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Obesity has quickly become a worldwide pandemic, causing major adverse health outcomes such as dyslipidemia, type 2 diabetes 
mellitus, cardiovascular disease and cancers. Obesity-induced insulin resistance is the key for developing these metabolic disor-
ders, and investigation to understand the molecular mechanisms involved has been vibrant for the past few decades. Of these, 
low-grade chronic inflammation is suggested as a critical concept in the development of obesity-induced insulin resistance, and 
the anti-inflammatory effect of nitric oxide (NO) signaling has been reported to be linked to improvement of insulin resistance in 
multiple organs involved in glucose metabolism. Recently, a body of evidence suggested that vasodilatory-stimulated phospho-
protein (VASP), a downstream mediator of NO signaling plays a crucial role in the anti-inflammatory effect and improvement of 
peripheral insulin resistance. These preclinical studies suggest that NO/VASP signaling could be an ideal therapeutic target in the 
treatment of obesity-related metabolic dysfunction. In this review, we introduce studies that investigated the protective role of 
NO/VASP signaling against obesity-related inflammation and insulin resistance in various tissues.
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INTRODUCTION

Obesity has become a huge burden worldwide. According to 
the 2013 Korea National Health and Nutrition Examination 
Survey, one in three Korean adults are obese and more than half 
are considered to be at least overweight [1], implying that Korea 
is not an exception to this worldwide pandemic. Environmental 
factors such as unhealthy dietary habits, sedentary lifestyle and 
socioeconomic influences are considered as the major contrib-
utors.

In the past several decades, evidence suggests that obesity is 
a state of chronic, low-grade inflammation. One of the earliest 
evidence demonstrated the expression of proinflammatory cy-
tokine, tumor necrosis factor α (TNF-α), in rodent adipose tis-
sue during the development of obesity and the attenuation of 

insulin resistance followed by neutralization of TNF-α [2]. This 
study supports the role of inflammation in obesity and regula-
tion of its complications by inflammatory mediators [3]. There-
after, significant advances in understanding the complex role of 
immune-metabolism have been accomplished, and obesity is 
now known to be associated with proinflammatory cytokine 
secretion, immune cell infiltration, and disrupted function of 
tissues involved in glucose homeostasis, leading to insulin re-
sistance [4].

Nitric oxide (NO) is an endogenous signaling molecule pro-
duced by nitric oxide synthase (NOS). NO is involved in vari-
ous physiologic processes such as the regulation of synaptic 
transmission, vasodilation, leukocyte-endothelial interactions, 
immune function, and angiogenesis [5]. Besides these pleio-
tropic effects, NO has recently emerged as an important regu-
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lator of energy metabolism. For example, NO bioavailability 
reflected by NOS activity is decreased in animal models of di-
et-induced obesity (DIO) [6] and in obese and insulin-resis-
tant patients [7,8]. The reduction of NO content occurs early in 
the course of developing insulin resistance, followed by vascu-
lar and peripheral tissue (such as liver, muscle, and adipose) 
inflammation and insulin resistance during dietary excess 
[9,10]. Furthermore, genetic deletion of endothelial nitric ox-
ide synthase (eNOS) is associated with insulin resistance even 
in the absence of high-fat (HF) stimuli [11]. Conversely, inter-
ventions to increase NO output has remarkable effects on obe-
sity and insulin resistance in both animal and human studies 
[12-14], implying that anti-inflammatory and anti-obesity 
properties of NO might serve as a potential therapeutic ap-
proach against obesity and its related metabolic outcomes.

Vasodilatory-stimulated phosphoprotein (VASP) is a 40 kDa 
protein associated with cell adhesion and modulation of cyto-
skeletons [14,15] and found in various cell types, but is highly 
expressed in vascular endothelial cells, smooth muscle cells, fi-
broblasts, and platelets [15]. VASP is also known to be a down-
stream molecule of NO signal transduction pathway. Recently, 
a growing body of evidence suggests that VASP as a down-
stream mediator of NO signal transduction pathway exerts an-
ti-obesity effects by improving inflammation and insulin resis-
tance in various tissues involved in glucose metabolism [10,11, 
16-18]. Therefore, in this review, we evaluate the current evi-
dence supporting the protective effect of NO/cyclic guanosine 
monophosphate (cGMP)/VASP signaling pathway against obe-
sity and possibly, type 2 diabetes mellitus.

