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INTRODUCTION

Parkinson's disease (PD) is a progressive motor disorder 
caused by the neurodegeneration involving many brainstem 
nuclei with preponderance of dopaminergic neuronal loss 
in the substantia nigra pars compacta (SNpc). PD affects 
every 1:1,000 to 1:10,000 individuals, with an average 
age of onset of 55 and markedly increased prevalence 
and incidence with advancing age1 making it the second 
most common neurodegenerative disease after Alzheimer's 
disease. Pathological hallmarks of a PD brain are the 
degeneration of dopaminergic neurons in the midbrain 
and the presence of cytoplasmic inclusions called Lewy 
bodies (LB). Although post-mortem studies reveal the 
loss of SNc neurons, patients diagnosed with PD do not 
show symptoms until the threshold of SNc neuronal loss 
is reached, about 50-70%.2 The clinical symptoms 

dramatically impair the patients' quality of life, including 
motor symptoms such as bradykinesia, resting tremor, 
rigidity and gait abnormalities, and non-motor symptoms 
such as dementia and depression. Symptomatic treatment 
of PD by dopaminergic medications is one of the most 
successfully therapies for neurodegenerative disorders. 
However, development of the motor response compli-
cations and medication-resistant symptoms ultimately 
limits the symptomatic therapy. Therefore, recent intense 
interests in neuroprotective therapy hope to stop the 
progression of the disease process. So far the neuro-
protective therapies have been elusive, in part compli-
cated by overshadowing symptomatic effect that 
obscures discernable neuroprotective effect.

The purpose of this article is to review the current 
status and understand the rationale and potential future 
directions of neuroprotective therapy in PD. We will 
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discuss the insights that we have gained from studying 
the pathogenesis of PD, ranging from potential environ-
mental factors to genetic studies. This is followed by a 
discourse of how the potential pathogenic players are 
linked together by their cell biological function and 
interaction with intrinsic factors inherent in dopami-
nergic neurons. We will focus our consideration of 
clinical therapeutic agents in this review to those that are 
designed to interfere with pathogenesis of PD, in line 
with our discussions on the etiology and pathogenesis of 
PD.

PATHOGENESIS OF PD

Age is the biggest risk factor for PD, and yet, how 
senescence contributes to the pathogenesis remains 
enigmatic. The sporadic form accounts for most cases 
and the genetic component has been only recently 
appreciated.3 Although less than 5-10% of PD cases are 
familial, the convergence of implicated mechanisms 
from genetic mutations and environmental factors has 
vastly facilitated the studies on PD pathogenesis. The 
etiology of PD in most cases probably cannot be 
explained by a single cause, but by a combination of 
genetic susceptibility and environmental insult. A 
popular theory implicates to the role of oxidative stress 
and mitochondrial dysfunction. This is supported by the 
discovery of toxins that damage dopaminergic neurons 
selectively and display affinity to disrupt mitochondrial 
functions and generate reactive oxygen species (ROS). 
Another theory suggests the role of protein misfolding 
and aggregation, lending support from the formation of 
Lewy bodies and the abnormal accumulation of α- 
synuclein. Lastly, the selective loss of dopaminergic 
neurons poses an interesting hypothesis that dopamine 
itself can contribute to toxicity in PD. After all, normal 
metabolism of dopamine increases level of intracellular 
ROS. The overall effect of these varying pathways is to 
increase vulnerability of dopaminergic neurons in SNpc.

1. Environmental factors

Epidemiological studies indicate both factors that 

increase and those that decrease the risk of developing 
PD. Exposures to pesticide, rural living, farming, and 
drinking well water augment the risk of developing PD.4 
In cellular and animal models, these chemicals and 
related compounds produce experimental PD and recapi-
tulate the selective vulnerability of nigrostrital dopami-
nergic neuron. The main effects of various farming 
chemicals underscore a pathogenic theme: inhibition of 
mitochondrial electron transport chain and increased 
levels of ROS. 

