나로서 전체 암 사망 원인의 약 14%를 차지한다(1). 나이에 따른 진단율을 보면, 전체 유방암 중 약 7~9%가 40세 이전에 진단되며 약 4% 미만이 35세 이전에 진단된다(1, 2). 특히, 아시아의 유방암 환자가 서양인보다 평균 나이가 더 적고, 젊은 환자의 비율이 더 높아서, 유방암 환자 중 젊은 환자의 비율이 서양에서는 약 5%이지만 아시아에서는 10% 이상이며 우리나라에서는 약 9.5%가 35세 이전에 발병하는 것으로 알려져 있다(3~5).

유방암의 젊은 환자군과 나이든 환자군 간에 조직 병리학적 및 임상적 특징이 차이가 있다는 것을 여러 연구를 통해 보여주고 있으며, 젊은 여성에서의 유방암은 일반적으로 더 높은 병기 및 높은 조직 등급, 호르몬 수용체 음성, 림프혈관강 침윤 등이 더 심각한 임상적 특성을 보인다(6, 7). 또한, Han 등(2)의 연구에서 35세 미만의 환자군이 35세 이상 환자군보다 전체 생존율이 낮고 재발률은 높아 젊은 나이가 나쁜 예후와 연관이 있다는 것을 보여주고 있다. 젊은 여성에서의 유방암은 고프로 위에서 발병한 유방암에 비교해 예후가 나쁜 것으로 잘 알려져 있다.
대상과 방법

본 연구는 본원 임상시험심사위원회(Institutional Review Board)의 승인을 얻었으며(KC18RESI0202), 후향적 연구로 동의서 면제되었다. 2009년 1월부터 2013년 12월까지 본원에서 조직학적으로 유방암이 확진된 35세 이하의 환자 중 유방 자기공명영상 촬영을 시행한 91명을 대상으로 하였다.(연령 분포: 14~35세, 평균 연령: 31.5세). 임상 소견은 전자의무기록을 참고했으며 나이, 증상(무증상, 촉지되는 종괴, 유두 분비물), 종양의 크기, 수술 방법(유방 보존술, 변형 근치 유방절제)

<p>| Table 1. Clinicopathological Data for 91 Patients in Our Study |</p>
<table>
<thead>
<tr>
<th>Clinicopathological Characteristics</th>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age (years)</td>
<td>31.5</td>
</tr>
<tr>
<td>Presentation</td>
<td></td>
</tr>
<tr>
<td>Asymptomatic</td>
<td>26 (28.6)</td>
</tr>
<tr>
<td>Palpable mass</td>
<td>61 (67.0)</td>
</tr>
<tr>
<td>Nipple discharge</td>
<td>4 (4.4)</td>
</tr>
<tr>
<td>Median clinical tumor size, cm (range)</td>
<td>3.63 (0.5~10.5)</td>
</tr>
<tr>
<td>Type of surgery</td>
<td></td>
</tr>
<tr>
<td>BCS</td>
<td>59 (64.8)</td>
</tr>
<tr>
<td>MRM</td>
<td>23 (25.3)</td>
</tr>
<tr>
<td>No surgery</td>
<td>9 (9.9)</td>
</tr>
<tr>
<td>Histologic type</td>
<td></td>
</tr>
<tr>
<td>IDC, NOS</td>
<td>66 (72.5)</td>
</tr>
<tr>
<td>DCIS</td>
<td>12 (13.2)</td>
</tr>
<tr>
<td>ILC</td>
<td>1 (1.1)</td>
</tr>
<tr>
<td>Medullary</td>
<td>2 (2.2)</td>
</tr>
<tr>
<td>Metaplastic</td>
<td>2 (2.2)</td>
</tr>
<tr>
<td>Mucinous</td>
<td>5 (5.5)</td>
</tr>
<tr>
<td>Microinvasive ductal</td>
<td>3 (3.3)</td>
</tr>
<tr>
<td>Clinical T stage</td>
<td></td>
</tr>
<tr>
<td>T1/T2</td>
<td>51 (56.0)</td>
</tr>
<tr>
<td>T2/T3</td>
<td>40 (44.0)</td>
</tr>
<tr>
<td>Axillary lymph node</td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>48 (52.7)</td>
</tr>
<tr>
<td>Positive</td>
<td>30 (33.0)</td>
</tr>
<tr>
<td>Unknown</td>
<td>13 (14.3)</td>
</tr>
<tr>
<td>Tumor grade</td>
<td></td>
</tr>
<tr>
<td>Grade I</td>
<td>15 (16.5)</td>
</tr>
<tr>
<td>Grade II</td>
<td>32 (35.2)</td>
</tr>
<tr>
<td>Grade III</td>
<td>43 (47.2)</td>
</tr>
<tr>
<td>Unknown</td>
<td>1 (1.1)</td>
</tr>
<tr>
<td>Phenotype</td>
<td></td>
</tr>
<tr>
<td>Luminal A</td>
<td>43 (47.3)</td>
</tr>
<tr>
<td>Luminal B</td>
<td>15 (16.4)</td>
</tr>
<tr>
<td>HER-2 enriched</td>
<td>5 (5.5)</td>
</tr>
<tr>
<td>Triple negative</td>
<td>22 (24.2)</td>
</tr>
<tr>
<td>Unknown</td>
<td>6 (6.6)</td>
</tr>
</tbody>
</table>

