미만성 간질성 폐질환의 방사선학적 진단

고려대학교 의과대학 진단방사선학과학교실

강은영

A Radiologic Approach to Diffuse Interstitial Lung Disease

Eun-Young Kang, M.D.

Department of Diagnostic Radiology, College of Medicine, Korea University, Seoul, Korea

미만성 간질성 폐질환(diffuse interstitial lung diseases)은 폐포벽(alveolar wall), 소엽간질격(interlobular septa), 기관지·폐절환 주위의 폐간질(peribronchovascular interstitium)과 같은 폐의 지지조직을 미만성으로 침범하는 질환군을 일컫는다. 이 질환들은 대부분 폐간질과 폐포(airspace)를 동시에 침범하고 또 일부에서는 폐포침범이 더 우세한 소견이므로 미만성 간질성 폐질환라는 용어보다는 미만성 침윤성 폐질환(diffuse infiltrative lung disease)이라는 용어가 더 적합하다. 그렇지만 미만성 간질성 폐질환이라는 용어가 임상에서 혼히 쓰여짐으로 폐간질에 액체가 저류되거나, 세포침윤에 의하거나, 또는 섬유조직의 증식에 의한 폐간질의 비후를 주 소견으로 하는 질환들을 중점으로 살펴보고자 한다.

약 200종류의 질환들이 미만성 간질성 폐질환에 속하지만, 실제 임상에서는 약 20종류의 질환들이 미만성 간질성 폐질환의 대부분을 차지한다. 따라서 처 음 미만성 간질성 폐질환의 진단에 있어서는 다양한 어려움이 드문 질환들보다는 우리가 혼히 접하는 질환들부터 감별하는 것이 순서이다. 미만성 간질성 폐질환의 방사선학적 진단은 임상소견들, 폐기능검사, 그리고 검사실 소견들을 고려하여야 한다. 즉 질환이 급성인지 만성인지, 환자의 면역기능이 저하되어 있는지, 유 기질 또는 무기질 분진에 접한 과거력이 있는지, 혹은 투약이나 방사선조사등과 같은 과거력을 면만성 간 질성 폐질환의 방사선학적 감별진단에 많은 도움을 준다. Good 등은 환자의 임상소견들이 간질성 폐질환을 검출하기위한 단순흡부X선사진의 진단 정확도에 중계적으로 의미있는 도움을 주지 않는다고 하였으나, 하지만 실제 환자의 임상소견들은 질환의 검출과 진단에 중요하며, 질환의 감별진단에 결정적인 역할을 하고 있다.

미만성 간질성 폐질환의 방사선학적 진단은 단순흡부X선사진(Chest radiograph)과 고해상 전산화단층촬영(High-resolution computed tomography, HRCT)을 이용한다. 단순흡부X선사진은 저감량과 공간분해능이 뛰어나 미만성 간질성 폐질환의 감별진단을 위해 시행하는 첫 번째 검사로써 매우 유용하다. 반면에 검역보이기 군질환의 진단에 어려움이 있어 질환의 진단과 진단에 있어서 민감도와 특이도가
혈이거나. 반면 HRCT는 단순환부X선사진에 비해 구조물들이 겹쳐보이지 않아 병변의 형태와 분포를 측정 할 수 있고 따라서 질환의 검출과 진단에 우수하다. 미만성 간질성 폐질환의 방사선학적 진단 방법은 단순환부X선사진과 HRCT를 분리해서 살펴보기로 하였다.

