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Role of Gut Microbiota in Type 2 Diabetes Mellitus and Its
Complications: Novel Insights and Potential Intervention 
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Type 2 diabetes mellitus has become one of the fastest growing public health problems worldwide. The disease is believed to in-
volve a complex process involving genetic susceptibility and environmental factors. The human intestine harbors hundreds of tril-
lions of bacteria, as well as bacteriophage particles, viruses, fungi, and archaea, which constitute a complex and dynamic ecosys-
tem referred to as the gut microbiota. Increasing evidence has indicated changes in the gut microbiota composition or function in 
type 2 diabetic patients. An analysis of ‘dysbiosis’ enables the detection of alterations in the specific bacteria, clusters of bac-
teria, or bacterial functions associated with the occurrence of type 2 diabetes. These bacteria are involved predominantly in the 
control of inflammation and energy homeostasis. This review attempts to show that the gut microbiota are important factors for 
the occurrence of type 2 diabetes and are important for the treatment of gut microbiota dysbiosis through bariatric surgery, fecal 
microbiota transplantation, prebiotics, and probiotics. (Korean J Gastroenterol 2019;74:314-320)
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INTRODUCTION

Diabetes mellitus (DM) is a metabolic disorder of multiple 

etiologies characterized by chronic hyperglycemia, resulting 

from deficiencies in insulin secretion, insulin action, or both.1 

Type 2 DM (T2DM), which accounts for ∼90-95% of diabetes 

cases, includes individuals with insulin resistance (IR) and 

frequently have relative insulin deficiency.1,2 Type 1 diabetes, 

which accounts for 10% of all cases, is characterized by an 

absolute deficiency of insulin secretion caused by pancreatic 

β-cell destruction, usually resulting from autoimmune attack.3

The prevalence of T2DM is increasing rapidly, presumably 

because of the increasing incidence of obesity, reduced phys-

ical activity levels as countries become more industrialized, 

and aging of the population.4 According to International 

Diabetes Federation, DM Atlas 2015 report, more than 75% 

of people with DM live in low and middle income countries.5 

In Africa, DM is expected to have the highest prevalence in 

the future, and the regional prevalence of DM has been re-

ported to be 3.8% and is expected to increase to 4.3% in 

2030.6

The risk factors for DM include older age, obesity, family 

history of DM, prior history of gestational DM, impaired glu-

cose tolerance, physical inactivity, and race/ethnicity.7 The hu-

man gut microbiota is a complex ecosystem, which is a key 

component in the gastrointestinal tract (GIT) homeostasis. The 

involvement of the gut microbiota in immune diseases has 

recently been demonstrated, and a bacterial imbalance 
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(dysbiosis) has been associated with pathologies, such as in-

flammatory bowel disease and obesity.8-10

The gut microbiota is now considered a separate organ 

that is involved in regulating several physiological pathways 

by influencing different functions of the host.11 Among these 

regulatory actions, the effect of gut microbes on the energy 

metabolism and the driving force in the pathogenesis of meta-

bolic diseases, particularly obesity, is an important factor. 

Intestinal microbes have established a mutually beneficial link 

with their host by modulating the gut motility, intestinal barrier 

homeostasis to prevent potentially harmful bacteria from 

causing damage to the tissues, nutrient absorption, and fat 

distribution.12-14

Evidence shows that gut microbiota play a critical role in 

the development of obesity and T2DM.15-17 Studies have sug-

gested that obese people with IR can be characterized by 

an altered composition of gut microbiota, predominantly an 

elevated Firmicutes/Bacteroidetes ratio compared to healthy 

people.18,19

T2DM patients showed an altered intestinal microbiota, 

which is characterized by a decrease in the Bacteroidetes/ 

Firmicutes ratio and some functional bacteria (e.g., Bifidobacteria) 

with an increase in various opportunistic pathogens as well 

as some endotoxins-producing gram negative bacteria20-22 that 

alter the host energy metabolism through a specific poly-

saccharide utilization loci mechanism.22 Moreover, the accumu-

lation of gut-derived bacterial inflammatory molecules (e.g., 

lipopolysaccharide [LPS], peptidoglycans and flagellin) in the 

intestine is thought to hasten the inflammation in T2DM.23,24

The human intestine harbors hundreds of trillions of bac-

teria, as well as bacteriophage particles, viruses, fungi and 

archaea, which constitute a complex and dynamic ecosystem 

with which an individual lives in symbiosis throughout 

lifetime.25 Host genetics is believed to contribute to the profile 

of the gut microbiome, living conditions including dietary hab-

its, exposure to xenobiotic (such as drugs, toxicants, and addi-

tives) or stresses (such as surgery and infections) modulate 

the gut microbiota, occasionally for a limited period of time 

due to the resilience of this ecosystem.26 The gut microbiota 

characterizes an environmental factor of T2DM that was aban-

doned in the past because of the complexity of its analysis27 

and to a lack of understanding of the mechanisms underlying 

the interactions between gut microbes and host metabolism. 