MPTP is a highly lipophilic synthetic neurotoxin that 
gets oxidized by monoamine oxidase B (MAO-B) into 
MPP＋ in the brain. MPP＋ enters dopaminergic 
neurons via high affinity binding to the dopamine 
transporter (DAT), as well as norepinephrine and 
serotonin transporters.5,6 Once inside the neuron, MPP
＋ can translocate into vesicles by vesicular monoa-
mine transporter (VMAT),7 concentrate within the mito-
chondria,8 or remain in the cytosol.9 The ratio of DAT 
to VMAT expression level is thought to determine the 
selectivity of MPP＋ in damaging dopaminergic neurons, 
where VMAT acts to sequester MPP＋ from harmful 
interaction within the cells. Thus, a cell type with higher 
DAT to VMAT ratio is more vulnerable to MPP＋ 
toxicity than a cell type with a lower DAT to VMAT 
ratio.10 MPP＋ binds to and inhibits mitochondrial 
complex I.11 The inhibition of complex I activities leads 
to enhanced ROS generation, significant ATP depletion, 
and apoptosis.12 MPTP sounds like a magic bullet for 
PD research but two major caveats exist in MPTP 
models. First, MPTP toxicity is primarily based on its 
selective uptake into DA neurons. The intracellular 
processes may not share common pathways with PD. 
Second, most animal models of MPTP are acute and do 
not contain classic Lewy Bodies, possibly due to rapid 
cell death before aggregate formation.13 Regardless, 
MPTP models have been the corner stone of PD 
research14,15 and suggest that the intrinsic properties of a 
dopaminergic neuron play a role in its demise.

Other similar toxins have been utilized as PD models. 
Paraquat is an herbicide that generates superoxide 
radicals. It is structurally similar to MPP＋ with one 
extra N-methyl-pyridinium group. Systemic injection of 
paraquat in mice causes mild SNc degeneration and 
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inclusion bodies.16,17 Paraquat crosses the blood brain 
barrier via amino acid transporter.18 Rotenone is a highly 
toxic and common insecticide that binds and inhibits 
mitochondrial complex I at the same site as MPP＋.19 
Unlike paraquat and MPTP, rotenone's lipophilic property 
allows easy crossing of the blood brain barrier and into 
the cells to exert its neurotoxic effects. Therefore, its 
selective toxicity against dopaminergic neurons of SN 
suggests enhanced vulnerability of these neurons to 
mitochondrial complex I inhibition. There are, however, 
conflicting reports regarding rotenone's effect, with one 
group demonstrating selective dopaminergic degeneration 
and inclusion bodies by chronic low-dose injection in 
rodents,20 and others observing a more wide spread 
pathology.21,22

Epidemiological studies have also provided important 
insights into possible neuroprotective mechanisms in PD. 
Caffeine consumption23 and cigarette smoking24 have 
been inversely correlated with the risk of developing PD. 
The use of nonsteroidal anti-inflammatory agents,25 
Vitamin E intake26 and vigorous exercise27 have been 
associated with decreased risk of PD. These provide 
rationale for neuroprotective therapies.
2. Genetic factors

One could argue that familial and sporadic forms of 
PD may have entirely different etiologies, but evidence 
points to potential shared pathways in the degenerative 
process. Therefore, understanding the genetic forms may 
provide new insights into the mechanism of neuro-
degeneration in PD and potential therapeutic approaches. 
A similar theme to other neurodegenerative disorders 
such as Alzheimer's disease has emerged: genetic abnor-
malities either in aberrant protein aggregation or in the 
proteins that process these aggregated protein may lead 
to the disease. A summary of all genes that have been 
discovered so far is provided in the Table 1 and more 
relevant genetic forms are discussed below.

1) α-synuclein 
In 1997, the discovery of a missense mutation with an 

alanine to threonine substitution at position 53 (A53T) 
of α-synuclein opened the field of PD genetics.28 Two 
other mutations including alanine to proline substitution 
at position 30 (A30P) in a German family29 and E46K 
in a Spanish family30 were identified. Besides genetic 
mutations, triplication of α-synuclein gene was also 
found to associate with Parkinson's disease.31 These PD 

Table 1. Summary of established genes linked to familial PD

Locus Gene Inheritance Phenotype Age of onset pathology

PARK1 α-synuclein AD Parkinsonism, dementia, hallucination 40 LB - also cortical

PARK2 Parkin AR EOPD: slow progression, early onset dystonia, 
sensitivity to L-DOPA

>50% of EOPD; 

20-40 No LB 
(some with 

syn＋inclusion, tau)

PARK3 2p13 AD Typical PD
Low penetrance, haplotype affects onset age 

60 LB, plaques, tangles

PARK4 α-synuclein AD Tremor, dementia susceptibility gene 30 LB, vacuoles

PARK5 UCH-L1 AD Typical PD susceptibility gene 50 ?

