The Genetic Characteristics of Multidrug-resistant Acinetobacter baumannii Coproducing 16S rRNA Methylase armA and Carbapenemase OXA-23

Jinsook Lim, Hye Hyun Cho, Semi Kim, Jimyung Kim, Kye Chul Kwon, Jong Woo Park and Sun Hoe Koo*

Department of Laboratory Medicine, College of Medicine, Chungnam National University, Daejeon, Korea

Acinetobacter baumannii is a gram-negative organism reported worldwide as a cause of health-care associated infections. Due to its increasing drug resistance, several studies on coproduction of *armA* and carbapenemase in South Korea and other parts of the world were reported, which can pose significant therapeutic threat. The aim of this study was to investigate genetic characteristics of multidrug-resistant A. baumannii coproducing *armA* and carbapenemase and its epidemiological relatedness. Forty-five multidrug resistant (MDR) A. baumannii clinical isolates were collected. Antimicrobial susceptibility was determined by agar dilution, Etest and VITEK 2 system. The presence of 16S rRNA methylase and carbapenemase were analyzed by polymerase chain reaction (PCR) and sequencing. Repetitive element palindromic (REP)-PCR was also performed for epidemiologic investigation. All of A. baumannii isolates harbored bla_{OXA-5I}-like gene and 10 isolates showed an upstream ISAba1. 36 isolates (80%) showed amplification of OXA-23, all of which except one had an upstream ISAba1. 16S rRNA methylase armA was found in 44 isolates with high level resistance to aminoglycosides. The rate of coproduction was found in 36 isolates (80%). All isolates showed dominant two patterns in REP-PCR profile. The prevalence of MDR A. baumannii coproducing OXA-23 and armA was high, which the rate of bla_{OXA-23} coproduction was also high.

Key Words: Acinetobacter baumannii, 16S rRNA methylase, Aminoglycoside resistance

INTRODUCTION

Acinetobacter baumannii is a gram-negative organism reported worldwide as a cause of health-care associated infections, particularly in intensive care units (ICUs) (1). It is responsible for pneumonia, urinary tract infections, skin and soft tissue infections, and bloodstream infections (2). Despite intensive efforts, nosocomial acquisition of multidrug resistant (MDR) A. baumannii is still a problem due to its

great ability to disseminate from and colonize human and environmental reservoir (3, 4).

For a long time, imipenem and meropenem have been the drugs of choice for the treatment of infections due to MDR A. baumannii. Currently, however, their efficacy has been compromised by increased dissemination of isolates showing resistance to these antibiotics (5). Resistance to carbapenem in A. baumannii is mainly mediated by the acquisition of class D and class B carbapenemase-encoding genes, with bla_{OXA-23} -like being the most frequently identified

Received: December 28, 2012/ Revised: January 11, 2013/ Accepted: January 29, 2013

^{*}Corresponding author: Sun Hoe Koo, M.D., Ph.D. Department of Laboratory Medicine, Chungnam National University Hospital, 33 Munhwa-ro, Joong-gu, Daejeon, 301-721, Korea.

Phone: +82-42-280-7798, Fax: +82-42-257-5365, e-mail: shkoo@cnu.ac.kr

[©] This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/license/by-nc/3.0/).

carbapenemase-encoding gene (6).

Aminoglycoside antibiotics are frequently ineffective against strains of A. baumannii, but are nevertheless used together with carbapenems to treat infected patients because the two agents have synergistic effects (7). Resistance to amino glycosides is most commonly encountered by amino glycoside-modifying enzymes, including acetylaminotransferases, nucleotidyltransferase, and phosphotransferases (8). But recently the production of 16S rRNA methylases has been implicated in aminoglycoside resistance among the gram-negative pathogens (9). They were found to confer extraordinarily high levels of resistance to clinically useful aminoglycosides, such as amikacin, tobramycin and gentamicin, which thus effectively eliminating the entire class as a therapeutic option (9, 10). The dissemination of different types of 16S rRNA methylase were found in different bacterial species or regions (11~14) but armA has been the only 16S rRNA methylase found in A. baumannii (14~16).

Recently in several studies of *A. baumannii* coproducing *armA* and carbapenemase in South Korea (16, 17) and other parts of the world were reported (10, 18, 19), which can pose significant therapeutic threat.