단순환부X선사진을 이용한 미만성 간질성 폐질환의 진단

HRCT가 폐질환의 진단에 도입된 이후 단순환부X선 사진을 이용한 미만성 간질성 폐질환의 진단에 있어 제한점들이 제시되어있었지만 아직 단순환부X선사진은 미만성 간질성 폐질환을 찾아내고 진단하는데 가장 중요한 기존이 되는 진단도구이며 첫번째로 시행하는 방사선 검사이다. 단순환부X선사진에서 미만성 간질성 폐질환을 검출할 때에는 병변의 형태를 인지하고 그 병변의 형태에 따른 질환들을 감별해 나가는 것이 병변을 보고 직접 진단하는 것보다 정확한 진단을 더 많이 유도할 수 있다. 미만성 간질성 폐질환의 단순환부X선사 진 소견들은 크게 4가지의 형태 (linear pattern, reticular pattern, nodular pattern, reticulonodular pattern)로 구분할 수 있으며 사진에서의 병변의 형태와 분포는 감별진단에 매우 중요하다. 또한 동반된 소견들로 임파절 증대의 유무, 홍막 삼출의 유무, 폐조직의 변화등은 감별진단에 많은 도움을 준다.

선 형태 (Linear Pattern)

단순환부X선사진에서 미만성 소엽간증의 비후가 있을 때 선 형태로 인지한다. 소엽간증의 비후는 액체의 저류, 세포조직, 섬유조직의 증식등에 의하며, 홍막에 덮은 수평으로 보이는 1~2cm 길이의 선 음영 (Kerley B lines)과 폐문을 향하는 줄 더 긴 2~6cm 길이의 선 음영 (Kerley A lines)으로 보인다. 선 형태를 보이는 가장 중요한 질환으로는 정수입성 폐부 종 (hydrostatic pulmonary edema)과 임파성 폐내 암 (lymphangitic carcinomatosis)이 있다. 바이러스성 그리고 마이코폴라즈마 (mycoplasma) 폐염에서도선 형태를 보인다.

정수입성 폐부종은 심장질환이나 체액 과인에 의하여 단순환부X선사진에서 미만성 선 형태 이외에 동반된 소견들이 상부 폐엽의 혈관들의 크기가 증가, 불분명한 혈관 및 기관지막의 음영과 기관지막의 비후, 심비대 등이 있으면 감별진단에 도움이 된다 (Fig. 1). 임파성 선이폐암은 중장암 입파관의 증상변전에 의해 주변부 입파조직의 폐장, 점액성 암세포의 증식, 입파관 점막에 의한 부종, 또는 콩추세포와 다소 간절 성 채마증의 결과로 생긴 폐간질의 섬유화반응의 결과로 소엽간증의 비후들이 보인다. 유방암, 폐암, 위암, 대장암의 전이로 혼히 볼 수 있다. 단순환부X선사진에서 정상으로 보이면서, Kerley’s A와 Kerley’s B lines를 모소견으로 하거나, 그룹 형태를 동반하기도 하며, 또는 그룹과 결합이 혼합한 형태로 보인다. 약 30~50%의 환자에서 폐부종 입파질환과 채마흡수 증을 동반하며, 때로는 일측성으로 발병한다.

그룹 형태 (Reticular Pattern)

그룹 형태의 폐질환은 불규칙한 선 음영, 기관 음영, 볼점양 음영들이 혼합하여 이루어져며, 매우 다양한 미만성 간질성 폐질환들이 단순환부X선사진에서 그들 형태로 보인다. 그룹 형태를 보이는 대표적인 질환들로는 정수입성 폐부종과 바이러스성 또는 마이코폴라즈마 폐염이 있다. 바이러스성 또는 마이코폴라즈마 폐렴은 동반된 임파질환들이 감별진단에 도움이 되며, 마이코폴라즈마 폐렴은 그룹 형태에서 폐경화 (consolidation)로 진행하기도 한다. 만성 질환들로는 특발성 폐경화증 (idiopathic pulmonary fibrosis, fibrosing alveolitis), 교원병 (collagen vascular diseases)과 동반한 폐경화증이 있다. 특발성
Fig. 1. 75-year-old woman with pulmonary edema.
Chest radiograph shows linear pattern, particularly in both lower lung zones. Kerley’s lines are seen in both hilar areas and lower lung zones. Additionally, indistinctness of vessels, cardiomegaly and redistribution of vascular pattern are seen.