NO/cGMP/VASP SIGNALING PATHWAY

The eNOS is mainly expressed in endothelial cells and generates 
eNOS-derived NO [19]. In cardiovascular tissues, eNOS-de-
rived NO is known to exert vasodilatory, anti-inflammatory, and 
anti-proliferative effects [19,20] via cGMP-dependent protein 
kinase (PKG) by increasing cGMP levels [9]. The NO/cGMP-in-
duced PKG activation in various cell types exerts diverse biologi-
cal function by modulating its multiple downstream effectors. 
For example, PKG interacts with VASP [21-24] and survival 
molecules such as the apoptosis-regulating protein BAD [25], 
the oncogenic tyrosine kinase c-Src [22], and the transcription 
factor cyclic adenosine monophosphate (cAMP)-responsive ele-
ment binding protein (CREB) [26] to regulate cell migration, 
survival, and proliferation. On the other hand, PKG-mediated 

activation of the mitogen-activated protein kinase (MAPK) fam-
ily regulates angiogenesis in vascular endothelial cells [27] and 
the contractile function of myocardial fibers [28] and vascular 
smooth muscle cells (Fig. 1) [29].

Of numerous various downstream effectors of PKG, impli-
cation of modulating VASP in cancerous or neural cells has 
been widely studied due to its role in cell adhesion, migration, 
and proliferation [21-24]. However, recently, phosphorylation 
of VASP by PKG on a specific serine residue (Ser-239) has been 
found to improve inflammation and insulin resistance in vari-
ous peripheral organs such as the adipose tissue, the liver, and 
the vasculature [10,11,16-18].

NO/VASP SIGNALING IN ADIPOSE TISSUE

In visceral adipose tissue, nutrient excess leads to the infiltra-
tion of macrophages via the production of monocyte chemoat-
tractant protein 1 (MCP-1), a key mediator recruiting macro-
phage precursors into the adipose tissue [30,31]. Subsequent 
release of proinflammatory cytokines such as interleukin 6 (IL-
6) and TNF-α results in impaired insulin signaling [3]. Hence, 
improving obesity-induced insulin resistance by regulating in-
flammatory signaling has been of great interest as it can serve 
as a potential therapeutic target.

Based on the anti-inflammatory role of endothelial NO sig-
naling in the vasculature and the decline of vascular NO levels 
early in the course of DIO, Handa et al. [10] made an attempt to 
unravel the role of NO/cGMP/VASP signaling pathway in the 
pathogenesis of obesity-associated inflammation in adipose tis-
sue. In this study, HF feeding significantly reduced phospho-
eNOS and phospho-VASP in white adipose tissue, compared to 
mice fed a low-fat (LF) diet. Genetic deficiency of eNOS in-
duced increased expression of proinflammatory cytokines in 
adipose tissue of eNOS–/– mice; however, a LF diet could not 
prevent adipose tissue inflammation in these mice, further re-
flecting the significance of endothelial NO signaling in attenu-
ating adipose tissue inflammation. By contrast, administration 
of sildenafil, a drug that increases signaling downstream of vas-
cular NO, prevented HF diet-induced proinflammatory gene 
expression and adipose tissue macrophage infiltration while 
improving insulin sensitivity in wild type (WT) mice [10].

Because the authors hypothesized that VASP, a downstream 
target of the NO/cGMP pathway, is crucial to the anti-inflam-
matory effects of NO signaling pathway on adipose inflamma-
tion, they used VASP–/– and WT littermate mice fed an LF and 
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HF diet [10]. As expected, in VASP–/– mice, levels of mRNA en-
coding proinflammatory cytokines MCP-1, IL-6, and TNF-α 
were markedly elevated compared with WT controls [10]. The 
recapitulation of the effect of eNOS deficiency to increase adi-
pose tissue inflammation in VASP-null mice suggests that 
VASP must be present for NO/cGMP signaling pathway to ex-
ert its anti-inflammatory effect in adipose tissue.