Table 2. MRI Findings in 91 Cases

<table>
<thead>
<tr>
<th>Feature</th>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background parenchymal enhancement</td>
<td></td>
</tr>
<tr>
<td>Minimal/mild</td>
<td>79 (86.8)</td>
</tr>
<tr>
<td>Moderate/marked</td>
<td>12 (13.2)</td>
</tr>
<tr>
<td>Lesion type</td>
<td></td>
</tr>
<tr>
<td>Mass</td>
<td>67 (73.6)</td>
</tr>
<tr>
<td>Non-mass</td>
<td>24 (26.4)</td>
</tr>
<tr>
<td>Mass shape</td>
<td></td>
</tr>
<tr>
<td>Oval</td>
<td>28 (31.8)</td>
</tr>
<tr>
<td>Round</td>
<td>3 (4.5)</td>
</tr>
<tr>
<td>Irregular</td>
<td>36 (43.7)</td>
</tr>
<tr>
<td>Mass margin</td>
<td></td>
</tr>
<tr>
<td>Circumscribed</td>
<td>22 (24.2)</td>
</tr>
<tr>
<td>Irregular</td>
<td>36 (40.3)</td>
</tr>
<tr>
<td>Spiculated</td>
<td>9 (10.3)</td>
</tr>
<tr>
<td>Mass internal enhancement</td>
<td></td>
</tr>
<tr>
<td>Homogeneous</td>
<td>3 (4.4)</td>
</tr>
<tr>
<td>Heterogeneous</td>
<td>36 (40.3)</td>
</tr>
<tr>
<td>Rim</td>
<td>28 (31.8)</td>
</tr>
<tr>
<td>Non-mass distribution</td>
<td></td>
</tr>
<tr>
<td>Focal</td>
<td>4 (4.8)</td>
</tr>
<tr>
<td>Segmental</td>
<td>18 (20.0)</td>
</tr>
<tr>
<td>Regional</td>
<td>1 (1.1)</td>
</tr>
<tr>
<td>Diffuse</td>
<td>1 (1.1)</td>
</tr>
<tr>
<td>Non-mass enhancement</td>
<td></td>
</tr>
<tr>
<td>Homogeneous</td>
<td>1 (1.2)</td>
</tr>
<tr>
<td>Heterogeneous</td>
<td>13 (14.4)</td>
</tr>
<tr>
<td>Clumped</td>
<td>6 (2.2)</td>
</tr>
<tr>
<td>Clustered ring</td>
<td>4 (1.1)</td>
</tr>
<tr>
<td>Kinetic curve</td>
<td></td>
</tr>
<tr>
<td>Type 1</td>
<td>14 (15.4)</td>
</tr>
<tr>
<td>Type 2</td>
<td>25 (27.4)</td>
</tr>
<tr>
<td>Type 3</td>
<td>52 (57.1)</td>
</tr>
<tr>
<td>BI-RADS category</td>
<td></td>
</tr>
<tr>
<td>C4</td>
<td>67 (73.6)</td>
</tr>
<tr>
<td>C5</td>
<td>24 (26.4)</td>
</tr>
</tbody>
</table>