PARK6 PINK1 AR EOPD, dystonia uncommon 30-40 PET abnormality

PARK7 DJ-1 AR EOPD, anxiety 30-40 PET abnormality

PARK8 LRRK2
(dardarin)

AD Typical PD
1-2% of sporadic form

60 Variable LB, tau

AD: autosomal dominant, AR: autosomal recessive, LB: Lewy body, DLB: diffuse LB, EOPD: early onset PD, No pathology is known 
for PARK5-7.
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families demonstrate that excessive amount of wild-type 
α-synuclein leads to abnormal accumulation, and 
mutations may lower the threshold for the pathological 
process. 

The exact mechanism of α-synuclein-dependent patho-
genesis is still unclear, but it appears that the mutation 
results in a gain-of-function and α-synuclein aggregation 
leads to dopaminergic neuronal death. α-Synuclein is a 
major fibrillar component of LB in both familial and 
sporadic PD. Overexpression of α-synuclein A53T inhibits 
proteasomal activity, and α-synuclein mutants increase 
the sensitivity of cells to proteasomal inhibition.32-34 

Transgenic mouse models of α-synuclein show that 
overexpression of wild-type human α-synuclein leads to 
cytoplasmic inclusions in the SN and the loss of 
dopaminergic terminals in the basal ganglia without the 
loss of dopaminergic cells.35 Mice expressing human 
A53T α-synuclein developed progressive motoric 
dysfunction and adult-onset neurodegeneration only in 
dorsal midbrain, deep cerebellar nuclei, brainstem, and 
spinal cord-regions associated with aberrant α-synuclein 
aggregation.36 Although mouse models of synucleino-
pathy have not shown particular selectivity to dopamine 
neurons, in vitro data suggest specific interaction of 
dopamine and α-synuclein pathology. Study with α- 
synuclein aggregation in vitro demonstrates that 
synuclein mutations favor the formation of potentially 
toxic protofibrils.37 Expression of mutant α-synuclein can 
cause dopamine-dependent toxicity at a lower concen-
tration compared to wild-type α-synuclein.38 Dopamine 
inhibits fibrillization and stabilizes α-synuclein protofibril 
intermediates, leading to an accumulation of the toxic 
protofibrils in vitro.39

Implication of the role of α-synuclein in PD goes 
beyond the few families with mutations or triplication, 
but extends into a large group of neurodegenerative 
disorders, now referred to as synucleinopathies including 
diffuse Lewy body disease.

2) Parkin
The loss-of-function mutations in parkin associate 

with early-onset parkinsonism without Lewy body for-
mation.40,41 Parkin gene encodes an E3 ubiquitin ligase 
protein that plays an important role in the ubiquitin- 

proteasome system, and the mutations in parkin abolish 
its ligase activity.42,43 Parkin conjugates polyubiquitin 
chain in a substrate-specific manner and targets the 
substrate for proteasome degradation. A lack of E3 
ligase activity will cause aberrant protein accumulation 
and can lead to cell death. The physiological role of 
parkin implies that proteasome pathway can contribute 
to the pathogenesis of PD. However, how substrates of 
parkin promote selective dopaminergic cell death is 
unclear, especially since the expression of the substrates 
is not strictly limited to dopamine neurons in the SNc. 
Mice deficient in parkin exhibit mitochondrial dysfunc-
tion, increased protein and lipid peroxidation, as well as 
nigrostriatal functional abnormalities, but without signifi-
cant loss of dopaminergic neurons.44,45

