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Primary aldosteronism (PA) results from excess production of mineralocorticoid hormone aldosterone by the adrenal cortex. It is 
normally caused either by unilateral aldosterone-producing adenoma (APA) or by bilateral aldosterone excess as a result of bilateral 
adrenal hyperplasia. PA is the most common cause of secondary hypertension and associated morbidity and mortality. While most 
cases of PA are sporadic, an important insight into this debilitating disease has been derived through investigating the familial forms 
of the disease that affect only a minor fraction of PA patients. The advent of gene expression profiling has shed light on the genes and 
intracellular signaling pathways that may play a role in the pathogenesis of these tumors. The genetic basis for several forms of fa-
milial PA has been uncovered in recent years although the list is likely to expand. Recently, the work from several laboratories pro-
vided evidence for the involvement of mammalian target of rapamycin pathway and inflammatory cytokines in APAs; however, their 
mechanism of action in tumor development and pathophysiology remains to be understood. 
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INTRODUCTION

Hypertension is a major cardiovascular risk factor estimated to 
be present in approximately 70% of people over age of 60 
worldwide. Elevated blood pressure (BP) correlates with in-
creased risk of heart attack, stroke, and progression to organ 
failure, and currently available therapies often remain insuffi-
cient to control BP in many patients [1]. Reported demographic 
trends in the United States population, including its aging and 
the ever-increasing prevalence of obesity, indicate that hyper-
tension is going to become an even bigger and more urgent bur-
den in the foreseeable future. Hypertension remains a major in-
dependent prognosis risk factor for adverse health outcomes in-

cluding renal and cardiovascular disease, and a leading cause of 
morbidity and mortality worldwide. 

The problem of inadequate BP control was magnified after 
the publication of the results for the recent Systolic blood PRes-
sure INterventional Trial (SPRINT), which demonstrated that in 
a large hypertensive population the target BP of 120/80 mm Hg 
is more beneficial than 140/90 mm Hg [2]. The reported preva-
lence of resistant hypertension among patients who are receiv-
ing antihypertensive therapy is ranging from 9% to 18%, owing 
to variable diagnostic approaches and the exclusion (or non-ex-
clusion) of patients with pseudo-resistant hypertension [3]. 

Despite important advances in following the strategies aimed 
at adherence and optimization, truly resistant or difficult-to-
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control hypertension undoubtedly exists and remains a major 
public health problem. An important contributor to resistant hy-
pertension is hyperaldosteronism, where excess aldosterone ac-
tivates the mineralocorticoid receptor (MR). Traditionally, pa-
tients who are not surgical candidates are treated with MR an-
tagonists (MRAs) such as spironolactone. With this approach, 
BP control has been achieved with patients; however, this may 
only be one facet of treatment. Specifically, analyzing a large, 
retrospective cohort, investigators assessed the use of MRAs in 
primary aldosteronism [4]. The primary outcome of this study 
was incident cardiovascular event. Among patients treated with 
a MRA, those patients that continued to have suppressed renin 
had higher incidence of cardiovascular events. Patients with un-
suppressed renin showed an identical risk profile to patients 
with essential hypertension [4]. An important consideration un-
derscored by this study is that, in addition to BP control, assess-
ing hormonal changes and adjusting medications in cases of 
secondary hypertension as in hyperaldosteronism may be valu-
able in providing more effective care.

MINERALOCORTICOID-DEPENDENT 
REGULATION OF BP

Hypertension is traditionally divided into primary and second-
ary hypertension. Primary or essential hypertension accounts 
for approximately 90% of clinical cases. This overwhelmingly 
idiopathic characterization vividly underscores how little is still 
known about the causes of high BP, except that it is likely to 
have a genetic component and often associated with physical 
inactivity and poor diet. Where the cause of high BP can be 
identified, the hypertension is known as secondary [5]. The typ-
ical causes for secondary hypertension include impaired renal 
or endocrine function, vascular diseases, alcohol abuse, or drug-
related conditions [6,7]. Resistant hypertension is diagnosed in 
patients with primary as well as secondary hypertension. Renal 
impairment, older age, obesity and diabetes have all been asso-
ciated with primary resistant hypertension. 