The aim of this study was to describe the genetic characteristics of MDR *A. baumannii* coproducing *armA* and carbapenemase and to investigate the genetic relatedness through epidemiologic study.

MATERIAL AND METHODS

Identification of A. baumannnii

Isolates identified as *A. baumannnii* or *Acinetobacter* spp. by the VITEK2 (bioMérieux, Marcy l'Etoile, France) automated microbiology system were collected between January 2012 and November 2012 from Chungnam National University Hospital. Identification of *A. baumannnii* was confirmed by *rpoB* gene analysis (20). Genomic DNA was obtained from each target strain by using the genomic DNA purification kit (Solgent, Daejeon, South Korea) according to the standard protocols.

Determination of minimal inhibitory concentrations (MICs)

The MICs of different antimicrobials (amikacin, gentamicin, tobramycin, imipenem, meropenem, cefepime, aztreonam, pipercillin/tazobactam, ciprofloxacin, colistin and minocycline) were determined by agar dilution or Etest (bioMérieux, Marcy l'Etoile, France) according to Clinical and laboratory standards institute (21). *Escherichia coli* ATCC 25922 was used as quality control strain. For 11 isolates, the MICs of cefepime, ciprofloxacin, piperacillin/ tazobactam, aztreonam, colistin and minocycline were determined by VITEK 2 system.

The MDR phenotype was defined as resistance to representative antimicrobial agents of at least 3 different classes of drugs: aminoglycosides (gentamicin, amikacin), antipseudomonal penicillins (ticarcillin, piperacillin, piperacillin/tazobactam), carbapenems (imipenem, meropenem), antipseudomonal cephalosporins (ceftazidime, cefepime), and fluoroquinolone (ciprofloxacin) (22).

Detection of 16S rRNA methylase genes and carbapenemase genes bla_{OXA-23} , bla_{OXA-24} , bla_{OXA-58} , bla_{VIM-1} , and bla_{IMP-1}

All MDR A. baumannii isolates were subjected to PCR and sequencing assay for the detection of 16S rRNA methylase genes (armA, rmtA, rmtB, rmtC, rmtD and npmA) (10, 13) and carbapenemase genes (bla_{OXA-51}, bla_{OXA-23}, bla_{OXA-24} , bla_{OXA-58} , bla_{VIM-1} , and bla_{IMP-1}) (23, 24) (Table 1). Upstream ISAba1 was investigated using the primers ISAba1/OXA-23 and ISAba1/OXA-51 (23). Chromosomal DNA was obtained from each target strains as mentioned previously. PCR was performed using 50 ng of genomic DNA, 2.5 µl of 10 X Tag buffer, 0.5 µl of 10 mM dNTP mix, 20 pmol of each primer, and 0.7 U of Taq DNA polymerase (Bioneer, Daejeon, South Korea), in a total volume of 25 µl. Each gene was amplified in a Gene Amp PCR system 9600 thermal cycler (Perkin-Elmer Cetus Corp., Norwalk, CT, USA) by pre-denaturation of the reaction mixture at 95°C for 5 min, followed by 35 cycles of 95°C for 30 sec, 52°C for 40 sec, and 72°C for 30 sec,