3) UCH-L1 (Ubiquitin C-terminal Hydrolase-1)
Another protein of the ubiquitin pathway is implicated 

in PD-UCH-L1. The I93M dominant mutation in 
UCH-L1 was found in only one family with inherited 
PD,46 thus representing a rare contributor to PD and 
possibly a polymorphism.47 However, UCH-L1 polymor-
phism (S18Y) shows statistically significant inverse 
association with PD.48 UCH-L1 hydrolyzes ubiquitylated 
peptides to generate free ubiquitin monomers that are 
recycled when proteasome-targeted peptides are 
degraded.49,50 Interestingly, both I93M and S18Y decrease 
the UCHL-L1 ligase activity and lead to an impairment 
of the ubiquitin-proteasome system. UCH-L1 knockout 
mice show ubiquitinated deposits and axonal degene-
ration, but no dopaminergic neurodegeneration.51 While 
ubiquitin-proteasome system remains critical in under-
standing PD pathogenesis, as is demonstrated with α- 
synuclein and parkin, strengthening the pathogenic role 
of mutant UCH-L1 requires further confirmation in other 
families.

3) DJ-1
The link between DJ-1 and PD was initially found in 

two consanguineous families, where DJ-1 gene was 
truncated in one family and the other family harbored a 
potential loss-of-function mutation, L166P.52 Crystal 
structure analysis of DJ-1 finds that the proline substi-
tution at position 166 destabilizes the dimmer interface 
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important for DJ-1 activity.53 Currently, the exact 
function of DJ-1 is unknown but a role in oxidative 
stress has been suggested. DJ-1 expression protects cells 
from oxidative stress, accompanied by modification into 
a more acidic form.53,54 DJ-1 is presumed to have a 
redox-dependent activity, and overexpression of wild- 
type DJ-1 in neuroblastoma cells significantly decreased 
visible α-synuclein aggregates compared to L166P 
mutant.55 DJ-1 knockout mice do not show dopami-
nergic neurodegeneration but exhibit age-dependent and 
task-dependent motoric behavioral deficits that are 
detectable by 5 months of age,56 as well as detectable 
changes in striatal dopaminergic function consisting of 
increased dopamine reuptake rates and elevated tissue 
dopamine content.56,57 The connection between dopamine 
neuron losses in the absence of DJ-1 needs further 
study; however, the roles of DJ-1 enhance our 
understanding that oxidative stress and protein chaperone 
activity are critical aspects of PD pathogenesis.

4) PINK1 (PTEN-induced putative kinase 1)
Recently, missense (G309D) and nonsense (W437X) 

mutations in PINK1 were identified in families with 
early-onset PD.58 Data from exogenous PINK1 over-
expression suggest that PINK1 localizes to the mito-
chondria.58,59 PINK1 contains motifs that indicate kinase 
activity. Because the kinase domain spans a large 
portion of PINK1, both G309D and W437X mutants are 
thought to generate a kinase-dead protein. In vitro kinase 
activity experiment demonstrates G309D mutant has less 
activity than wild-type.59 This lack of kinase activity 
seems to enhance some forms of mitochondrial dysfunc-
tion when the cells are stressed, as measured by changes 
in mitochondrial membrane potential.58 Determining the 
function of PINK1 is currently under hot pursuit, with 
its mitochondrial localization hinting at the common 
pathogenesis as the sporadic form.

5) LRRK2 (leucine-rich repeat kinase-2; dardarin)
LRRK2 is the latest gene that is cloned with mutations 

involved in late-onset parkinsonism in an autosomal 
dominant pattern.60 LRRK2 encodes a large protein with 
multiple functional domains, including a MAPKKK 
kinase domain; yet the true function eludes researchers. 

Interestingly, neuropathology of the affected patients 
showed selective neuronal loss and gliosis in SN. 
However, the pathological features vary from those 
without Lewy Bodies to tauopathy and synucleinopathy. 
LRRK2 may participate in the phosphorylation of 
proteins implicated in PD such as α-synuclein and tau.60

Other genes have been identified to influence the age- 
of-onset or susceptibility to develop PD include sepiap-
terin reductase (PARK3),61 tau,62 and PARK10.63

3. The Common Thread

As discussed in previous sections, disruptions in 
cellular homeostasis, whether caused by environmental 
insults or genetic mutations, can lead to PD. Environ-
mental factors suggest the participation of oxidative 
stress and mitochondrial dysfunction in aberrant 
accumulation of proteins such as α-synuclein and tau. 
The presumed functions of the genes whose mutations 
produce PD underline the potential role of mitochondria 
(PINK1), oxidative stress (DJ-1), and protein degrada-
tion pathway (parkin, UCH-L1, DJ-1) in PD patho-
genesis, and emphasize α-synuclein as one of the key 
molecules that are abnormally processed in the patho-
genesis of PD. At first glance, they appear to be distinct 
and unrelated, though this is not the case. They are in 
fact intimately connected and any one or combinations 
of these factors may trigger the degenerative process in 
PD.