The renin-angiotensin-aldosterone system (RAAS) is a physi-
ological pathway with a well-recognized role in BP regulation. 
A critical part of the pathway involves renin-stimulated produc-
tion of angiotensin II (AngII) that is acting in adrenal cortical 
cells to cause the upregulation and the release of hormone aldo-
sterone. Aldosterone activates MR to maintain body fluid and 
electrolyte homeostasis and to sustain vascular resistance under 
conditions of water depletion. While functional RAAS pathway 
is essential for maintaining homeostatic state, deregulated (in-

creased) aldosterone production is pathogenic and contributes 
to the development and progression of cardiovascular and renal 
disease. 

There has been increased research focus and clinical attention 
to RAAS in an attempt to inform an adequate clinical manage-
ment of HTN in the past few years [3,8]. Many of these studies 
have highlighted the importance of the MR, aldosterone and 
mineralocorticoid signaling in maintenance and pathological 
consequences of resistant hypertension [9-14]. The MR in hu-
mans is encoded by the nuclear receptor subfamily 3, group C, 
member 2 (NR3C2) gene. Upon interaction with its steroid li-
gand, MR translocates to the nucleus and activates transcription 
of specific genes harboring hormone response elements in their 
regulatory regions. Most importantly, active MR-ligand complex 
in the epithelial cells leads to the expression of genes encoding 
proteins that regulate ionic transport (mainly the amiloride-sen-
sitive epithelial sodium channel [ENaC], Na+/K+ pump, serum 
and glucocorticoid induced kinase 1 [SGK1]), culminating in 
sodium conservation, water retention, an excretion of potassium 
to maintain salt balance, and increase in BP.

The MR can be activated by two major steroid ligands pro-
duced in the adrenal cortex, mineralocorticoids (e.g., aldoste-
rone) and glucocorticoids (e.g., cortisol). Cortisol concentration 
in circulation is 100 to 1,000 fold higher than that of aldoste-
rone, and thus aldosterone-specific activation of MR requires an 
environment free of cortisol. To achieve aldosterone-dependent 
response, the MR is protected from plasma glucocorticoid ex-
cess by corticosteroid 11-beta-dehydrogenase isozyme 2/11β- 
hydroxysteroid dehydrogenase 2 (11β-HSD2) enzyme that con-
verts cortisol to inactive cortisone. Action of 11ß-HSD2 creates 
glucocorticoid-free environment locally and makes MR action 
finely attuned to aldosterone concentration [15]. The role of al-
dosterone-MR complex in regulating homeostasis is mostly op-
posite to that of atrial natriuretic peptide (ANP) secreted by the 
heart. 

Traditionally, aldosterone action was thought to be limited to 
MR residing in kidney. However, experimental as well as clini-
cal data strongly argue against this limited role for aldosterone-
dependent regulation and the importance of MR in other tissues 
is becoming appreciated. While mice with a global MR loss die 
in the neonatal period from salt wasting [16], mice with renal 
tubule-specific MR deletion survive [17,18]. These experiments 
support the notion that loss of extra-renal MR contributes to the 
hypotension and mortality in a complete MR-deficiency. Dele-
tion of MR in cardiomyocytes demonstrated that the receptor 
mediates detrimental effects in the heart under pathological con-
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ditions; however, basal heart function is not affected by MR de-
letion [19]. Subsequent experiments also revealed a role for MR 
in macrophages [20] and smooth muscle cells [21,22]; in con-
trast, mice with targeted deletion of MR in endothelial cells 
were unaffected [23]. Moreover, a BP-lowering effect of MRAs 
can be distinguished from the effects on urinary electrolyte ex-
cretion, indicating renal-independent regulation of BP by MR in 
humans [24] although these data have to be interpreted with 
caution, given a newly discovered role for the MRA indepen-
dent of MR [25]. In summary, multiple tissues contribute to 
MR-dependent regulation to control BP homeostasis. 