NO/VASP SIGNALING IN THE LIVER

The liver is a pivotal player in glucose metabolism and inflam-
matory responses [32]. It is highly vascularized receiving 20% 
of cardiac output, and hepatic sinusoidal endothelial cells make 
up half of nonparenchymal cells of the liver [33]. Sinusoidal 
endothelial cells have shown to express eNOS and produce NO 
basally, regulating hepatic vascular resistance [34]. In a DIO 

setting, reduced vascular NO levels were followed by enhanced 
liver nuclear factor-κB (NF-κB) signaling and impaired insu-
lin-mediated phosphorylation of Akt [35], highlighting the 
possible role of NO signaling in regulation of hepatic insulin 
resistance and inflammation.

Macrophages are myeloid-derived mononuclear cells that 
are a critical component of the innate immune response. They 
are more enriched in the areas that are exposed to pathogens, 
toxins and tissue damages such as the lung and the liver. Accu-
mulating evidence supports a role for tissue macrophages in a 
broad spectrum of inflammatory conditions [36], and the num-
ber and activity of macrophages are associated with insulin re-
sistance and metabolic deterioration in states of over nutrition 
such as obesity [37,38]. 

Kupffer cells, the liver-specific macrophages, reside on the 
luminal side of the sinusoidal endothelium, and are mainly in-

Fig. 1. Schematic illustration of nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) signaling pathway and its down-
stream effects. Activated cGMP-dependent protein kinase (PKG) by NO/cGMP signaling exerts diverse biological function by 
modulating its multiple downstream effectors in various cell types. PKG interacts with vasodilatory-stimulated phosphoprotein 
(VASP) to regulate cell adhesion and migration, inflammation and insulin sensitivity, as well as with survival molecules to regu-
late cell survival, and proliferation. PKG also exerts its role in angiogenesis and smooth muscle contractility via mitogen-activated 
protein kinase (MAPK) family. sGC, soluble guanylyl cyclase; PDE, phosphodiesterase; c-Src, proto-oncogene tyrosine-protein 
kinase c-Src; CREB, cyclic adenosine monophosphate (cAMP)-responsive element binding protein; RhoK, rho-associated pro-
tein kinase.
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volved in scavenging, host immunity and immune tolerance in 
the liver [39]. Recent studies demonstrated that increased 
Kupffer cell activity is responsible for hepatic insulin resistance 
[40,41], and that depletion of Kupffer cells attenuated the de-
velopment of hepatic steatosis and hepatic insulin resistance, 
both of which suggest an important early role of Kupffer cells 
in diet-induced alterations in hepatic insulin resistance [19].

Tateya et al. [11] questioned whether endothelial NO signal-
ing contributes to the effect of HF feeding to induce inflamma-
tory activation of Kupffer cells and associated hepatic insulin 
resistance. In the study, proinflammatory activation of Kupffer 
cells was induced both in WT mice fed HF diet and in geneti-
cally eNOS-deficient mice, highlighting the protective effect of 
NO signaling in hepatic inflammation and insulin resistance 
[11]. Similarly, targeted deletion of VASP in vivo, a key down-
stream target of endothelially derived NO, predisposed to he-
patic and Kupffer cell inflammation regardless of diet, whereas 
agent-enhanced VASP signaling reversed the inflammatory 
activity and insulin resistance in VASP-deficient hepatocytes 
and macrophages in vitro [11]. Subsequently, Tateya et al. [18] 
have also demonstrated that NO/VASP signaling increases he-
patic fatty acid oxidation by activating AMPK in mice models, 
suggesting that direct activation of VASP could be a potential 
therapeutic target of hepatic steatosis.