편심유화증과 교원병과 동반한 편심유화증은 처음에는 하부 편야에 미세한 그물 형태를 보이며 병이 진행함에 따라 그물 형태는 점차 격침되어 더욱 넓은 지역에 분포하며, 섬유화가 진행하면서 폐종이 감소한다(Fig. 2). 이에 의해 섬연폐종(asbestosis), 폐외 임파관절관근증증(lymphangioleiomyomatosis), 폐외 조직구증식증(Langerhans cell histiocytosis, pulmonary histiocytosis X, eosinophilic granuloma) 등에서도 그룹 형태를 보인다.

그룹 형태를 보이는 질환들이 간별진단에 도움을 주는 소견들로서, 정수강성 폐부종, 특발성 편심유화증, 교원병과 동반한 편심유화증, 그리고 섬연폐종은 하부 편야에 더 많이 분포하며, 폐외 조직구증식증은 상부 편야에 더 많이 분포하고(Fig. 3), 반면 임프혈성 전이세포 및 폐외 임파관절관근증증은 양 편야에 고르게 분포한다. 특발성 편심유화증과 교원병과 동반한 편심 유화증은 폐종이 감소하나, 폐외 임파관절관근증증 과 조직구증식증은 폐종의 변화가 없거나 오히려 늘어난다. 폐외 임파관절관근증증과 조직구증식증은 기종을 자주 유발하고, 임파관절관근증증, 임프혈성 전이세포, 교원병과 투마체스 판절염, 정수강성 폐부종 등은 호박종증증을 자주 동반한다. 특정적인 홍막 비후변(plaque)을 갖으면 섬연폐종의 진단에 도움이 될
Table 1. Helpful Features in the Differential Diagnosis of Disease with Reticular Pattern on Chest Radiograph

<table>
<thead>
<tr>
<th>Acute disease</th>
<th>Hydrostatic pulmonary edema</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Viral and mycoplasma pneumonia</td>
</tr>
<tr>
<td>Chronic disease</td>
<td>Idiopathic pulmonary fibrosis</td>
</tr>
<tr>
<td></td>
<td>Fibrosis associated with collagen vascular disease</td>
</tr>
<tr>
<td></td>
<td>Asbestosis</td>
</tr>
<tr>
<td>Lower lung zone predominance</td>
<td>Hydrostatic pulmonary edema</td>
</tr>
<tr>
<td></td>
<td>Idiopathic pulmonary fibrosis</td>
</tr>
<tr>
<td></td>
<td>Fibrosis associated with collagen vascular disease</td>
</tr>
<tr>
<td></td>
<td>Asbestosis</td>
</tr>
<tr>
<td>Upper lung zone predominance</td>
<td>Langerhans cell histiocytosis</td>
</tr>
<tr>
<td>Diffuse distribution</td>
<td>Lymphangitic carcinomatosis</td>
</tr>
<tr>
<td></td>
<td>Lymphangioleiomycytosis</td>
</tr>
<tr>
<td>Decreased lung volume</td>
<td>Idiopathic pulmonary fibrosis</td>
</tr>
<tr>
<td></td>
<td>Fibrosis associated with collagen vascular disease</td>
</tr>
<tr>
<td>Increased lung volume</td>
<td>Lymphangioleiomycytosis</td>
</tr>
<tr>
<td></td>
<td>Langerhans cell histiocytosis</td>
</tr>
</tbody>
</table>

(modified from reference 6)

Fig. 4. 67-year-old woman with miliary tuberculosis.
Chest radiograph shows nodular pattern. Numerous fine nodules are scattered in both entire lung.

Fig. 5. 36-year-old man with silicosis.
Chest radiograph shows nodular pattern. Sharply defined, small nodules are seen in both lungs, particularly upper lung zones.