PRIMARY ALDOSTERONISM

Primary aldosteronism (PA), an increase in circulating aldoste-
rone independent of plasma renin, is a major cause of endocrine 
secondary hypertension and is often associated with resistant 
hypertension. Primary aldosteronism was originally described 
by Jerome Conn in 1955 [26]. The two major types of PA are 
recognized, together accounting for 95% of diagnosed cases. 
One is a unilateral aldosterone excess that is caused by an aldo-
sterone-producing adenoma (APA); the second is bilateral aldo-
sterone excess as a result of bilateral adrenal hyperplasia 
(BAH). Rarely, a patient may have adrenal cortical carcinoma 
producing excess aldosterone. The prevalence reported for pri-
mary hyperaldosteronism is estimated to be 5% to 10% of all 
hypertensive patients; this number rises to 12% to 20% in pa-
tients with resistant hypertension [27-32]. The mean age at di-
agnosis for PA is 50 years, which is often due to difficult (and 
thus untimely) diagnosis. Primary hyperaldosteronism affects 
both men and women with equal prevalence [33]. A preferred 
course of treatment in unilateral PA is adrenalectomy, while bi-
lateral PA normally requires a pharmacological approach using 
a MRA [28,34]. The two different clinical treatment modes in-
advertently produced a major gap in the molecular understand-
ing of the two PA subtypes. Surgical treatment resulted in the 
availability of a genetic material from a large number of APA 
tumor samples that were analyzed using the modern genetic ap-
proaches (e.g., next generation sequencing [NGS]). The discov-
ery of somatic mutations in unilateral APAs provided major ad-
vances in the understanding of the basis for aldosterone over-
production [35]. In contrast, adrenal specimens from BAH pa-
tients are limited and the second PA type was less informative in 
advancing our knowledge of the genetic make-up of the PA and 
BAH-specific genetic alterations. 

Familial hyperaldosteronism
PA is observed among patients with APA and BHA, with about 
only 5% of cases being familial [36]. However, as in many ge-
netic diseases, rare familial cases provided critical insight into 
the genetic bases of PA. It has been suggested that currently 
used classification of familial hyperaldosteronism (FH) into 
types, FH1–FH4, should only be applied once/if the causative 
genetic mutation is known [37]. 

CYP11B1-CYP11B2 fusion (FH1)
Glucocorticoid-remediable aldosteronism (GRA) was initially 
described over 50 years ago [38]. Surprisingly, it was observed 
that aldosterone production could be suppressed by dexametha-
sone administration. The molecular mechanism was later eluci-
dated in 1992 by Lifton et al. [39,40]. Linkage analysis of patients’ 
DNA revealed a fusion of highly homologous genes encoding 
the two key enzymes required for cortisol (11-β-hydroxylase, 
cytochrome P450 family 11 subfamily B member 1 [CYP11B1]) 
and aldosterone (aldosterone synthase, cytochrome P450 family 
11 subfamily B member 2 [CYP11B2]) synthesis (Fig. 1). The 
recombination brings the coding regions of CYP11B2 under 
control of the regulatory elements of CYP11B1 that are driven 
by the signaling aimed at glucocorticoid synthesis (i.e., adreno-
corticotropic hormone) instead of RAAS AngII and potassium. 
This results in aldosterone synthase expression in adrenal zona 
fasciculata rather than zona glomerulosa and ectopic production 
of aldosterone and hybrid steroids (due to oxidation by both ste-
roid 17-alpha hydroxylase [CYP17A] and aldosterone synthase) 
[41].

GRA is extremely rare and testing is recommended only for 
patients with an early onset of PA and in cases of familial PA oc-
currence or stroke at a young age (<40 years old) [28,42]. The 
early diagnosis of GRA is important because excessive aldoste-
rone production and associated hypertension can be corrected 
by low doses of dexamethasone [43]. Glucocorticoid suppres-
sion of aldosterone was previously used to both diagnose and 
treat GRA until introduction of the molecular techniques to de-
tect the presence of the chimeric CYP11B1/CYP11B2 gene into 
the clinic [44,45]. MRAs can be used as a second line of therapy 
to reduce deleterious non-genomic effects of aldosterone [46]. 