Therefore, microbiota is comprised of microorganisms that not 

only monitor the body homeostasis but are also the driving 

force in the pathogenesis of metabolic disease. This review 

summarizes the current knowledge concerning the role of gut 

microbiota in T2DM pathogenesis and its related complica-

tions and provides novel insights and reliable information on 

the gut microbiota as a therapeutic role and potential inter-

vention strategy for the management of DM complications.

GUT MICROBIOTA ROLE IN DM 
PATHOGENESIS

Microorganisms in the GIT are referred to collectively as 

the gut microbiota. Qin et al.28 reported that the gut microbiota 

mainly encompasses four main phyla: Actinobacteria, 

Bacteroidetes, Firmicutes, and Proteobacteria. These are vital 

in the host metabolism and physiology regulation. Mika et 

al.29 discussed the microbiota during early childhood, which 

include Actinobacteria predominantly of the genus 

Bifidobacterium, that dominate the gut microbiota of breastfed 

infants. Through time, the microbiota gains a variety of new 

strains influenced by changes in diet and by disease, finally 

beginning to resemble the adult composition.29 In addition, 

Prakash et al.30 indicated that physical exercise could also 

modulate the gut microbiota.

The GIT is the primary site of interaction between the host 

immune system and microorganisms, both symbiotic and 

pathogenic.31 The gut microbiota act as a protective mediator 

during pathological conditions. The GI system represents one 

of the largest boundaries between the human internal micro-

environment and the external world. This system harbors tril-

lions of commensal bacteria existing in symbiosis with the 

host. Intestinal bacteria play a vital role in maintaining the 

systemic and intestinal immune and metabolic homeostasis 

because of their effects on nutrient absorption and immune 

development and function.32 Xu et al.33 reported that the com-

position of the gut microbial communities vary along the GIT 

between individuals as the dietary lifestyle and nutritional sta-

tus of the individual varies.

Many factors affect the gut microbiota composition and its 

structural functions, such as the intestinal architecture regu-

lation; gut permeability; immune system and barrier function; 

and protective and metabolic functions, such as breast feed-

ing, genetic background, antibiotics, diet, lifestyle, bacteria in 

the amniotic fluid, and delivery procedure.34 In addition to 
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digestion, the gut microbiota is important for maintaining the 

optimal state of host health, but it is also associated with 

the pathogenesis of numerous metabolic diseases, such as 

obesity,35,36 diabetes,22,37 chronic kidney disease,38,39 and 

atherosclerosis,40-42 and intestinal diseases, such as in-

flammatory bowel diseases43 and colorectal cancer.44,45 

Sabatino et al.46 reported that dysbiosis is associated with 

endotoxemia and chronic inflammation, with a disturbance 

of the intestinal barrier and the depletion of useful bacteria 

that lead to different complications.

The hosts and their microbiomes develop symbiotic rela-

tionships through interactive evolutionary processes that mu-

tually benefit both. Xie et al.47 reported that resident sym-

bionts regulate the host metabolism in many ways, integrating 

physiological homeostasis, immune-inflammatory signaling, 

and energy compliance. Carbohydrates are the primary sour-

ces of energy for both the human host and their microbes.

The gut microbiome can also act as an endocrine organ 

that translates the nutritional cues to hormone-like signals 

to control host physiology and diseases. The gut microbiome 

also interacts with the inflammatory, cardiovascular system 

via metabolic signaling pathways, which can lead to chronic 

systemic inflammation that is supported by different scholars. 

Brown et al.,48 Boulangé et al.,49 Kelly et al.,50 and Paras 

et al.51 indicated that the gut microbiome has interactions 

with systemic diseases, including obesity, diabetes, hepatop-

athy, rheumatoid arthritis, cancer, and cardiovascular 

diseases.