Table 1. Primers used in this study

Primer	Nucleotide sequence $(5' \rightarrow 3')$	Reference		
armA F	AGGTTGTTTCCATTTCTGAG	14		
armA R	TCTCTTCCATTCCCTTCTCC			
rmtA F	CTA GCG TCC ATC CTT TCC TC	14		
rmtA R	TTT GCT TCC ATG CCC TTG CC			
rmtB F	CCC AAA CAG ACC GTA GAG GC	14		
rmtB R	CTC AAA CTC GGC GGG CAA GC			
rmtC F	CGA AGA AGT AAC AGC CAA AG	14		
rmtC R	ATC CCA ACA TCT CTC CCA CT			
rmtD F	ATG AGC GAA CTG AAG GAA AAA CTG C	14		
rmtD R	GCT CCA AAA GCG GCA GCA CCT TA			
npmA F	GGAGGGCTATCTAATGTGGT	11		
npmA R	GCCCAAAGAGAATTAAACTG			
OXA-23-like F	CTTGCTATGTGGTTGCTTCTC	23		
OXA-23-like R	ATCCATTGCCCAACCAGTC			
OXA-51-like F	ATGAACATTAAAGCACTC	23		
OXA-51-like R	CTATAAAATACCTAATTGTTC			
OXA-24-like F	GTACTAATCAAAGTTGTGAA	24		
OXA-24-like R	TTCCCCTAACATGAATTTGT			
OXA-58-like F	CGATCAGAATGTTCAAGCGC	24		
OXA-58-like R	ACGATTCTCCCTCTGCGC			
IMP F	CATGGTTTGGTGGTTCTTGT	24		
IMF R	ATAATTTGGCGGACTTTGGC			
VIM F	ATTGGTCTATTTGACCGCGTC	24		
VIM R	TGCTACTCAACGACTGAGCG			
PW 166 (ISA <i>ba1</i>)	CCTATCAGGGTTCTGCCTTCT	23		
REP 1	IIIGCGCCGICATCAGGC	25		
REP 2	ACGTCTTATCAGGCCTAC			

with a final extension at 72° °C for 5 min.

Repetitive element palindromic (REP)-PCR typing for assessing clonality

DNA fingerprinting was performed by REP-PCR using primers REP1 and REP2 (25) to amplify putative REP-like elements. The reaction conditions were as follows: initial denaturation for 5 min at 95 $^{\circ}$ C, 30 amplification cycles consisting of 50 sec at 92 $^{\circ}$ C, 55 sec at 48 $^{\circ}$ C, and 5 min at 70 $^{\circ}$ C, and final elongation for 10 min at 70 $^{\circ}$ C. The amplified

products were separated via electrophoresis on a 1.5% agarose gel containing ethidium bromide, and visualized using a BioDoc-14TM Imaging system (UVP, Cambridge, UK).

RESULTS

Identification of bacterial strains and antibiotic susceptibility testing

A total of 45 isolates were confirmed as A. baumannii by

Table 2. Minimal inhibitory concentrations of different antimicrobial agents

T1 /						MIC (μg/ml)				
Isolates -	CIP	MN	CS	AN	GEN	TOB	IMP	MEM	FEP	P/T	AZ
171	>64	≤1	1	≥1024	≥1024	≥1024	≥32	≥32	32	≥256	64
173	64	≤1	1	≥1024	≥1024	≥1024	≥32	≥32	16	≥256	64
177	>64	≤1	1	≥1024	≥1024	≥1024	\geq 32	≥32	16	≥256	64
183	64	≤1	1	≥1024	≥1024	\geq 1024	≥32	≥32	48	≥256	32
191	>64	≤1	1	≥1024	≥1024	\geq 1024	≥32	≥32	32	≥256	64
193	64	2	1	≥1024	\geq 1024	\geq 1024	≥32	≥32	8	≥256	16
196	64	2	2	≥1024	≥1024	\geq 1024	≥32	≥32	24	≥256	16
197	>64	≤1	1	≥1024	\geq 1024	\geq 1024	≥32	≥32	32	≥256	≥256
202	64	2	1	≥1024	≥1024	≥1024	≥32	≥32	12	≥256	16
207	64	≤1	1	≥1024	≥1024	\geq 1024	≥32	≥32	32	≥256	16
208	>64	≤1	1	≥1024	≥1024	≥1024	≥32	≥32	≥256	≥256	48
211	>64	≤1	1	≥1024	≥1024	\geq 1024	≥32	≥32	≥256	≥256	48
216	64	4	1	≥1024	≥1024	≥1024	≥32	≥32	24	≥256	48
217	64	2	2	6	24	<256	1	1	24	≥256	32
218	64	2	1	≥1024	≥1024	≥1024	1	0.5	12	≥256	16
219	64	≤1	1	≥1024	≥1024	≥1024	≥32	≥32	24	< 0.16	16
223	>64	≤1	1	≥1024	≥1024	≥1024	≥32	≥32	24	≥256	≥256
225	64	2	1	≥1024	≥1024	≥1024	≥32	≥32	≥256	≥256	64
226	64	≤1	1	≥1024	≥1024	≥1024	≥32	≥32	24	≥256	≥256
227	64	2	0.5	≥1024	≥1024	≥1024	≥32	≥32	8	≥256	16
228	>64	≤1	1	≥1024	≥1024	≥1024	≥32	≥32	32	≥256	≥256
229	>64	≤1	1	≥1024	≥1024	≥1024	≥32	≥32	≥256	≥256	≥256
230	>64	≤1	1	≥1024	≥1024	≥1024	≥32	≥32	48	≥256	≥256
231	64	≤1	1	≥1024	≥1024	≥1024	≥32	≥32	≥256	≥256	≥256
232	64	≤1	1	≥1024	≥1024	≥1024	≥32	≥32	32	≥256	48
233	32	≤1	1	≥1024	≥1024	≥1024	≥32	≥32	≥256	≥256	≥256
234	32	≤1	1	≥1024	≥1024	≥1024	2	0.75	8	≥256	16
235	64	≤1	1	≥1024	≥1024	≥1024	≥32	≥32	32	≥256	≥256
236	>64	≤1	1	≥1024	≥1024	≥1024	≥32	≥32	32	≥256	64
237	>64	≤1	1	≥1024	≥1024	≥1024	≥32	≥32	32	≥256	64
238	64	≤1	1	≥1024	≥1024	≥1024	≥32	≥32	32	≥256	≥256
241	>64	≤1	2	≥1024	≥1024	≥1024	≥32	≥32	≥256	≥256	16
242	64	2	1	≥1024	\geq 1024	≥1024	4	8	16	≥256	24
243	16	≤1	2	512	≥1024	< 265	1	0.75	≥64	≥128	≥64
61	≥4	≤1	≤0.5	≥1024	\geq 1024	≥1024	≥32	≥32	32	≥128	32
68	≥4	≤1	≤0.5	≥1024	≥1024	≥1024	≥32	≥32	≥64	≥128	≥64