결 형태를 보이는 급성 질환으로는 수립성 결핵(miliary tuberculosis)(Fig. 4), histoplasmosis나 coccidioidomycosis와 같은 수립성 전균성 질환 또는 패혈성 석전증(septic emboli) 등이 있다. 패혈성 석전증은 다발성의 농근 결절물 또는 채키도양의 음영으로 보이며, 염증반응에 의해 주변 경계가 불분명하고,
Table 2. Helpful Features in the Differential Diagnosis of Disease with Nodular Pattern on Chest Radiograph

<table>
<thead>
<tr>
<th>Acute disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>miliary tuberculosis</td>
</tr>
<tr>
<td>miliary fungal disease</td>
</tr>
<tr>
<td>septic emboli</td>
</tr>
<tr>
<td>Chronic disease</td>
</tr>
<tr>
<td>metastasis</td>
</tr>
<tr>
<td>sarcoidosis</td>
</tr>
<tr>
<td>silicosis</td>
</tr>
<tr>
<td>coalworker’s pneumoconiosis</td>
</tr>
<tr>
<td>Upper lung zone predominance</td>
</tr>
<tr>
<td>sarcoidosis</td>
</tr>
<tr>
<td>silicosis</td>
</tr>
<tr>
<td>coalworker’s pneumoconiosis</td>
</tr>
<tr>
<td>Lower lung zone predominance</td>
</tr>
<tr>
<td>septic emboli</td>
</tr>
<tr>
<td>metastasis</td>
</tr>
<tr>
<td>Hilar lymphadenopathy</td>
</tr>
<tr>
<td>sarcoidosis</td>
</tr>
<tr>
<td>silicosis</td>
</tr>
</tbody>
</table>

(modified from reference 6)

Hilar lymphadenopathy

---

Fig. 6. 59-year-old man with lymphangitic carcinomatosis. Chest radiograph shows reticulonodular pattern. Septal lines and small nodules are seen particularly in both hilar and lower lung zones. Indistinctness of vessels, small pleural effusion in right and hilar prominence are also noted.

---

Grum and cells become confluent (Reticulonodular Pattern)

Sexually active or infected patients may also have a different appearance. The sex ratio of patients with valvular heart disease is lower in men than in women. The incidence of peptic ulcer disease in men is higher than in women, and the incidence of chronic gastritis is lower in men than in women. The incidence of peptic ulcer disease in men is higher than in women, and the incidence of chronic gastritis is lower in men than in women.
Table 3. HRCT Patterns of Diffuse Interstitial Lung Disease

<table>
<thead>
<tr>
<th>Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickened interlobular septa</td>
</tr>
<tr>
<td>hydrostatic pulmonary edema</td>
</tr>
<tr>
<td>lymphangitic carcinomatosis</td>
</tr>
<tr>
<td>Reticular pattern</td>
</tr>
<tr>
<td>idiopathic pulmonary fibrosis</td>
</tr>
<tr>
<td>fibrosis associated with collagen vascular disease</td>
</tr>
<tr>
<td>asbestos</td>
</tr>
<tr>
<td>Cystic pattern</td>
</tr>
<tr>
<td>lymphangioleiomyomatosis</td>
</tr>
<tr>
<td>langerhans cell hystiocytosis</td>
</tr>
<tr>
<td>idiopathic pulmonary fibrosis</td>
</tr>
<tr>
<td>Nodular pattern</td>
</tr>
<tr>
<td>sarcoидosis</td>
</tr>
<tr>
<td>silicosis</td>
</tr>
<tr>
<td>coalworker’s pneumoconiosis</td>
</tr>
<tr>
<td>miliary tuberculosis</td>
</tr>
<tr>
<td>Ground-glass pattern</td>
</tr>
<tr>
<td>desquamative interstitial pneumonitis</td>
</tr>
<tr>
<td>active phase of idiopathic pulmonary fibrosis</td>
</tr>
<tr>
<td>extrinsic allergic alveolitis</td>
</tr>
</tbody>
</table>

(modified from reference 12, 13)

HRCT를 이용한 미만성 간질성 폐질환의 진단

HRCT는 단순흡부X선사진이 정상일때에도 이상 소견을 발견할 수 있으며, 단순흡부X선사진 소견들이 비특이적일때도 핵심도가 높은 진단이 가능하다. 김
등은 미만성 간질성 폐질환을 포함하는 미만성 침윤성 폐질환 환자 99명과 12명의 정상인의 단순흡부X
선사진과 HRCT를 무작위로 훈련하여 3명의 흉부방
사선과 의사들에게 독립적으로 진단하도록 하였습니다.