BCS = breast-conserving surgery, DCIS = Ductal carcinoma in situ, HER-2 = human epidermal growth factor receptor-2, IDC, NOS = invasive ductal carcinoma, not otherwise specified, ILC = invasive lobular carcinoma, MRM = modified radical mastectomy, BI-RADS = Breast Imaging-Reporting and Data System
젊은 여성의 유방암: 자기공명영상 소견과 조직학적 특성

3.0-Tesla 자기공명영상 활명기 (Verio; Siemens Medical Solutions, Erlangen, Germany)와 유방 전용 코일을 사용하여 복와위에서 양측 유방의 영상을 얻었다. 자기공명영상은 다음과 같은 펄스 연쇄 (pulse sequence)를 이용하여 영상을 얻었다. 지방 억제 후 T1 강조 축상면 영상 (T1-weighted 3D VIBE, repetition time/echo time: 4.4/1.7 ms, flip angle: 10, 1.2 mm slice thickness with no gap, acquisition time: 60 s)을 얻었으며 역동적 조영증강 자기공명영상은 조영제 0.1 mmol/kg Gd-DPTA (Magnevist; Schering, Berlin, Germany) 주입 후 7, 67, 127, 187, 247, 367초 후에 영상을 얻었다. 2명의 영상의학과 의사가 유방영상보고데이터체계 (breast imaging-reporting and data system; 이하 BI-RADS) 5판에 기초하여 병변을 분석하였다 (8).