Table 2. Continued

Isolates	MIC (µg/ml)										
isolates -	CIP	MN	CS	AN	GEN	TOB	IMP	MEM	FEP	P/T	AZ
90	≥4	8	1	≥1024	≥1024	≥1024	≥32	≥32	≥64	≥128	≥64
93	≥4	8	2	\geq 1024	≥1024	≥1024	\geq 32	≥32	≥64	\geq 128	≥64
94	≥4	16	1	\geq 1024	≥1024	≥1024	≥32	≥32	≥64	≥128	≥64
96	≥4	16	2	\geq 1024	≥1024	≥1024	\geq 32	≥32	≥64	\geq 128	≥64
104	≥4	8	≤0.5	\geq 1024	≥1024	≥1024	\geq 32	≥32	≥64	\geq 128	≥64
108	\geq 4	4	≤0.5	512	128	128	≥32	≥32	≥64	≥128	≥64
146	≥4	16	≤0.5	128	1024	128	\geq 32	≥32	≥64	\geq 128	≥64
154	≤0.25	≤1	2	\geq 1024	≥1024	≥1024	≥32	≥32	4	≤4	32
159	≥4	≤1	2	≥1024	≥1024	≥1024	≥32	≥32	≥64	≥128	≥64

MICs were determined by Etest (bioMérieux, Marcy l'Etoile, France). But MICs of antimicrobials except Amikacin, gentamicin, tobramycin, imipenem and meropenem were determined by VITEK 2 system (bioMérieux, Marcy l'Etoile, France) in isolates in red color. Abbreviations: MIC, minimal inhibitory concentration; CIP, ciprofloxacin; MN, minocycline; CS, colistin; AN, amikacin; GEN, gentamicin; TOB, tobramycin; IMP, imipenem, MEM, meropenem, FEP, cefepime, P/T, piperacillin/tazobactam; AZ, azteronam.

rpoB gene sequencing. The isolates were highly resistant to carbapenems and aminoglycosides except a few isolates. The MICs of other antimicrobials were listed in Table 2.

Genetic characterization of MDR A. baumannii

All *A. baumannii* harbored bla_{OXA-5I} -like gene which is intrinsic beta-lactamase to *A. baumannii* (Table 3). The bla_{OXA-23} was amplified in 36 isolates (80%), all of which except one showed upstream ISAbal. These 36 isolates showed high level of resistance to carbapenems including imipenem and meropem. In 7 among 9 isolates without bla_{OXA-23} , ISAbal was present upstream of bla_{OXA-5I} -like gene. The bla_{OXA-24} , bla_{OXA-58} , bla_{VIM} , and bla_{IMP} were not detected in any isolate.