CLCN2 (FH2)
A different type of FH, not suppressible by glucocorticoids, has 
been described in several affected families with either APA or 
BAH [47-49]. The causative genetic mutation of this type of FH 
remained elusive for many years. It was suggested that a locus 
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on chromosome 7p22 was segregating with the disease, but 
only in some and not all cohorts. Targeted sequencing or NGS 
of the complete locus did not reveal any mutations [50-53]. It 
was the NGS analysis of the whole exome from one of the orig-
inal families that uncovered a germline mutation Arg172Gln in 
the chloride voltage-gated channel 2 (CLCN2) gene (located on 
chromosome 3q27 instead) that segregated with this disease 
[49,54,55]. The authors also reported other CLCN2 variants in 
unrelated patients. CLCN2 mutations appear to be limited to PA 
diagnosed at early age and it is absent in patients with essential 
hypertension [54,55].

CLCN2 is a member of the CLC voltage-gated Cl− channels. 
It is broadly expressed. CLCN2 mutations lead to leukodystro-
phy and infertility, and Clcn2 loss-of-function in mice leads to 
germ cell and photoreceptor degeneration [56-59]. Germline 
CLCN2 mutations that associate with PA are gain of function 
mutations and promote an export of Cl−, depolarization of the 
plasma membrane, and opening of voltage-gated Ca2+ channels, 
with subsequent activation of CYP11B2 transcription [54,55].

In the absence of the genetic foundation, this familial form 
(termed FH2) was thought to be the most prevalent, responsible 
for 3% to 6% of all PA cases, which, once the genetic basis was 
established, is considered to be a gross overestimation [60]. 
CLCN2 mutations were identified in about 10% of cases with 

young-onset PA without other known germline mutations and in 
2% of patients with BAH, which suggests a significantly lower 
frequency than previously estimated [54,55]. 

KCNJ5 (FH3)
A new inherited form of hyperaldosteronism with hyporenin-
emia, hypokalemia, and severe hypertension was described in 
several family members, a father and two young daughters, who 
developed hypertension by the age of 7 [61]. Adrenal glands in 
the patients showed notable bilateral enlargement and hypertro-
phy of a cortical compartment that resembled zona fasciculata 
juxtaposed to an atrophic zona glomerulosa. Intermixing of 
cells from different adrenal zones was accompanied by appear-
ance of urine 18-oxocortisol and 18-hydroxycortisol steroids 
[41,62,63]. Unlike GRA (FH1), dexamethasone administration 
was not effective in suppressing either glucocorticoid or miner-
alocorticoid synthesis. Hypertension in these patients was re-
fractory to treatment and correction was achieved by bilateral 
adrenalectomy [61].

Subsequent exome sequencing identified a heterozygous 
germline mutation in potassium inwardly rectifying channel 
subfamily J member 5 (KCNJ5) gene located on chromosome 
11q24 in the original patients as well as in sporadic PA [64]. 
KCNJ5 encodes G-protein-activated inward rectifier K+ channel 
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4 (GIRK4, Kir3.4). Interaction with other Kir family members 
reconstitutes the functional G-protein-activated potassium chan-
nel, which controls membrane polarity in the aldosterone-pro-
ducing zona glomerulosa cells. The mutation identified in the 
original work results in a loss of K+ selectivity and an indis-
criminate influx of Na+ ions, membrane depolarization and high 
intracellular Ca2+ concentration. Ca2+ increase stimulates aldo-
sterone synthesis through the activation of Ca2+ signaling path-
ways [65-67]. The original discovery was followed by several 
other reports of KCNJ5 familial mutations that mostly cluster in 
or near protein domain responsible for channel selectivity [68-
70] although mutations in other locations have been document-
ed [71-74]. The clinical characteristics of the FH3 cases vary 
widely, from mild to severe, in part due to the underlying muta-
tion [75,76]. Testing for FH3 is currently recommended only for 
patients with very early PA onset by peripheral blood DNA se-
quencing [28]. Treatment for FH3 varies depending on the se-
verity of the disease, with mineralocorticoid antagonists suffi-
cient for treating milder cases and adrenalectomy to successful-
ly resolve resistant hypertension [72,77].