조직학적 진단은 종양의 크기, 분화도, 액와 림프절 전이, 신경 주위 침윤, 혈관 침윤, 임파선 침윤과 estrogen (이하 ER) 수

| Table 3. The Correlation of MRI Features with Molecular Prognostic Factors of Breast Cancers in 91 Cases |
|---|-----------------|-----------------|-----------------|-----------------|-----------------|
| Lesion type | LN Metastasis | ER | PR | HER-2 |
| Size | Negative Positive | Negative Positive | Negative Positive | Negative Positive |
| Mass | 3.26 ± 2.22 29 (76.32) 25 (83.33) | 22 (75.86) 40 (71.43) | 26 (78.79) 36 (69.23) | 49 (69.01) 13 (65.00) |
| p-value | 0.017 0.683 0.858 0.474 | 0.454 0.474 0.454 0.474 |
| Non-mass | 4.67 ± 3.00 9 (23.68) 5 (16.67) | 7 (24.14) 16 (28.57) | 7 (21.21) 16 (30.77) | 22 (30.99) 7 (35.00) |
| Mass shape | 2.87 ± 1.83 17 (58.62) 6 (24.00) | 15 (68.18) 12 (30.00) | 16 (61.54) 11 (30.56) | 23 (46.94) 4 (30.77) |
| Oval | 4.13 ± 3.87 2 (6.89) 1 (4.00) | 1 (4.55) 2 (5.00) | 1 (3.85) 2 (5.56) | 3 (6.12) 0 (0.00) |
| Round | 3.48 ± 2.38 10 (34.48) 18 (72.00) | 6 (27.27) 26 (65.00) | 9 (34.62) 23 (63.89) | 23 (46.94) 9 (69.23) |
| p-value | 0.287 0.02 0.013 0.052 | 0.355 0.355 0.355 0.355 |
| Mass margin | 3.06 ± 2.25 11 (37.93) 6 (24.00) | 12 (54.55) 9 (22.50) | 13 (50.00) 8 (22.22) | 18 (36.73) 3 (23.08) |
| Circumscribed | 3.62 ± 2.32 16 (53.17) 14 (56.00) | 10 (45.45) 24 (60.00) | 12 (46.15) 22 (61.11) | 26 (53.06) 8 (61.54) |
| Irregular | 2.27 ± 1.46 2 (6.90) 5 (20.00) | 7 (17.50) 6 (16.67) | 5 (10.20) 5 (10.20) | 10 (23.86) 5 (23.86) |
| p-value | 0.704 0.27 0.013 0.052 | 0.355 0.355 0.355 0.355 |
| Internal enhancement of mass | 1.10 ± 0.70 1 (3.45) 0 (0.00) | 0 (0.00) 3 (7.50) | 0 (0.00) 3 (8.33) | 3 (6.12) 0 (0.00) |
| Homogeneous | 3.38 ± 1.84 11 (37.93) 16 (64.00) | 3 (13.64) 28 (70.00) | 4 (13.64) 28 (70.00) | 4 (13.64) 28 (70.00) |
| Heterogeneous | 3.34 ± 2.67 17 (58.62) 9 (36.00) | 19 (68.36) 9 (22.50) | 20 (67.32) 8 (22.22) | 25 (51.02) 3 (23.08) |
| p-value | 0.406 0.128 < 0.001 < 0.001 | 0.091 0.091 0.091 0.091 |
| Non-mass distribution | 1.73 ± 0.74 3 (27.27) 0 (0.00) | 1 (14.29) 3 (18.75) | 1 (14.29) 3 (18.75) | 1 (6.25) 0 (0.00) |
| Focal | 5.36 ± 2.65 8 (72.72) 4 (57.14) | 5 (71.43) 12 (75.00) | 5 (71.43) 12 (75.00) | 18 (81.82) 2 (28.57) |
| Segmental | 1.20 ± 0.00 0 (0.00) 1 (14.29) | 0 (0.00) 1 (6.25) | 0 (0.00) 1 (6.25) | 0 (0.00) 1 (14.29) |
| Regional | 10.50 ± 2.00 0 (0.00) 2 (28.57) | 1 (14.29) 0 (0.00) | 0 (0.00) 1 (14.29) | 2 (12.50) 7 (31.82) |
| p-value | 0.09 0.079 0.426 0.426 | 0.091 0.091 0.091 0.091 |
| Non-mass enhancement | 1.20 ± 0.00 0 (0.00) 1 (14.29) | 0 (0.00) 1 (6.25) | 0 (0.00) 1 (6.25) | 0 (0.00) 1 (14.29) |
| Homogeneous | 4.26 ± 2.82 7 (63.64) 4 (57.14) | 6 (85.71) 7 (43.75) | 2 (12.50) 7 (43.75) | 13 (59.09) 4 (57.14) |
| Heterogeneous | 5.67 ± 3.52 3 (27.27) 2 (28.57) | 1 (14.29) 5 (31.25) | 0 (0.00) 6 (37.50) | 7 (31.82) 1 (14.29) |
| Clumped | 5.35 ± 3.01 1 (9.09) 0 (0.00) | 3 (18.75) 1 (14.29) | 2 (12.50) 2 (9.09) | 1 (14.29) 1 (14.29) |
| p-value | 0.220 0.524 0.283 0.204 | 0.401 0.401 0.401 0.401 |
| Kinetic curve type | 2.42 ± 2.13 8 (21.05) 1 (3.33) | 2 (6.90) 12 (21.43) | 2 (6.90) 12 (23.08) | 9 (13.85) 5 (25.00) |
| Type 1 | 3.77 ± 2.31 13 (37.14) 4 (13.33) | 6 (20.69) 17 (50.00) | 9 (27.27) 14 (42.92) | 21 (32.31) 2 (10.00) |
| Type 2 | 3.88 ± 2.64 17 (48.57) 25 (83.33) | 21 (72.41) 27 (48.21) | 22 (66.67) 26 (50.00) | 35 (53.85) 13 (65.00) |
| p-value | 0.090 0.004 0.078 0.103 | 0.092 0.092 0.092 0.092 |