16S rRNA methylase *armA* was found almost all isolates except one and they were highly resistant to all classes of aminoglycosides. Other types of 16S rRNA methylase, *rmtA*, *rmtB*, *rmtC*, *rmtD* and *npmA*, were not detected in any isolate.

The isolates coproducing bla_{OXA-23} and armA were 36 isolates (82.2%) and they were highly resistant to carbapenems and aminoglycosides. And besides they were also resistant to ciprofloxacin, cefepime, azteronam and piperacillin/tazobactam while susceptible to minocycline

and colistin.

REP-PCR patterns

The 45 isolates showed dominantly 2 types (A and B) of REP-PCR patterns, while a few showed C types (Fig. 1).

DISCUSSION

MDR A. baumannii has been recognized as an increasing threat in hospitals and as a global challenge (8). Carbapenems are stable against most beta-lactamases and are often used as a last resort to treat cases of MDR A. baumannii (17). Aminoglycoside continue to play an important role in the management of serious infections caused by gram-negative pathogens, often in combination with broad-spectrum beta-lactams (9), but the activity of aminoglycosides is lower for MDR isolates of A. baumannii compared with non-multiresistant ones (26). Incidence of infection by A. baumannii with armA 16S rRNA methylase has increased, leading to reports of high-level resistance to most aminoglycosides (27). Recently several countries have documented the occurrence of co-production of bla_{OXA-23} and armA in A. baumannii, which can pose therapeutic challenge (10, 16~19).

Table 3. Genetic characteristics of MDR A. bauamannii

T1-4	Antimicrobial resistance determinants									
Isolates	OXA-51	ISAba1/OXA-51	OXA-23	ISAba1/OXA-23	armA	REP-PCR				
171	+	-	+	+	+	A				
173	+	_	+	+	+	A				
177	+	_	+	+	+	A				
183	+	_	+	+	+	A				
191	+	_	+	+	+	A				
193	+	+	-	-	+	A				
196	+	-	+	+	+	A				
197	+	-	+	+	+	A				
202	+	+	-	-	+	A				
207	+	_	+	+	+	A				
208	+	_	+	+	+	В				
211	+	_	+	+	+	A				
216	+	_	+	+	+	A				
217	+	_	_	-	_	A				
218	+	+	_	-	+	В				
219	+	_	+	+	+	A				
223	+	_	+	+	+	A				
225	+	+	+	+	+	В				
226	+	_	+	+	+	A				
227	+	+	-	-	+	A				
228	+	_	+	+	+	В				
229	+	_	+	+	+	A				
230	+	+	+	+	+	В				
231	+	_	+	+	+	A				
232	+	_	+	+	+	A				
233	+	+	-	-	+	A				
234	+	+	-	-	+	В				
235	+	_	+	+	+	A				
236	+	_	+	+	+	A				
237	+	_	+	+	+	A				
238	+	_	+	+	+	С				
241	+	_	+	+	+	A				
242	+	+	-	-	+	A				
243	+	-	-	-	+	C				
61	+	_	+	+	+	A				
68	+	_	+	+	+	A				

Isolates -	Antimicrobial resistance determinants									
	OXA-51	ISAba1/OXA-51	OXA-23	ISAba1/OXA-23	armA	REP-PCR				
90	+	-	+	+	+	A				
93	+	-	+	_	+	A				
94	+	-	+	+	+	A				
96	+	_	+	+	+	A				
104	+	+	+	+	+	A				
108	+	_	+	+	+	A				
146	+	-	+	+	+	A				
154	+	-	+	+	+	A				
159	+	_	+	+	+	Α				

Table 3. Continued

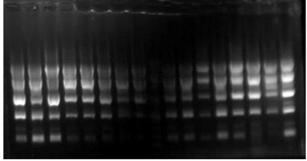


Figure 1. Repetitive extragenic palindromic (REP)-PCR of genomic DNA from MDR A. baumannii clinical isolates. Most isolates showed A pattern, while some isolate 208 and 218 showed B type.