For example, the main intracellular source of ROS for 
most cells comes from the mitochondrial electron 
transport chain (ETC). ROS is generated under normal 
conditions, but it is accelerated upon mitochondrial 
dysfunction. It can change the mitochondrial membrane 
potential and release cytochrome c into the cytosol. ROS 
can cause protein damage and lead to protein misfolding 
and degradation. Mitochondria also regulate apoptosis, 
as many apoptosis-associated proteins reside in the mito-
chondria, such as caspases and cytochrome c. It is found 
that during apoptosis, caspases cleave subunits of the 
proteasome that would impair the proteasome activity 
and augment accumulation of proteasome substrates.64 

Lastly, perturbing mitochondrial ETC affects ATP 
generation that will negatively influence a wide variety 
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of cellular functions including proteasomal activity and 
cell viability. 

The protein quality control machinery in the cells 
assures that nascent polypeptides are properly folded 
into the correct conformation.65 The misfolded proteins 
or unfolded proteins are retained in the endoplasmic 
reticulum (ER) and are either refolded by chaperone 
proteins or degraded through ER-associated degradation 
via the proteasome. Another integral aspect of the 
protein quality control is the ubiquitin-proteasome 
pathway (UPS). Inhibiting the proteasomes will increase 
protein accumulation and can lead to ER stress or trigger 
apoptosis. Recently, cell culture study demonstrated 
proteasome inhibition impairs mitochondrial electron 
transport chain and increases mitochondrial ROS.66

Currently, there exist therapeutic agents targeted at 
each pathway and are part of ongoing clinical trials. 
However, most of the past and current neuroprotective 
trials were based on data from experimental models that 
focused on dopaminergic cell loss in acute toxic models 
in rodents and nonhuman primates. New models that are 
based on genetic mutations or other novel mechanisms 
such protein processing abnormalities may provide better 
indicators of a successful clinical translation. In addition, 
developing a successful neuroprotective agent may 
require the elucidation of how each cellular pathway 
interacts with one another in the overall pathogenesis. 

4. Dopamine's contribution to vulnerability

Even though degeneration in PD occurs predominantly 
in the dopamine neurons, environmental factors may 
affect neurons globally and familial genes are ubiqui-
tously expressed throughout the nervous system. Thus, 
how these factors contribute to selective dopamine 
vulnerability remains an enigma. As aforementioned, 
differential protein expression profile within the nigro-
striatal dopaminergic neuronal population might explain 
selective vulnerability. The role of dopamine metabolism 
can be another explanation. A circulating hypothesis 
names dopamine cytotoxicity as a culprit in dopami-
nergic death in PD, citing dopamine is a key contributor 
to the selective vulnerability. Tyrosine is converted into 
L-DOPA by tyrosine hydroxylase (TH), which is in turn 

decarboxylated by aromatic L-amino acid decarboxylase 
(AADC) to dopamine. Free dopamine can either be 
sequestered into vesicles by VMAT2 or oxidized into 
dopamine quinone (DAQ). Dopamine oxidation by 
monoamine oxidase (MAO) produces hydrogen peroxide.67 
Among those dopamine released into the synaptic cleft, 
some bind to postsynaptic receptors, some are degraded 
by catechol-O-methyl-transferase (COMT) in the cleft, 
and the rest are recycled by DAT. Dopamine uptake 
increases the probability of generating DAQ and 
oxidative stress. Therefore, one can think of dopamine, 
in addition to being a signal molecule in motor activity, 
reward system or emotions, as a pro-apoptotic neuro-
transmitter. The oxidation of dopamine can activate JNK 
and the release cytochrome c from the mitochondria, and 
ultimately result in the activation of caspase-9 and 
-3.68,69 Though, one should bear in mind that there is no 
evidence that dopamine is toxic in vivo, especially at 
physiological concentrations in normal animals without 
lesions. Some investigators have noted intrinsic defense 
mechanism against oxidative stress in dopaminergic 
neurons to counteract their increased exposure to 
oxidants.70,71 In addition, dopaminergic neurons are not 
the only neuronal population affected72 and the contri-
bution of non-dopaminergic deficits in early stages and 
to overall disabilities of advanced stages of PD is 
appreciated increasingly. Furthermore, not all dopami-
nergic neurons are affected equally in PD.3