CACNA1 (FH4)
Whole exome sequencing analysis identified a recurrent muta-
tion in the calcium voltage-gated channel subunit alpha 1H 
(CACNA1H) gene in five unrelated patients in a cohort of 40 
pediatric patients diagnosed with PA. That type of PA is referred 
to as FH4 [78] and both germline and de novo mutations of this 
gene have been reported [79]. Germline CACNA1H mutations 
have been documented in several disorders including sporadic 
amyotrophic lateral sclerosis, epilepsy, autism [80-82]; howev-
er, for most part FH4 patients showed no symptoms that have 
been ascribed to these disorders [79,83]. 

CACNA1H encodes for the pore-forming subunit alpha 1H of 
the T-type calcium channel Cav3.2 that is expressed in the zona 
glomerulosa cells [78,83] and is activated by depolarizing 
changes in the membrane potential [84]. The disease presenta-
tion varied in patients carrying different mutation, but most mu-
tations are gain-of-function to some degree (although, see [85]) 
and augmented aldosterone production [78,79,85]. Several pa-
tients harbored mutations in Met1549 located in the repeat do-
main III of Cav3.2 that is a part of a conserved methionine-phe-
nylalanine-valine (MFV) motif that is necessary for channel in-
activation [86]. Mutations in Met1549 lead to a decrease in the 
inactivation of the mutant Cav3.2 and a prolonged “on” state, 
leading to an increase in Ca2+ influx that augments the expres-
sion of CYP11B2. Treatment of HAC15 cells overexpressing 

Cav3.2 Met1549Val mutant channel with a T-type calcium chan-
nel blocker prevented CYP11B2 activation and aldosterone syn-
thesis providing the basis for treatment of patients with FH4 
[87]. FH4 follows an autosomal dominant pattern of inheri-
tance, but the penetrance is limited as some Met1549 mutation 
carriers displayed mild or normotensive phenotype, suggesting 
that other factors limit the impact of gene defect [78]. Patients 
with CACNA1H have been also found to have developmental 
disorders and mental retardation [79].

Primary Aldosteronism with Seizures and Neurologic 
Abnormalities (PASNA)  
Mutations have also been reported for a gene encoding a Cav1.3 
subunit for another channel, CACNA1D, an L-type (high-voltage 
activated) Ca2+ channel expressed in zona glomerulosa [83,88, 
89]. Similarly to CACNAH1, sporadic alterations in  CACNA1D 
cause gain-of-function and an increase of Ca2+ influx with the 
consequent overproduction of aldosterone [83,90]. In some of 
these patients seizures and cerebral palsy have been documented 
[91,92]. Somatic CACNA1D was reported to be the most fre-
quently mutated aldosterone-driver gene in African-Americans 
[93].

Drivers of hyperaldosteronism
Besides familial forms of “channelopathies” described, it is well 
known that somatic mutations found in aldosterone producing 
tumors such as KCNJ5, CACNA1, ATPase plasma membrane 
Ca2+ transporting 3 (ATP2B3), and ATP1A13 mutations also 
cause hyperaldosteronism. Mutations in KCNJ5 are considered 
to be the most common cause of PA overall [74] and estimated to 
be present in 60% to 70% cases in APA patients of Eastern Asian 
origin, but only about half of that in Caucasians [69,73,94-97]. 
Other mutations (e.g., mutations in catenin beta 1 [CTNNB1] 
and protein kinase cAMP-activated catalytic subunit alpha 
[PRKACA] genes) lead to a loss of control over cellular prolifer-
ation and rise in the number of aldosterone-producing cells [98-
101]. Mutations in the armadillo repeat containing 5 (ARMC5) 
gene have been reported to cause hypercortisolism in primary 
bilateral macronodular adrenal hyperplasia (PBMAH) [102]. 
However, the connection between ARMC5 mutations and PA 
remains to be better understood [103]. Moreover, it remains to 
be determined whether somatic mutations leading to augmented 
aldosterone synthesis occur in an already altered adrenal cortex 
or they are responsible for both cellular proliferation and aldo-
sterone production. Finally, while it is clear that BAH can be 
caused by the same genetic mechanisms as APA, the existence 
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of BAH-specific pathways remains an active area of investiga-
tions. Mutations in tandem of p-domains in a weakly inward 
rectifying K+ channel (TWIK)-related acid-sensitive K+ chan-
nels), twik-related acid-sensitive K+ channel (TASK-1 and 
TASK-3) directly affect K+ balance in aldosterone-producing 
adrenal cells and are known to result in autonomous aldosterone 
production in mouse models [104-107]; however, adrenal tu-
mors are not formed in these animals and human disease associ-
ated with these genes have not been reported. Furthermore, 
evaluation of normal adrenal cortex specimens in patients with-
out hyperaldosteronism has found that patients with essential 
hypertension have aldosterone producing cell clusters (APCC). 
Expression analysis of these APCCs revealed known aldoste-
rone driver mutations: CACNA1D; ATP1A1, found in 35% of 
APCC’s [108]. It is certainly worth considering if APCCs may 
add to the pathogenesis of hypertension. 