In this study, the genetic characterisctics MDR A. baumannii and its coproduction of carbapenemase and 16S rRNA methylase were investigated. Only armA among different kinds of 16S rRNA methylase was detected like previous studies (27). The prevalence rate of armA among MDR A. baumannii was 97.8% and the isolates with armA in our study were highly resistant to all available aminoglycosides (MIC over 1024). The rate of coproduction of bla_{OXA-23} was 100% among isolates with armA and they were multidrug resistant to aminoglycoside, carbapenems, ciprofloxacin, ampicillin/sulbactam, piperacillin, aztreonam while susceptible to colistin and minocycline.

These phenotypic profiles in these isolates were very similar to the previous studies (10, 16~19). Confounding evidence regarding A. baumannii isolates with armA were present in our country. Lee et al. reported that most of A. baumannii with armA were carbapenem nonsusceptible (28), while in a study in 2010, 11 isolates (10%) with armA among 112 A. baumannii were all carbapenem susceptible (14). In our study, almost all MDR A. baumannii isolates harbored both armA and carbapenemase OXA-23, which seems to be endemic in our hospital. The prevalence of armA in A. baumannii slightly increased from previously reported data (29) and showed similar result with recent report in China (12). Phenotypic characteristics of isolates with armA and its high prevalence in MDR A. baumannii make aminoglycoside less effective agent in the treatment of MDR A. buamannii infections.

Carbapenem resistance in MDR A. baumannii was mostly attributable to carbapenemase OXA-23 in 36 isolates (80%) and partially to OXA-51 with upstream ISAba1 in 5 isolates. The presence of ISAbal upstream of bla_{OXA} genes provides a promoter sequence enhancing their expression (30). In our study most isolates with OXA-23 harbored upstream of ISAba1 and they were all related to resistance to carbapenems. In the 9 isolates without OXA-23, 5 isolates were carbapenem non-susceptible presumably due to upreatream ISAba1 of OXA-51 but 4 isolates remained

susceptible to carbepenem. Since carbapenem resistance is known to be significant risk factor for morbidity and mortality in *A. baumannii* infection, these MDR carbapenem resistant isolates are prevalent in tertiary care hospital is quite alarming.

The rate of coproduction of OXA-23 and *armA* in MDR *A. baumannii* was 80%. This high rate of coproduction of major resistant determents significantly narrows therapeutic options for MDR *A. baumannii* infection.

Dominant two patterns seen in REP-PCR profiles suggest that there are both clonal and horizontal spreads of resistance genes in MDR *A. baumannii* isolates. This emphasizes the necessity of a screening program and strict infection control.

Additionally, what was interesting in our study was amikacin susceptibility error in VITEK2 system. Several studies have reported aminogylcoside susceptibility error in A. baumannii (31, 32). Manufacturer recommends manual testing such as disk diffusion or Etest for A. baumannii showing susceptibility to amikacin. In our study, the rate of very major error (false susceptibility) was 77.3% (34 out of 44 isolates), which was much higher than previous report (36.4%) (31). Jung et al. (32) reported false susceptibility to amikacin by VITEK2 in A. baumannii was related to harboring armA but in our study almost all isolates harbored armA and some of them showed concordant result with reference method. Thus susceptibility testing error can occur regardless of harboring armA but tend to occur more often in MDR A. buamannii. So additional testing for susceptibility to amikacin in MDR A. baumannii may not be necessary for confirmation.

In conclusion, our study showed 16S rRNA methylase *armA* and carbapenemase OXA-23 was highly prevalent in MDR *A. baumannii*. Due to its patient to patient transfer in the spread of antimicrobial resistance as shown in REP-PCR, the needs for hospitals to isolate and screen for MDR pathogens and more strict infection control are pivotal for preventing further dissemination. The high prevalence of MDR isolates coproducing *armA* and *bla*_{OXA-23} can also threaten therapeutic options for these infections.