HRCT와 단순흡부X선사진 모두 미만성 침윤성 폐질
환의 검출에 98.9%와 97.9%의 민감도를 보이는 높은 검사방법이었다. 핵심도가 높은 진단이 단순흡부X
선사진에서는 26%, HRCT에서는 55%에서 가능하
였고, 핵심도가 높은 HRCT진단이 옳은 경우는 임상
에서 흔히 접하는 질환들인 범발성 간질성 폐염
(usual interstitial pneumonia), 속립성 질핵, 미만
성 범세가관지염(diffuse panbronchiolitis), 임프혈
성 친이폐염에서 83~93%로써, HRCT는 핵심도가
높은 정확한 진단이 가능하였다. 이러한 결과들은 이
의 보고들과 유사한 진단 정확도를 보였다(11).

HRCT를 이용한 미만성 간질성 폐질환의 감별진단
도 단순흡부X선사진과 마찬가지로 질환의 형태와 분
포가 중요하다. HRCT에서 미만성 간질성 폐질환의 형태는 크게 5가지의 형태(thickened interlobular
septa, reticular, cystic, nodular, ground-glass
pattern)로 구분할 수 있다(Table 3).

비후된 폐소엽간질점
(Thickened Interlobular Septa)

HRCT에서 비후된 소엽간질점은 쉽게 인지할 수 있
고 간질성 폐질환 환자에서 흔히 볼 수 있으며, 정수
암성 폐부종(Fig. 7)과 임프혈성 친이폐염(Fig. 8)
에서 가장 흔히 관찰된다. 정상의 소엽간질점은 상엽
과 중엽의 앞면 측면 증가동과 연한부의 그리고 하엽
의 앞면과 정막과 연한 부위에서 잘 발달되어있고,
Fig. 7. 77-year-old woman with pulmonary edema due to fluid overload.
HRCT through upper lung zones shows interlobular septal thickening. Interlobular septal thickening is generalized and smooth.

Fig. 8. 64-year-old man with lymphangitic carcinomatosis because of stomach adenocarcinoma.
HRCT through upper lung zones shows interlobular septal thickening (arrows) on right upper lobe. Interlobular septal thickening is unilateral, smooth, and mild.


그물 형태 (Reticular Pattern)

HRCT에서 그물 형태는 폐질절내의 불규칙한 선들과 혈관, 기관지, 장축용막과 질절사이의 비정상적인 접촉 면 등에 의해 생긴다. 이러한 형태는 가장 흔히 폐섬유화를 동반하는 미만성 간질성 폐질환에서 볼 수 있다. 폐섬유화에 의한 이차적인 소견들로는 폐질절의 외곽과 기관지 또는 세기관지의 확장이 있다. 그물 형태를 보이는 반상 미만성 간질성 폐질환로는 특발성 폐섬유화증, 교종병과 동반한 폐섬유화증, 석연폐증이 있다.

특발성 폐섬유화증은 원인을 알 수 없는, 수로 폐포벽의 염증 또는 섬유화를 초래하는 간질성 폐염을 총칭하는 임상 질환으로, 범발성 간질성 폐염이 가장 중요한 병리조직소견이다. HRCT에서는 특정적으로 그 물 형태의 폐질절이 하부 폐 yay 그리고 홍막하 주변부 폐 yay에 분포하며12-16-17, 병질양 폐와 간유리 응영 (ground-glass attenuation)를 동반한다 (Fig. 9).

HRCT에서 특발성 폐섬유화증과 동일한 형태와 분포 를 보이는 질환으로 교방병과 동반된 폐섬유화증이 있고, 특히 공피증 (scleroderma)과 뇌마치스성 관절염 등 교방병과 동반한 폐섬유화의 가장 흔한 원인 질환들 이다.