In a recent study comparing the gene expression 
profiles between rat SN and ventral tegumental area 
(VTA) dopamine neurons by genechip microarray, the 
dopamine neurons in SN express more mRNAs related 
to energy metabolism than VTA neurons.73 The expres-
sions of genes involved in protein catabolism, apoptosis, 
and oxidative stress are not significantly different 
between SN and VTA. Another study found that mito-
chondrial complex I inhibition may lead to energy stress 
in dopaminergic neurons whereas the same insult results 
in oxidative stress in nondopaminergic neurons.74 The 
ATP levels were higher in dopaminergic neurons than 
nondopaminergic neurons. These studies indicate that 
SN neurons could potentially be operating at higher 
metabolic activity and thus are less capable of compen-
sating slight perturbations in energy homeostasis. 
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Simultaneously, a higher metabolic activity translates 
into more oxidative stress for the neurons. Thus, linking 
the intrinsic properties of dopaminergic neurons to 
genetic and environmental risk factors could enhance our 
understanding of PD pathogenesis. Such efforts are 
underway using either normal or PD brains.75,76

NEUROPROTECTIVE THERAPY

In continuation with our discussions on the etiology 
and pathogenesis of PD, we choose to focus on the 
clinical therapeutic agents that are intended to be 
neuroprotective and address only the trials that attempt 
to intervene with the pathogenic mechanisms specific to 
PD. For example, cell transplantation is a very promising 
neurorestorative therapy, but does not specifically 
interfere with the pathogenic process and will not be 
discussed here. The therapeutic agents are grouped by 
the biological pathways that they are presumed to act 
upon (Fig. 1). The mechanisms of these agents may 
involve actions on multiple points in the presumed 
pathogenic pathway of PD. Therefore the classification 
of these agents used below is based on its primary 
putative mechanism and somewhat arbitrary. 

1. Antioxidants

The prominent role of oxidative stress in PD, as 
patients show decrease in glutathione and evidence of 
oxidative damage, provides the rationale for testing 
antioxidants as potential neuroprotective agents. One 
small uncontrolled study attempted intravenous adminis-
tration of reduced glutathione,77 but an established 
therapy to elevate the intracellular glutathione levels in 
neurons is not available. Vitamin E (α-tocopherol), a 
biologically active free radical scavenger, has been 
tested in DATATOP (Deprenyl and Tocopherol Antioxi-
dant Therapy of PD) study.78-80 De novo PD patients 
were randomized to treatment with 10 mg selegiline, a 
MAO inhibitor, 2000 IU tocopherol, both agents, or 
placebo. Tocopherol provided no significant benefit over 
placebo. Although oxidative stress is implicated in many 
disorders, ROS are necessary for normal cellular signaling 
pathways and only specific cellular compartments may 
be affected by the damaging effects of oxidative stress. 
Current antioxidants are indiscriminate in its site of 
action and may not provide normalization of the reactive 
oxidants when and where they are needed.

2. Mitochondrial enhancers

Evidence supporting the association between mito-
chondrial dysfunction and PD derives from mitochon-
drial function measurements in PD brains and platelets81,82 
and from toxin models that we discussed above. Two 
bioenergetic agents, coenzyme Q10 and creatine, have 
shown to protect dopaminergic neurons in MPTP mouse 
models.83,84 Coenzyme Q10 is naturally produced electron 
acceptor for mitochondrial complexes I and II. The level 
of coenzyme Q10 is decreased in serum and platelet 
mitochondria of PD patients.85 Trial involving coenzyme 
Q10 at dosages of 300 mg/d, 600 mg/d, or 1200 mg/d 
were administered to patients for 16 months or until 
levodopa treatment is needed.86 Coenzyme Q10 slowed 
the progression of functional deterioration, only at the 
highest dose used, 1200 mg/d, and the drug was safe 
and well-tolerated. A larger trial with coenzyme Q10 is 
planned to confirm this preliminary finding of a modest 
benefit in a small study and test the efficacy of a higher 
dose. Creatine is a nutritional supplement that serves as 