REFERENCES

- 1) Towner KJ. *Acinetobacter*: an old friend, but a new enemy. J Hops Infect 2009;73:355-63.
- Lee JY, Ko KS. Antimicrobial resistance and clones of *Acinetobacter* species and *Pseudomonas aeruginosa*. J Bacteriol Virol 2012;42:1-8.
- 3) Playford EG, Craig JC, Iredell JR. Carbapenem-resistant *Acinetobacter baumannii* in intensive care unit patients: risk factors for acquisition, infection and their consequences. J Hosp Infect 2007;65:204-11.
- 4) García-Garmendia JL, Ortiz-Leyba C, Garnacho-Montero J, Jiménez-Jiménez FJ, Pérez-Paredes C, Barrero-Almodóvar AE, et al. Risk factors for Acinetobacter baumannii nosocomial bacteremia in critically ill patients: a cohort study. Clin Infect Dis 2001;33:939-46.
- Perez F, Hujer AM, Hujer KM, Decker BK, Rather PN, Bonomo RA. Global challenge of multidrug-resistant *Acinetobacter baumannii*. Antimicrob Agents Chemother 2007;51:3471-84.
- 6) Poirel L, Nordmann P. Carbapenem resistance in *Acinetobacter baumannii*: mechanisms and epidemiology. Clin Microbiol Infect 2006;12:826-36.
- 7) Marques MB, Brookings ES, Moser SA, Sonke PB, Waites KB. Comparative in vitro antimicrobial susceptibilities of nosocomial isolates of Acinetobacter baumannii and synergistic activities of nine antimicrobial combinations. Antimicrob Agents Chemother 1997;41: 881-5.
- 8) Dijkshoorn L, Nemec A, Seifert H. An increasing threat in hospitals: multidrug-resistant *Acinetobacter baumannii*. Nat Rev Microbiol 2007;5:939-51.
- Doi Y, Arakawa Y. 16S ribosomal RNA methylation: emerging resistance mechanism against aminoglycosides. Clin Infect Dis 2007;45:88-94.
- 10) Doi Y, Adams JM, Yamane K, Paterson DL. Identification of 16S rRNA methylase-producing *Acinetobacter baumannii* clinical strains in North America. Antimicrob Agents Chemother 2007;51:4209-10.
- 11) Zhou Y, Yu H, Guo Q, Xu X, Ye X, Wu S, *et al.* Distribution of 16S rRNA methylases among different

- species of Gram-negative bacilli with high-level resistance to aminoglycosides. Eur J Clin Microbiol Infect Dis 2010;29:1349-53.
- 12) Doi Y, Yokoyama K, Yamane K, Wachino J, Shibata N, Yagi T, et al. Plasmid-mediated 16S rRNA methylase in Serratia marcescens conferring high-level resistance to aminoglycosides. Antimicrob Agents Chemother 2004;48:491-6.
- 13) Doi Y, de Oliveira Garcia D, Adams J, Paterson DL. Coproduction of novel 16S rRNA methylase RmtD and metallo-β-lactamase SPM-1 in a panresistant Pseudomonas aeruginosa isolate from Brazil. Antimicrob Agents Chemother 2007;51:852-6.
- 14) Lee H, Koh EM, Kim CK, Yum JH, Lee K, Chong Y. Molecular and phenotypic characteristics of 16S rRNA methylase-producing gram-negative bacilli. Korean J Clin Microbiol 2010;13:19-26.
- 15) Yu YS, Zhou H, Yang Q, Chen YG, Li LJ. Widespread occurrence of aminoglycoside resistance due to armA methylase in imipenem-resistant Acinetobacter baumannii isolates in China. J Antimicrob Chemother 2007;60:454-5.
- 16) Kim JW, Heo ST, Jin JS, Choi CH, Lee YC, Jeong YG, et al. Characterization of Acinetobacter baumannii carrying bla(OXA-23), bla(PER-1), and armA in a Korean hospital. Clin Microbiol Infect 2008;14:716-8.
- 17) Jeong HW, Son BR, Shin DI, Ryu D, Hong SB, Han K, *et al.* Characterization of *Acinetobacter baumannii* co-producing carbapenemases OXA-23 and OXA-66, and *armA* 16S ribosomal RNA methylase at a university hospital in South Korea. Korean J Clin Microbiol 2011; 14:67-73.
- 18) Brignate G, Migliavacca R, Bramati S, Motta E, Nucleo E, Manenti M, et al. Emergence and spread of a multidrug-resistant Acinetobacter baumannii clone producing both the carbapenemase OXA-23 and the 16S rRNA methylase armA. J Med Microbiol 2012; 61:653-61.
- 19) Karah N, Haldorsen B, Hermansen NO, Tveten Y, Ragnhildstveit E, Skutlaberg DH, et al. Emergence of OXA-carbapenemase and 16S rRNA methylaseproducing international clones of Acinetobacter baumannii in Norway. J Med Microbiol 2011;60:515 -21.