석연폐증도 HRCT에서 그물 형태를 보이는 대표적
인 실험이며, 그물 형태의 폐침음과 함께 흡악하 폐외 신음영(subpleural lines), 비후된 소엽간증격과 폐소엽(secondary pulmonary lobule) 내의 선 음영, 폐 실질내 따음영(parenchymal bands), 볼집양 폐등의 소견을 동반한다 18,19). 또한 대부분의 환자들에서 흡악 비후반, 미만성 흡악비후를 관찰할 수 있으며, 이러한 흡악비후 소견들과 그물 형태의 폐침음의 조합은 석면 폐중의 특정적인 소견이다.

기낭 형태(Cystic Pattern)

기낭 형태는 2 ~ 3mm에서 1cm 정도의 직경을 갖는 벽이 얇고, 경계가 분명하며, 공기를 함유하는 낭성 공간들이 산재하여 있을 때를 일컫는다. HRCT에서 기낭 형태는 그물 형태와 쉽게 분리되어 인지되나, 단 순중후행자에서는 음영들이 겹쳐보이므로 해의 작은 기낭들은 그물형태로 인지된다. HRCT에서 기낭 형태를 보이는 질환들로는 특발성 폐심유화증, 폐의 조직구증식증, 폐의 내판평행관계증 등이 있다. 특발성 폐심유화증의 기낭 형태는 폐심포화 발기의 심한 볼집양 폐가 기낭으로 보인다.

폐의 조직구증식증은 원인을 모르는 드문 질환으로, 조직조직판상 초기에는 Langerhans histiocytes와 호산구들이 결합이면으로 모여 있고, 말기에는 섬유화에 의해 이러한 세포성분들이 대치된다. 정상 논리에서 호발하며, 90% 이상의 환자에서 뼈연력이 있다. HRCT에서 주 소견으로 작은 결절들과 기낭들을 들 수 있고, 결절들은 질환의 초기에 나타나며 기낭들은 말기에 보인다. Fig. 10). 또한 특정적으로 종상부 폐아를 침범하며, 하부 폐아, 우중엽, 설상엽(angular segments)의 침범은 상대적으로 적다. 20% 이상에서 기종을 일으키고, 폐용적은 정상이거나 오히려 증가한다 13, 20, 21).

폐의 일판판평행관계증은 기관지, 세기관지, 폐포벽, 폐동맥, 임파관, 흉막에 있는 평행근이 증식하는 아주 드문 질환이다. 특정적으로 가슴의 여성을지나는 발생한다. HRCT에서 정상의 폐실질사이에 아주 얇은 벽을 갖는 2mm ~ 5cm 크기의 기낭들이 산재해 있으며, 간 폐아에 고르게 분포한다. 폐용적은 기낭들과 공기포화로 점차 증가한다. 원자의 1/2-1/3에서
기흉이나 유비흡을 동반한다.13.27-30. 입파관량공증 증과 결절성 경화증(tuberous sclerosis)과의 관계는 아직 논란의 대상이지만, 결절성 경화증환자의 약 1%에서 폐의 입파관량공증증과 동일한 경화증을 일으키기도 한다.26.27) 폐의 입파관량공증증은 결절들이 보이지 않고, 전폐부에 고르게 분포하며, 가임기 여성에서만 발생함으로 폐의 조직구조증증과 감별할 수 있다.

결절 형태(Nodular Pattern)

직경 5mm이하의 결절들이 양 폐에 산재한 경우 결절 형태라 하며, 결절은 간질성 결절(interstitial nodule)과 폐포성 결절(airspace nodule)로 구분할 수 있다. HRCT에서 두 군을 구분하기는 종종 어렵지만, 일반적으로 간질성 결절은 크기가 작고 그 경계가 뚜렷하다. 폐포결절의 결절들은 육중증중, 규폐중, 석탄 شك부의 진폐중, 속립성결핵, 전이폐암등에서 관찰된다.