Figure 1. Potential mechanisms of neurodegeneration and neuro-
protective therapies. This schematic outlines the proposed 
pathogenesis of PD and the sites of action for the neuro-
protective drugs. MLK: mixed lineage kinase.
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an energy reservoir and acts as an antioxidant. Based on 
the positive results from the study of creatine in MPTP- 
treated rat and safety data from trials in Huntington's 
disease,87 NIH/NINDS is conducting a study on the 
effect of creatine in PD.88

3. Anti-apoptotic agents

One direct intervention to neuronal loss in PD is to 
prevent apoptosis. While there are many apoptotic path-
ways, the mixed lineage kinase (MLK) - c-jun N-terminal 
kinase (JNK) signaling cascade has attracted attention in 
dopaminergic neuronal death.89 MLK acts upstream in 
the activation of c-jun and a MLK inhibitor, CEP1347, 
was tested for its effect in preventing dopamine neuron 
cell death. In animal models of parkinsonism, such as 
MPTP model, CEP1347 reduced the loss of SN 
dopaminergic neurons.90 In acute MPTP model, 
CEP11004, an analogue of CEP1347, also attenuated the 
increase of cyclooxygenase-2 and the loss of TH- 
positive neurons.91 CEP1347 demonstrates a neuro-
protective effect; however, it is known that acute MPTP 
treatments do not induce apoptosis and MPTP-treated 
animals only exhibit degeneration in the nigrostriatal 
pathway. Therefore, the promise of MLK inhibitors in 
PD patients could be limited as is shown in recent trials 
with CEP1347. In two small phase II studies of safety 
and tolerability, CEP1347 was well-tolerated and safe. 
When given to PD patients, CEP1347 did not have 
detectable effect on PD symptoms or L-dopa pharmaco-
kinetics.92 A recent phase II/III trial involving 800 
patients was, however, stopped because of the lack of 
any beneficial effect, although there were no safety 
concerns.93 

Other agents such as adenosine antagonists, nicotine, 
minocycline (inhibits microglial inflammation and anti-
apoptotic), and neuroimmunophilin (GPI-1485) are 
considered or being tested for neuroprotective trials in 
PD,94 partly based on the rationale derived from 
epidemiological evidence for protective effects of 
caffeine, cigarette smoking, and anti-inflammatory drug 
use.

4. Dopaminergic agents

MAO-B inhibitors were initially considered because 
of their ability to prevent the oxidation of MPTP and 
dopamine into their metabolites. Selegiline significantly 
delayed the need for levodopa treatment in DATATOP 
study mentioned above. Unfortunately, the protective 
effects of selegiline was not sustained as patients treated 
with selegiline reached disability endpoint faster than 
control patients.95 It is unclear if selegiline protected 
against degenerating neurons or exerted a symptomatic 
effect.96 To avoid the confounding effects of prolonged 
symptomatic benefit despite washout period, a delayed 
start design was used with rasagiline, another MAO 
inhibitor with a higher potency and modified structure 
that does not metabolize into amphetamine derivatives.97 
Those who started treatment of rasagiline for 12 months 
showed less functional decline than those whose 
treatment were delayed for 6 months. Although the 
randomized delayed-start analysis suggests potential 
disease-modifying activity of the drug, this study was 
relatively short in duration and it design has its own 
caveats. Further studies are necessary to address its 
neuroprotective effect. The presumed mechanisms of 
propargylamines such as selegiline and rasagline include 
antioxidant and antiapoptotic effects in addition to MAO 
inhibition.98