- 20) Ko KS, Suh JY, Kwon KT, Jung SI, Park KH, Kang CI, et al. High rates of resistance to colistin and polymyxin B in subgroups of *Acinetobacter baumannii* isolates from Korea. J Antimicrob Chemother 2007;60:1163-7.
- 21) National Committee for Clinical Laboratory Standards. Methods for dilution antimicrobial susceptibility test for bacteria that grow aerobically. 6th ed. Approved standard NCCLS document M7-A6. Wayne, PA: CLSI, 2003.
- Lee K, Yong D, Jeong SH, Chong Y. Multidrugresistant *Acinetobacter* spp.: increasingly problematic nosocomial pathogens. Yonsei Med J 2011;52:879-91.
- 23) Mak JK, Kim MJ, Pham J, Tapsall J, White PA. Antibiotic resistance determinants in nosocomial strains of multidrug-resistant *Acinetobacter baumannii*. J Antimicrob Chemother 2009;63:47-54.
- 24) Sung JY, Kwon KC, Park JW, Kim YS, Kim JM, Shin KS, et al. Dissemination of IMP-1 and OXA type beta-lactamase in carbapenem resistant Acinetobacter baumannii. Korean J Lab Med 2008;28:16-23.
- 25) Bou G, Cerveró G, Dominguez MA, Quereda C, Martínez-Beltrán J. PCR-based DNA fingerprinting (REP-PCR, AP-PCR) and pulsed-field gel electrophoresis characterization of a nosocomial outbreak caused by imipenem- and meropenem-resistant *Acinetobacter baumannii*. Clin Microbiol Infect 2000;6:635-43.
- 26) Halstead DC, Abid J, Dowzicky MJ. Antimicrobial susceptibility among *Acinetobacter calcoaceticus-baumannii* complex and *Enterobactericeae* collected as part of the Tigecycline Evaluation and Surveillance Trial. J Infect 2007;55:49-57.
- 27) Cho YJ, Moon DC, Jin JS, Choi CH, Lee YC, Lee JC. Genetic basis of resistance to aminoglycosides in *Acinetobacter* spp. and spread of *armA* in *Acinetobacter baumannii* sequence group 1 in Korean Hospitals. Diagn Microbiol Infect Dis 2009;64:185-90.
- 28) Lee H, Yong D, Yum JH, Roh KH, Lee K, Yamane K, et al. Dissemination of 16S rRNA methylase-mediated highly amikacin-resistant isolates of Klebsiella penumoniae and Acinetobacter baumannii in Korea. Diagn Microbiol Infect Dis 2006;56:305-12.
- Sung JY, Kwon KC, Cho HH, Koo SH. Antimicrobial resistance determinants in imipenem-nonsusceptible Acinetobacter calcoaceticus-baumannii complex isolated

in Daejeon, Korea. Korean J Lab Med 2011;31:265-70.

- 30) Turton JF, Ward ME, Woodford N, Kaufmann ME, Pike R, Livermore DM, *et al*. The role of ISA*ba1* in expression of OXA carbapenemase genes in *Acineto-bacter baumannii*. FEMS Microbiol Lett 2006;258:72 -7.
- 31) Akers KS, Chaney C, Barsoumian A, Beckius M, Zera W, Yu X, *et al.* Aminoglycoside Resistance and Suscep-
- tibility Testing Errors in *Acinetobacter baumannii-calcoaceticus* Complex. J Clin Microbiol 2010;48:1132 -8.
- 32) Jung S, Yu JK, Shin SH, Park KG, Jekarl DW, Han K, *et al.* False susceptibility to amikacin by VITEK 2 in *Acinetobacter baumannii* harboring *armA*. Ann Clin Lab Sci 2010;40:167-71.