The mechanism through which endothelial NO/cGMP/VASP 
signaling exerts protective effect against inflammation and insu-
lin resistance in Kupffer cells has also been explored [17]. Using 
mice model with transgenic eNOS overexpression, this study 
demonstrated that the protective effect of NO signaling against 
HF diet-induced hepatic inflammation and insulin resistance is 
associated with reduced proinflammatory M1 and increased 
anti-inflammatory M2 activation of Kupffer cells [17]. Similar 
effects were induced by overexpression of VASP in macrophages, 
whereas VASP deficiency induced proinflammatory M1 mac-
rophage activation. In attempt to determine whether VASP de-
ficiency, specifically in the macrophage compartment, is suffi-
cient to explain the hepatic inflammation and hepatic insulin 
resistance, transplantation of bone marrow from VASP-deficient 
donor mice into normal recipients was performed. As a result, 
the transplantation led to hepatic inflammation and insulin re-
sistance resembling that induced in normal mice fed HF diet 
[17]. Taken together, NO/VASP signal transduction inhibits 
proinflammatory M1 activation of the Kupffer cells, and it can 
serve as a physiological determinant of macrophage polariza-
tion and a promising therapeutic target to prevent hepatic in-

flammation and insulin resistance.

NO/VASP SIGNALING IN VASCULAR 
ENDOTHELIUM

Metabolic deterioration related to obesity is linked with car-
diovascular diseases, and atherosclerosis is responsible for the 
vast majority of these cardiovascular events. Thus, it is impor-
tant to detect and delay the progression of atherosclerosis in its 
early stage. In recent years, it has become evident that insulin 
resistance and endothelial dysfunction play a central role in the 
pathogenesis of atherosclerosis [42]. Metabolic dysfunction 
causes lipid deposition and oxidative stress to the vessel wall, 
triggering an inflammatory reaction, and the release of che-
moattractants and cytokines worsens the insulin resistance 
and endothelial dysfunction [42,43]. Within this context, ther-
apies that improve vascular insulin resistance and inflamma-
tion would be ideal as it may reduce cardiovascular morbidity 
and mortality in clinical settings.

Reduced NO bioavailability occurs within 1 week of HF feed-
ing in mice, causing endothelial cell to be significantly more 
vulnerable to the inflammatory effects of excess nutrition [35]. 
This further reduces NO production, leading to a “vicious cy-
cle” of increased vascular inflammation and reduced NO levels 
[16]. By contrast, increasing downstream NO signaling in mice 
fed HF diet attenuates vascular inflammation [44]; thereby, 
breaking this vicious cycle and restoring vascular insulin sensi-
tivity [16].

Cheng et al. [16] investigated the role of VASP as a down-
stream mediator of the anti-inflammatory effect of NO signal-
ing in vascular tissue. Compared to mice fed a LF diet, marked-
ly reduced levels of VASP Ser239 phosphorylation, a marker of 
VASP activation, were observed in aortic tissue of DIO mice. 
HF feeding was associated with increased aortic inflammation, 
as measured by increased NF-κB dependent gene expression, 
and reduced vascular insulin sensitivity (including insulin-stim-
ulated phosphorylation of eNOS and Akt) [16]. These HF-diet-
induced responses recapitulated in VASP–/– mice, whereas over-
expression of VASP in endothelial cells blocked inflammation 
and insulin resistance induced by palmitate, reflecting the pro-
tective effect against inflammatory signaling and insulin resis-
tance in vasculature [16]. These findings implicate that VASP 
can serve as a potential therapeutic target in the treatment of 
obesity-related vascular inflammation and insulin resistance.
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CONCLUSIONS

Peripheral insulin resistance in obese state is crucial to the eti-
ology of metabolic disorders such as type 2 diabetes mellitus 
[45], and thus, understanding the molecular mechanisms of 
insulin resistance in the organs involved in glucose homeosta-
sis can provide further insights to the development of potential 
targeted therapy. The series of studies we have evaluated in this 
review commonly indicate that NO/cGMP signaling limits 
obesity-related inflammation and insulin resistance in multiple 
organs, such as adipose tissue, liver, and vascular endothelium 
and also that VASP is a critical downstream mediator required 
for this protective effect of NO/cGMP signaling (Fig. 2). De-
veloping potential drugs that alter NO signaling has been of 
caution due to its cytotoxic effect at high levels, generated by 
inducible NOS. However, targeting downstream molecules of 

NO-cGMP signaling pathway, such as soluble guanylyl cyclase 
or PKG could potentially overcome this drawback NO-target-
ed therapeutic approach possesses [10]. In this standpoint, 
VASP can be a promising therapeutic target to limit peripheral 
insulin resistance in obese state, although accumulation of 
more evidence is necessitated. 
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