ER = estrogen receptor, HER-2 = human epidermal growth factor receptor-2, LN = lymph node, PR = progesterone receptor
용체, progesterone (이하 PR) 수용체, human epidermal growth factor receptor-2 (이하 HER-2)의 발현을 기록하였다. ER 수용체와 PR 수용체 상태 분석을 위해 Allred score가 사용되었으며 비율 점수(proportion score)와 면역강도점수(immunointensity score)의 합이 3점 이상인 경우 양성으로 정의하였다. HER-2 분석에서는 3+는 양성으로, 0과 1+는 음성으로 간주하였으며, 2+의 경우 FISH analysis를 통하여 FISH (+)는 양성으로, FISH (-)는 음성으로 간주하였다. Ki-67은 15% 이상 발현된 경우 양성으로 간주하였다.

유방영상보고데이터체계에 따라 분석한 유방 자기공명영상의 영상 소견들과 예후 인자와의 연관성에 대하여 Fisher's exact test와 chi-square test를 이용하여 분석하였다. 액와 림프절 전이와 관련된 자기공명영상 소견은 조직학적으로 관상피내암이 나온 예를 배제하고 분석하였다. 단변량 분석에서 유의수준(p)이 0.2 미만인 인자들로 로지스틱 회귀분석을 이용하여 다변량 분석을 시행하였고 유의수준 0.05 미만일 때 통계적으로 유의한 차이가 있다고 판단하였다. 통계프로그램은 SAS version 9.2 (SAS institute, Cary, NC, USA)를 이용하였다.

<table>
<thead>
<tr>
<th>Table 3. The Correlation of MRI Features with Molecular Prognostic Factors of Breast Cancers in 91 Cases (continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lesion type</td>
</tr>
<tr>
<td>Ki-67</td>
</tr>
<tr>
<td>Negative</td>
</tr>
<tr>
<td>Mass</td>
</tr>
<tr>
<td>46 (67.65)</td>
</tr>
<tr>
<td>Non-mass</td>
</tr>
<tr>
<td>22 (32.35)</td>
</tr>
<tr>
<td>p-value</td>
</tr>
<tr>
<td>0.141</td>
</tr>
<tr>
<td>Mass shape</td>
</tr>
<tr>
<td>15 (32.61)</td>
</tr>
<tr>
<td>Round</td>
</tr>
<tr>
<td>3 (6.52)</td>
</tr>
<tr>
<td>Irregular</td>
</tr>
<tr>
<td>28 (60.87)</td>
</tr>
<tr>
<td>p-value</td>
</tr>
<tr>
<td>0.027</td>
</tr>
<tr>
<td>Mass margin</td>
</tr>
<tr>
<td>10 (21.74)</td>
</tr>
<tr>
<td>Circumscribed</td>
</tr>
<tr>
<td>30 (65.22)</td>
</tr>
<tr>
<td>Irregular</td>
</tr>
<tr>
<td>6 (13.04)</td>
</tr>
<tr>
<td>p-value</td>
</tr>
<tr>
<td>0.141</td>
</tr>
<tr>
<td>Internal enhancement of mass</td>
</tr>
<tr>
<td>1 (2.17)</td>
</tr>
<tr>
<td>Homogeneous</td>
</tr>
<tr>
<td>24 (52.17)</td>
</tr>
<tr>
<td>Heterogeneous</td>
</tr>
<tr>
<td>21 (45.65)</td>
</tr>
<tr>
<td>Rim</td>
</tr>
<tr>
<td>0.523</td>
</tr>
<tr>
<td>Non-mass distribution</td>
</tr>
<tr>
<td>0.011</td>
</tr>
<tr>
<td>Non-mass enhancement</td>
</tr>
<tr>
<td>1 (4.55)</td>
</tr>
<tr>
<td>Focal</td>
</tr>
<tr>
<td>17 (77.27)</td>
</tr>
<tr>
<td>Segmental</td>
</tr>
<tr>
<td>1 (4.55)</td>
</tr>
<tr>
<td>Regional</td>
</tr>
<tr>
<td>0 (0.00)</td>
</tr>
<tr>
<td>Diffuse</td>
</tr>
<tr>
<td>0.848</td>
</tr>
<tr>
<td>Kinetic curve type</td>
</tr>
<tr>
<td>0.001</td>
</tr>
<tr>
<td>Type 1</td>
</tr>
<tr>
<td>13 (19.12)</td>
</tr>
<tr>
<td>Type 2</td>
</tr>
<tr>
<td>27 (45.65)</td>
</tr>
<tr>
<td>Type 3</td>
</tr>
<tr>
<td>38 (55.88)</td>
</tr>
<tr>
<td>p-value</td>
</tr>
<tr>
<td>0.194</td>
</tr>
</tbody>
</table>
결과