Dopamine agonists were used to treat PD as sympto-
matic agents because of its longer half-life than that of 
L-DOPA. Nonetheless, experiments showed protection 
of dopaminergic neurons and neuroprotective effects.99 
The site of neuroprotection is unclear, but dopamine 
agonists are proposed to affect levodopa turn-over rate 
through the activation of presynaptic autoreceptors, to 
scavenge free radicals as an antioxidants, and to increase 
cell survival by an antiapoptotic mechanism.100 Two 
trials suggested the neuroprotective potential of 
dopamine agonists in patients with early PD. One study, 
CALM- PD (Comparison of the Agonist Pramipexole 
versus Levodopa on Motor Complications in PD), 
investigated the nigrostriatal function and presynaptic 
density of dopamine transporters between pramipexole 
and levodopa.101 This was accomplished by using single 
photon emission CT (SPECT) to assess the striatal 
uptake of β-CIT. Patients were given either 300 mg/d 
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levodopa or 1.5 mg/d pramipexole but no placebo 
controls in the trial. In another agonist study, REAL 
(Ropinirole as an Adjunct to Levodopa), positron 
emission tomography (PET) was used to study striatal 
uptake of fluorodopa.102 In both studies, fewer motor 
complications were observed with dopamine agonists 
than L-DOPA whereas patients taking levodopa had 
better motor scores improvement. In addition, patients 
taking dopamine agonists had a slower rate of 
deterioration than those on levodopa on two different 
types of imaging parameters in two different studies. 
Although these results imply neuroprotective effect in 
addition to pharmacodynamic effect on motor 
complications, the lack of untreated controls raises a 
possibility that L-DOPA may have accelerated the 
deterioration of imaging parameters.103 In addition, the 
effect of the dopaminergic agents on the imaging 
parameters themselves and the large variability of the 
imaging data make the interpretation of these biomarker 
data rather challenging.104

5. NMDA antagonist

Another cause of PD that is not discussed here is 
excitotoxicity associated with glutamate receptor and 
calcium influx. No controlled clinical trials with a 
presumably weak noncompetitive NMDA antagonist, 
amantadine have addressed its neuroprotective effect in 
PD patients. Remacemide105 and riluzole106 trials were 
discontinued due to the lack of efficacy. The current 
lack of efficacious and specific agents limits the 
exploration of the protective effects of NMDA receptor 
antagonists. Deep brain stimulation of subthalamic 
nucleus was put forth as a neuroprotective therapy in 
addition to having its well-established symptomatic 
effect because of its ability to limit the excitatory input 
from the subthalamic nucleus to the dopaminergic 
neurons. However, there is no clinical data demonstrating 
such effect and recent imaging show continuing decline 
of fluorodopa uptake on PET in patients with deep brain 
stimulator.107

6. Protein Chaperones

As we discussed above in the setting of several 

genetic forms of PD, abnormal protein processing and 
aggregation of pathogenic proteins such as α-synuclein 
play an important role in PD. When molecular chaperone, 
heat shock protein 70 (Hsp70) is overexpressed in 
drosophila PD model, Hsp70 prevented dopaminergic 
neuronal loss associated with α-synuclein. The inter-
ference with endogenous chaperone activity accelerated 
alpha-synuclein toxicity in drosophila.108 Similar results 
were obtained in MPTP mouse model overexpressing 
Hsp70 by adenovirus, which support the idea that 
increasing chaperone activity may potentially be beneficial 
in treating PD.109 Several experimental compounds such 
as geldanamycin alter the expression of chaperones and 
may prevent aggregation of abnormal proteins.110 Protein 
chaperones represent hopeful therapeutic agents for 
future PD treatment.

CONCLUSION

Intricate interplays among the implicated cellular 
pathways may underlie the apparent setbacks of neuro-
protective therapy. Future therapies have to explore these 
interactions in a more comprehensive manner. In addition, 
intrinsic factors of the susceptible neuronal population 
have not been well elucidated. The importance of these 
factors is evident from genetic mouse models that have 
failed to reproduce selective dopaminergic neuronal 
degeneration. Understanding these intrinsic factors will 
have to consider the effect of dopamine, aging, and 
human versus rodent differences, to name a few. New 
models of PD should incorporate the interaction of 
various pathogenic processes and intrinsic factors that 
make dopaminergic neurons particularly protective and 
vulnerable. Modeling the chronic nature of the disease 
will be critical since chronic degeneration involves 
different molecular pathways than acute degeneration. 
Furthermore, therapeutic intervention at a sufficient level 
and at specific anatomical and intracellular locus may 
require novel methods of delivery such as gene therapy. 
The future has plenty of challenges, yet it has never 
looked more optimistic for PD patients. 
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