PATHOPHYSIOLOGY OF THE GUT 
MICROBIOTA ON DIABETICS

Over the past decade, there has been an increasing focus 

on gut microbiota as an important factor in the development 

of inflammatory disease in both humans and animals.52,53 

The GIT microbiome interrelates with the host nutrition, envi-

ronment, and host genetics for the development of obe-

sity-related metabolic disorders. Turnbaugh et al.54 reported 

that GIT microbial dysbiosis enhances energy harvesting and 

the expression of an obese phenotype. A change in the 

Bacteroidetes/Firmicutes ratio is associated with the higher 

expression of microbial genes that encode the enzymes re-

lated to carbohydrate metabolism. In this report, the micro-

biomes of obese persons differ from those of lean in-

dividuals and are characterized by a lower prevalence of 

phylum Bacteroidetes and a higher prevalence of phylum 

Firmicutes.54 The microbiome of the gut activates changes 

in the intestine tight junction proteins and alkaline phospha-

tase activity in the gut environment, which may increase the 

gut permeability and lead to the pathogenesis of IR.13

Cani et al.55 attempted to explain the mechanism of how 

the gut bacteria induces the inflammatory state of obesity 

via the activity of LPS, which is a component of gram-negative 

bacterial cell walls that can activate the inflammatory process 

by binding to the CD14 toll-like receptor-4 (TLR-4) complex 

at the surface of innate immune cells. LPS is a ligand of 

TLR-4.55 The importance of the TLR-4 pathways in metabolic 

disease was confirmed by the finding that a deletion of TLR-4 

prevented high-fat diet-induced IR.56 The Bacteroidetes/ 

Firmicutes ratio is an environmental factor that provides ge-

netic material for an increased capacity to harvest energy 

from the diet.57 Murphy et al.58 reported that the higher en-

ergy harvest promotes lipogenesis and increases the number 

and size of lipid droplets in the extra intestinal tissues. Most 

patients suffering from this metabolic syndrome have extreme 

fat accumulation, which suggests that the dyslipidemia is an 

important etiological factor of the syndrome.58

In the liver, butyrate can be metabolized into glutamate, 

glutamine, and acetoacetate. Acetoacetate is an important 

fuel source for intestinal cells. As an intestinal nutrient, buty-

rate stimulates the regeneration of intestinal cells to repair 

the intestinal mucosa, initiates the differentiation and apopto-

sis of normal intestinal cells, stimulates the production of in-

testinal mucin glycoprotein, and fortifies the defensive out-

come of the mucous layer. On the other hand, acetate can 

increase the total cholesterol, and propionate increases glu-

cose in the blood and reduces the hypercholesterolemia re-

sponse caused by acetate.59

Alterations in the microbiome fermentation profile change 

the gut permeability and energy homeostasis, which causes 

endotoxemia, low-grade inflammation, and obesity. Poor en-

ergy homeostasis leads to hyperglycemia and hyperlipidemia, 

which may lead to obesity and ultimately IR.60 T2DM in hu-

mans was reported to be co-related to a lower abundance 

of butyrate-producing microbes and an increased abundance 

of Lactobacillus species.22,37

The intestinal bacteria generate short chain fatty acids 

(SCFAs) by fermenting dietary carbohydrates that humans can-
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not digest themselves. Martin et al.61 reported that germ-free 