91명 환자의 임상병리적 소견은 Table 1에 정리하였다. 91명 중 65명은 임상 증상이 있었고 26명은 증상이 없었다. 증상이 없는 환자는 산전 건진(2명) 또는 본인의 요청으로 한 유방 초음파에서 우연히 유방암이 발견되었다. 종양의 크기는 평균 3.63 cm(범위: 0.5~10.5 cm), 전체 증례의 44%가 T2 또는 T3 중앙이었다. 82명의 환자에게 수술을 시행하였고 그 중 69명은 유방 보존술(breast conserving surgery)을, 23명은 변형 근치 유방절제술(modified radical mastectomy)을 받았다. 액와림프절곽청술은 78명의 환자에게 시행하였고 그중 30명의 환자에서 림프절 전이가 발견되었다. 조직학적으로는 침윤성 관상피 암(72.5%)이 가장 흔한 유형이었고 그 다음이 관상피내암(13.2%)이었으며 전체의 47.2%가 grade III 중앙이었다. 면역조직화학 염색에서 가장 흔한 분자아형은 luminal A (47.3%)였고 그 다음으로 삼중음성(24.2%), luminal B (16.4%), HER-2 양성(5.5%) 순이었다.

전체 91명 환자의 유방 자기공명영상 소견은 Table 2에 정리하였다. 배경 실질 조영증강(background parenchymal enhancement)은 79명(86.8%)에서 거의 없거나(minimal), 적었다(mild), 67명(73.6%)에서 종괴의 소견으로 보였으며, 비종괴 조영증강은 24예(26.4%)였다. 종괴의 모양은 불규칙(53.7%)한 경우가 가장 많았고, 그 다음은 타원형(41.8%)이었다. 종괴의 경계는 불규칙(53.7%)한 경우가 많았고, 국한성(33.8%) 인 경우가 차지하웠다(33.5%)인 경우는 상대적으로 적었다. 종괴의 조영증강 패턴은 비균질(heterogeneous, 53.8%), 타원형(rim, 41.8%), 균질(homogeneous, 4.4%) 순이었다. 비종괴 조영증강의 경우, 분포 패턴은 분절성(segmental, 75.0%), 부분성(focal, 16.6%), 미만성(diffuse, 4.2%), 구역성(regional, 4.2%) 순이었으며, 조영증강 패턴은 비균질(heterogeneous, 54.2%), 균질(homogeneous, 4.2%) 순이었다. 역동적 조영증강 패턴은 Type 3이 52예(57.1%)로 가장 많았고 Type 2 25예(27.4%), Type 1 14예(15.4%) 순이었다.

자기공명영상 소견과 예후 인자들과의 관련성에 대해서 Table 3에 정리하였다. 단변량 분석에서 임파선 전이는 종괴의 모양(p = 0.022) 및 역동적 조영증강 패턴(p = 0.004)과 관련이 있었다. ER 수용체는 종양의 모양(p = 0.013), 종양의 경계(p = 0.003), 내부 조영증강(p < 0.001)과 관련성이 있었고, PR 수용체는 종양의 모양(p = 0.044), 내부 조영증강(p < 0.001)과 관련성이 있었으며 HER-2 수용체는 비종괴 분포와 관련성이 있었다(p < 0.001). 조직 등급은 내부 조영증강(p = 0.001)과 관련성이 있었고 혈관 침윤이 있었던 환자들 중 HER-2 양성(p = 0.002)과 관련성이 있으며 Ki-67는 종양의 모양(p = 0.027)과 경계(p = 0.001), 비종괴 분포(p < 0.001)와 관련성이 있었다. 다변량 분석에서 테두리 조영증강은 높은 조직 등급(p = 0.001), ER 수용체 음성(p < 0.001), PR 수용체 음성(p < 0.001)과 관련 있는 독립적인 인자였다(Table 4). 추가적으로 본 연구에서 본 결과는 질병의 진행에 영향이 있는 것으로 판단되었다.