Other area of active investigation in hyperaldosteronism ex-
plores the involvement of mammalian target of rapamycin com-
plex 1 (mTORC1) pathway in this disease [109,110]. mTORC1 
is activated in a subset of patients with PA and treatment with 

the pathway inhibitor, everolimus, decreased BP, and increased 
renin concentration in patients with PA; a notable reduction of 
aldosterone levels was observed in some patients [111]. Simi-
larly, tumor necrosis factor α (TNF-α) pathway is implicated in 
the pathogenesis of this disorder [112]. It has been long postu-
lated that inflammatory cytokines (TNF-α and interleukins 
[ILs]) can play an important role in the pathogenesis of cardio-
vascular disease by creating an environment that promotes hy-
pertension [113]. TNF-α and ILs act at the adrenal level in acute 
or chronic inflammatory states and could significantly stimulate 
glucocorticoid production [114,115]. IL-1 receptor presence has 
been reported in a patient with an adrenal adenoma and tumor 
cells responded with cortisol hypersecretion upon IL-1ß treat-
ment [116]. Similarly, expressions of inflammation-associated 
genes have been reported in APA patients [94]. It is tempting to 
hypothesize that mTORC and the inflammatory pathways are 
intertwined, at least in some tumors (Fig. 2) [117]. Our observa-
tions in adrenal cortical cell lines derived from patients’ tumors 
confirm the importance of TNF-α signaling in adrenal neoplasia 
(unpublished data).
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Fig. 2. Wnt-induced activation of Frizzled (Fzd) leads to inhibition of glycogen synthase kinase 3 (GSK3) in a ß-catenin independent way. 
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CONCLUSIONS

Hypertension is common and encountered by all clinicians in 
their practice. Augmented aldosterone synthesis or its amplified 
effect in target organs is one of the best-understood causes of 
secondary hypertension. Salt wasting, dehydration and hyper-
tension are the main clinical manifestations determined mainly 
(but not solely) by deregulated sodium and potassium balance 
[118]. The long-term strategy for future research is to focus on 
understanding of the intrinsic and extrinsic mechanisms that re-
sult in a lack of response to BP-lowering drugs in adherent pa-
tients. As an example, the use of appropriate hormone biomark-
ers such as renin is helpful to determine whether patients with 
secondary hypertension as a result of hyperaldosteronism are 
effectively being treated by MR blockade. In the future, other 
hormones could be utilized as biomarkers to determine effective 
therapies and avoid early organ damage from hypertension.

The number of gene mutations implicated in hyperaldosteron-
ism is steadily increasing and some common mechanisms be-
hind the PA are beginning to emerge. In addition to heritable 
forms of disease, APA development was found to be associated 
with somatic mutations. While some of these mutations are 
found in the same genes that are implicated in the development 
of the familial forms of PA (e.g., KCNJ5) others (e.g., ATP1A1 
and ATP2B3) have so far only been found in the sporadic cases. 
Most of the mutations identified so far result in the alterations 
of the intracellular ionic equilibrium and deregulation of cell 
membrane potential. Mutations in ion pumps and channels de-
scribed above, CLCN2, KCNJ5, CACNAH1, and 1D, as well 
as in ATP1A1, ATP2B3 are found in about 50% of APAs and 
figure most prominently in the PA pathogenesis [90,119-121]. 
The functions of the affected genes provide important cues to 
underlying mechanisms of hypertension and will add opportuni-
ties for precision treatments in the future.
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