유무중증은 원인이 밝혀지지 않은 전신질환으로 90% 이상의 환자에서 혈청을 일으키고, 20~25% 환자에서 영구적인 폐기능 저하를 일으킨다.13. 육중증중의 혈청은 입파량성 전이폐암과 동일하게 중앙부 기관지-폐동맥주의 폐간질, 폐소엽간증, 혈미색간사간 결점, 폐포성 성형물, 유화형 성형물(noncaseating granuloma)을 형성하며, 이는 자연 소멸되기라도 하고 섬유화로 진행하기도 한다. 특정적인 방사선소견으로는 60~70%의 환자에서 볼 수 있고, 대칭적으로 앙상병의 폐문부 입파량종태와 폐실질 변화를 동반하기도 한다. HRCT에서는 기관지, 혈관, 소엽간증을 따라 결절성 비후와 결절들을 보인다. 이러한 결절들은 크기가 5mm 이하이므로, 불규칙하고, 폐의 중상부에 더 많이 분포한다. 결절들이 서로 둘어서 공기기관지 유영을 포함하는 중 더 큰 폐경화로 진행하기도 하고, 섬유화가 진행함에 따라 불규칙한 선들이 뚜렷하게 겹린다.13.28-30.

규폐중과 석탄 شك부의 진폐중은 서로 다른 무기질 분

Fig. 11. 43-year-old man with silicosis.
HRCT through upper lung zones shows nodular pattern. Numerous, sharply defined nodules are seen bilaterally. Nodules are more numerous in posterior aspect of lungs and relatively spare in the lung periphery. Conglomerate masses and paracncrtrical emphysema are also noted.

Fig. 12. 67-year-old woman with miliary tuberculosis.
HRCT through midlung zones shows nodular pattern. Numerous fine nodules are scattered in both entire lungs. The nodules are uniform in size, and evenly distributed in both lung fields.
Fig. 13. 47-year-old woman with hypersensitivity pneumonitis.
HRCT shows areas of ground-glass attenuation in a patchy distribution in both lungs. The intervening areas of lung appear normal.

진을 흡인한 결과로 일어나고, 다른 조직소견을 갖는 구분할 수 있는 질환들이지만 발생한 소견들은 동일하다. 규폐증경은 crystallized silicon dioxide을 포함한 분절을 흡입한 결과로 일어난 화의 섬유화 질환이다. HRCT에서 2〜5mm 크기의 작은 결절들이 폐소엽의 중심부와 흡락화 폐에 분포하고 이들은 섬유화를 동반하기도 한다. 또한 특정적으로 이러한 결절들은 폐의 중상부 특히 후반부 폐에 산재한다(21)(Fig. 11). 진행하면 결절들의 크기나 숫자가 증가하고, 결절들의 응함이 일어나며, 결절주위에 폐기증을 동반한다.

득립성 결핵은 HRCT에서 1〜3mm 크기의 경계가 분명한 또는 불분명한 결절들이 폐소엽내에 모든 부위에 분포하며 기관지와의 연관성은 없다. 또한 결절들은 양 폐에 고르게 산재한다(Fig. 12). 동반된 폐소엽내의 폐간질의 비후와 폐소엽간증격의 비후를 볼 수 있다(22, 23).

간유리 음영(Ground-glass Attenuation)