고찰

유방암은 폐경 후의 여성에서 흔한 암이지만 전 세계적으로 젊은 여성에게서도 증가하고 있는 추세이다. 우리나라 여성에서 발생하는 암 중 유방암은 갑상선암에 이어 두 번째로 많은 암으로 2014년 중앙암등록본부 통계에 따르면 35세 미만 여성 인구 10만 명당 11.4명의 발생율을 보였다(9). 일반적으로 젊은 여성에서 감염을 목적으로 시행하는 유방 촬영은 비용 대비 효과가 떨어지고 방사선 노출에 대한 인식이 높아져서 젊은 여성에서 시행하지 않는 경우가 많다.

Table 4. Results of Logistic Regression Analysis

<table>
<thead>
<tr>
<th>Include Variables</th>
<th>B</th>
<th>SE</th>
<th>Odds Ratio (95% CI)</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>For ER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enhancement (for mass)</td>
<td>Rim</td>
<td>-3.223</td>
<td>0.04 (0.00–0.20)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>For PR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enhancement (for mass)</td>
<td>Rim</td>
<td>-2.363</td>
<td>0.09 (0.02–0.34)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>For histologic grade</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enhancement (for mass)</td>
<td>Rim</td>
<td>2.012</td>
<td>7.48 (2.31–26.95)</td>
<td>0.001</td>
</tr>
<tr>
<td>For LN metastasis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mass shape</td>
<td>Irregular</td>
<td>-2.054</td>
<td>0.13 (0.02–0.61)</td>
<td>0.015</td>
</tr>
<tr>
<td>Kinetic curve (for mass)</td>
<td>Type 3</td>
<td>-2.721</td>
<td>0.07 (0.01–0.31)</td>
<td>0.002</td>
</tr>
</tbody>
</table>

CI = confidence interval, ER = estrogen receptor, LN = lymph node, PR = progesterone receptor, SE = standard error
종괴로 내원했고, 24.2%가 삼중음성 유방암이었으며, 47.2%가 grade III 종양이었다. 44%가 T2 이상의 병기였다.

한편, 유방 자기공명영상은 특이도가 상대적으로 낮기는 하지만 유방암의 진단에 가장 민감한 검사로서 최근에 젊은 여성에서의 유방암 진단율을 높이고 있다(10). 본 연구에서 35세 이하의 유방암은 자기공명영상에서 주로 종괴로 나타났으며, 불규칙한 모양과 경계, 비균질한 조영증강, Type 3 조영증강 패턴이 가장 흔한 소견이었고 이는 다른 연구들에서 발생한 유방암 소견과 다르지 않았다(10, 11). 반면 이전의 Kim 등(12)의 연구에서는 35세 미만의 유방암 환자군에서 소엽성의 모양과 국한성 경계를 상대적으로 많이 보았다고 하며 본 연구와 차이를 보였는데 이러한 차이점은 BI-RADS 5판이 되면서 종괴 모양에서 소엽성의 빠진 것과 국한성 경계의 환자들에 대한 영상의학과 의사를 기준의 차이에서 비롯된 것으로 추정된다.

젊은 여성의 유방암의 조직 병리학적 특성은 여러 문헌을 통해 알려져 있다. Collins 등(13)은 luminal B 유형이 젊은 유방암 환자에서 가장 많다고 하였지만 다른 연구들에서는 본 연구(47.3%)와 같이 luminal A 유형이 가장 많은 것으로 알려져 있으며, 서양과 아시아 인구 는 차이가 보이는 것으로 알려져 있다(14, 15). 그리고 젊은 여성에서의 유방암은 ER 응용체 음성, 높은 조직 등급, 림프관 빈도가 높으며, Ki-67 양성, P53 양성을 보인다고 알려져 있으며 이러한 인자들은 나쁜 예후와 관련이 있다고 한다.