mice are devoid of SCFAs, indicating the importance of the 

gut microbiota for SCFA production in the intestine. The role 

of the GIT microbiome in the development of the metabolic 

syndrome that leads to DM pathogenesis has been described.60 

Microbial dysbiosis harms the intestinal wall integrity and al-

lows the translocation of toxins from the gut lumen to the 

systemic circulation. This endotoxemia leads to low-grade in-

flammation, autoimmunity, and oxidative stress that may lead 

to beta cell destruction or IR.60

COMPLICATIONS OF THE GUT 
MICROBIOTA DYSBIOSIS ON T2DM

The harmful effects of hyperglycemia are separated into 

micro-vascular complications (diabetic nephropathy, neuro-

pathy, and retinopathy) and macro-vascular complications 

(coronary artery disease, peripheral arterial disease, and 

stroke).62 A disturbance in the composition of the microbiota 

is strongly related to the incidence of inflammatory diseases, 

supporting the key role of a commensal microbiota in host 

homeostasis.63 Beli et al.64 reported that intermittent fasting 

prevents diabetic retinopathy in mice by restructuring the mi-

crobiota towards species producing tauroursodeoxycholate 

and subsequent retinal protection by activating the Takeda 

G-protein-coupled receptor 5. Moreover, mice on an inter-

mittent fasting regimen displayed significantly longer survival 

and a reduction in the diabetic retinopathy endpoints, includ-

ing acellular capillaries and leukocyte infiltration.64 Kanbay 

et al.65 and Mafra and Fouque66 reported that the gut micro-

biota interacts closely with the inflammatory, renal, car-

diovascular, and endocrine systems via metabolic, humoral, 

and neural signaling pathways. They also indicated that favor-

able modification of the composition and function of the gut 

microbiome represents an alluring therapeutic target for the 

prevention and treatment of chronic kidney disease.65,66 For 

example, a disruption of the normal physiology of the microbiota 

in the gut causes DM complications. New insights into the role 

of the gut microbiota in DM complications could lead to the 

development of therapeutic strategies using probiotics to pre-

vent and treat these metabolic disorders.34

GUT MICROBIOTA AS THERAPEUTIC 
ALTERNATIVES FOR DM

The gut microbial diversity, metalloproteins encoding gene 

expression in gut bacterial species, and glycemic index are 

improved during a metformin treatment for T2DM.67 Recently, 

metformin has been proposed as an adjuvant treatment for 

cancer,68 as a treatment for gestational diabetes, and for the 

prevention of T2DM in pre-diabetic individuals.69 Stades et 

al.70 suggested metformin, which is currently recommended 

by the practice guidelines as the first line therapy for the ma-

jority of patients with T2DM.

On the other hand, bariatric surgery alters the composition 

and diversity of the gut microbiota in humans, rats and mice 

significantly.71-73 An alteration of microbial dysbiosis by sup-

plementation with prebiotics improved bifidobacterium abun-

dance, which is significantly and positively associated with 

improved glucose tolerance and inflammation in prebiotic 

treated mice.74 Buchwald et al.75 reported that the clinical 

and laboratory manifestations of T2DM are improved in a ma-

jority of patients after bariatric surgery. Strategies for the 

treatment of gut microbiota dysbiosis through the supple-

mentation or ingestion of live beneficial bacteria (probiotics) 

have been suggested.76

The reintegration of intestinal microbiota by the mean of 

pre- or pro-biotic is a treatment alternative for T2DM 

patients.77 Probiotics are live, natural microorganisms that are 

given orally to deliberate health benefits to the host.78 The 

interest in managing the microbiota composition to increase 

the potentially beneficial aspects has increased. The prebiotic 

approach dictates that non-viable food components fer-

mented specifically in the colon by native bacteria have a 

positive value, e.g., Bifidobacteria and Lactobacilli.77,79

Fecal microbiota transplantation (FMT) also increased the 

survival rate of irradiated animals, raised the peripheral white 

blood cell counts, and improved the GIT function and in-

testinal epithelial integrity in irradiated male and female mice. 

Cui et al.80 reported that the transplantation of fecal micro-

biota from healthy mice to irradiated mice upgraded the GIT 

function and epithelial integrity of the small intestines in a 

sex-dependent fashion to ameliorate radiation-induced 

toxicity. Bang et al.,81 who examined FMT for refractory and 

recurrent Clostridium difficile infection (CDI), reported that FMT 

is a safe, well-tolerated, and highly effective treatment for re-
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fractory/recurrent CDIs. Moreover, the authors also expect 

that FMT will be used widely to treat refractory/recurrent CDI.

CONCLUSIONS AND RECOMMENDATIONS

Epidemiological studies indicated the association of the gut 

microbiota and T2DM. In many studies, an association be-

tween the disturbance of gut microbiota and an increased 

incidence rate of T2DM was indicated. The energy metabolism 

is of particular interest because it has been proposed to be 

a driving force in the pathogenesis of metabolic diseases, 

particularly obesity that in turn induces T2DM. On the other 

hand, the supplementation of prebiotics is an important 

mechanism for the rehabilitation of gut microbiota and for 

the harmony of body homeostasis.

In general, the early detection and screening of new onset 

T2DM patients for gut microbiota dysbiosis are recommended 

for the management of patients with T2DM. Understanding 

the mechanisms of the relationship between DM and the gut 

microbiota is important for improving long-term survival. 

Future research should examine the development of novel 

preventive and therapeutic strategies for gut microbiota alter-

ations among T2DM patients.
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