간유리 음영은 혈관 음영을 상쇄하지 않을 정도의 중간 음영을 말한다. 이것은 CT의 해상도가 미치지 못하는 폐실질의 범위에 있을 때 보이며, 비 특이적인 소견이다. 즉 폐간질의 경미한 비후가 있을때에도 그리고 폐포병변에서도 모두 관찰된다. 간유리 음영을 보이는 가장 중요한 만성 미만성 간질성 폐렴으로는 탈락성 간질성 폐렴(desquamative interstitial pneumonia)과 활동성이 있는 특발성 폐렴유화증 또는 교원병과 동반된 폐렴유화증 그리고 과민성 폐렴(hypersensitivity pneumonitis, extrinsic allergic alveolitis)이다. 간유리 음영을 보이는 급성 미만성 간질성 폐렴으로는 급성 간질성 폐렴(acute interstitial pneumonitis)에서 간유리 음영과 함께 폐기화의 소견들이 양폐야에서 미만성으로 분포한다(14-20).
과민성 폐장염은 다양한 유기질 분진을 흡입하여 폐의 과민성 반응을 일으키는 질환이다. 다양한 유기질 분진에 포함된 항원에 관계없이 발생상 소개과 조직소견들은 동일하다. 과민성 폐장염은 급성, 아급성, 만성으로 분류할 수 있고, 그 단계에 따라 반사성 소견들은 차이가 있다. HRCT에서는 가장 혼히 간유리 영양이 양咩 특이 증상 및 허부 폐액에 산재되어 보인다(Fig. 13). 약 50%에서 간유리 영양 내에 경계가 불분명한 페소엽 중심에 위치한 작은 결절양 영양들을 볼 수 있다[13-36-38]. 반복해서 노출되면 페 섭유화가 일으키고 이러한 경우에는 간유리 영양과 함께 그룹 형태의 폐침윤을 동반한다.

특발성 섭유화증에서 혼히 간유리 영양을 볼 수 있다[37-44](Fig. 14). 이러한 간유리 영양은 활동성 염증 반응을 나타내는 패포벽 내 세포성분들이 증가하여 서로가 가능하며 또는 패포벽의 섭유화에 의해서도 간유리 영양을 보일 수 있다. 즉 간유리 영양은 활동성 염증반응이나 섭유화가 있을 때 모두 보이며, HRCT에서 섭유화를 반영하는 다른 소견들은 기관지확장증, 세기관지확장증(bronchiolitis), 병발성 폐의 소견을 동반한 간유리 영양은 섭유화가 주 병변이고 반면 이러한 섭유화 소견들을 동반하지 않은 간유리 영양은 조직소견에서 활동성 염증반응을 반영할 수 있다[40]. 간유리 영양부위는 치료를 하면 혐진된 것을 예측할 수 있으며[45], 이러한 간유리 영양이 진행하면 불규칙한 선으로 대치되고 결국 병발성 폐로 진행한다[42-43].

탈락성 간질성 폐렴은 병발성 간질성 폐렴과 함께 조직학적으로 만성 간질성 폐렴에 속하며, 임상적으로 특발성 섭유화증과 교원질과 동반한 섭유화증의 조직 소견이다. 탈락성 간질성 폐렴과 병발성 간질성 폐렴은 동일한 질환의 다른 시기의 형태인지, 아니면 병계의 질환인지의 아직 논란의 대상이다. 탈락성 간질성 폐렴의 HRCT소견으로는 간유리 영양이 양咩의 하부 폐아 특히 흡혈하 주변부 폐에 분포하며 섭유화를 반영하는 선 영양, 그룹 영양, 또는 병발성 폐를 보일 수도 있다[45]. 탈락성 간질성 폐렴과 병발성 간질성 폐렴은 동일한 분포의 폐침윤을 보이지만, 탈락성 간질성 폐렴은 간유리 영양이 주 소견이나 병발성 간질성 폐렴은 그룹 형태와 병발성 폐가 주소견이다.

참고 문헌

5. Groskin SA : Heitzman's the lung : radiologic-pathologic correlation. 3rd ed. p419, St Louis, Mosby 1993


22. Rappaport DC, Weisbrod GL, Herman SJ, Chamberlain DW: Pulmonary lymphangioleiomyomatosis: high-resolution CT finding in four cases. AJR 152: 961, 1989


27. 이영란, 강은영, 이남춘, 서원혁: 결절성 경화증에 동반된 폐의 임상증상과 근증중 1예보고. 대한방사선의학회지 27: 252, 1991
35. 강은영, 오유환, 서원혁: 급성 간질성 폐렴의 고해상 전산화단층촬영 소견. 대한방사선의학회지 33: 745, 1995
43. Akira M, Sakatari M, Ueda E: Idiopathic pulmonary fibrosis; progression of honeycombing at thin-section CT. Radiology 189: 687, 1993