본 연구의 다변량 분석에서 테두리 조영증강은 ER 응용체 음성 및 PR 응용체 음성, 높은 조직 병리학적 등급과 관련된 독립적인 예측 인자로 확인되었다. 테두리 조영증강은 테두리의 높은 미세혈관 밀도와 혈관내피 증식인자(vascular endothelial growth factor) 발현 및 중심부의 섬유화 또는 괴사로 인하여 나타난다고 알려져 있으며, ER 응용체 음성은 조직 병리학적으로 높은 등급의 코메도형 괴사, 림프관 빈도와 관련이 있다고 알려져 있다(19). 빠른 성장은 주변 조직과 임파선, 혈관 등에 암세포의 침습 가능성을 높이는 것으로 보았다(16, 17). Jinguji 등(20)은 테두리 조영증강이 있는 유방암에서 호르몬 수용체 음성, 임파선 전이, 혈관 침범이 더 흔하다고 하였고, 이는 본 연구 결과와도 일치하며 이는 모든 연령의 유방암 환자에서 시행한 기존 연구의 내용과도 일치하는 소견이다(10, 20-22).

결론적으로, 35세 이하의 유방암 환자는 주로 촉지되는 종괴로 내원하게 되며, 대부분 T2 이상의 침윤성 유방암으로 나타난다. 이들의 자기공명영상에서 가장 흔한 소견은 불규칙한 모양, 불규칙한 경계, 비균질한 조영증강과 Type 3 시 간-조영증강 곡선으로, 다른 연구의 유방암의 소견과 크게 다를 정도로 향했다. 한편, 종괴의 테두리 조영증강, 불규칙한 모 양 그리고 Type 3 조영증강 패턴은 유방암의 나쁜 예후와 연관된다고 알려진 조직 병리학적 소견과 연관되는 영상소견이었다.

References
35세 이하 젊은 여성의 유방암: 자기공명영상 소견과 임상병리학적 및 면역조직화학 특성과의 상관관계

이세형1 · 강봉주2 · 안영이*2

목적: 35세 이하 젊은 유방암 환자의 자기공명영상 소견을 알아보고 조직 병리학적 예후 인자와의 상관관계를 알아보고자 하였다.

대상과 방법: 2009년 1월부터 2013년 12월까지 본원에서 조직학적으로 유방암이 확진된 35세 이하 환자 중 유방 자기공명영상 촬영을 시행한 91명을 대상으로 하였다. 전자의무기록을 이용해 얻어진 임상 및 조직병리학적 예후 인자와 후향적으로 분석된 자기공명영상관찰 소견과의 관계를 통계적으로 비교·분석하였었다.

결과: 가장 흔한 자기공명영상 소견은 종괴의 불규칙한 모양(53.7%), 불균질한 경계(53.7%), 비균질한 조영증강(53.8%), Type 3 조영증강 패턴(57.1%)이었다. 다변량 분석에서 종괴의 테두리 조영증강이 높은 조직 등급(p = 0.001), 에스트로겐 수용체 음성(p < 0.001), 프로게스테론 수용체 음성(p < 0.001)과 통계적으로 유의한 관련이 있었다. 또한, 불균질한 종괴의 모양(p = 0.015)과 Type 3 조영증강 패턴(p = 0.002)은 임파선 전이와 통계적으로 유의한 관련이 있었다.

결론: 35세 이하의 젊은 여성에서 생긴 유방암의 자기공명영상 소견은 일반적인 유방암의 소견과 다르지 않지만, 자기공명영상에서 종괴의 테두리 조영증강, 불균질한 종괴 모양 그리고 Type 3 조영증강 패턴은 나쁜 예후의 병리학적 인자들과 관련이 있다.

1가톨릭대학교 의과대학 성빈센트병원 영상의학과, 2가톨릭대학교 의과대학 서울성모병원 영상의학과

References: