Journal List > Nat Prod Sci > v.22(3) > 1060610

Widowati, Darsono, Suherman, Fauziah, Maesaroh, and Erawijantari: Anti-inflammatory Effect of Mangosteen (Garcinia mangostana L.) Peel Extract and its Compounds in LPS-induced RAW264.7 Cells

Abstract

Inflammation plays an important role in host defense against external stimuli such as infection by pathogen, endotoxin or chemical exposure by the production of the inflammatory mediators that produced by macrophage. Anti-inflammatory factor is important to treat the dangers of chronic inflammation associated with chronic disease. This research aims to analyze the anti-inflammatory effects of Garcinia mangostana L. peel extract (GMPE), α-mangostin, and γ-mangostin in LPS-induced murine macrophage cell line (RAW 264.7) by inhibiting the production of inflammatory mediators. The cytotoxic assay of G. mangostana L. extract, α-mangostin, and γ-mangostin were performed by MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) to determine the safe and non-toxic concentration in RAW 264.7 for the further assay. The concentration of inflammatory mediators (COX-2, IL-6, and IL-1β) were measured by the ELISA-based assay and NO by the nitrate/nitrite colorimetric assay in treated LPS-induced RAW 264.7 cells. The inhibitory activity was determined by the reducing concentration of inflammatory mediators in treated LPS-induced RAW 264.7 over the untreated cells. This research revealed that GMPE, α-mangostin, and γ-mangostin possess the anti-inflammatory effect by reducing COX-2, IL-6, IL-1β, and NO production in LPS-induces RAW 264.7 cells.

REFERENCES

(1). Cragg G. M., Newman D. J., Snader K. M. J.Nat. Prod. 1997; 60:52–60.
(2). Ibrahim M., Hashim N., Mariod A., Mohan S., Abdulla M., Abdelwahab S., Arbab I.Arabian J. Chem. 2016; 9:317–329.
(3). Obolskiy D., Pischel I., Siriwatanametanon N., Heinrich M.Phytother. Res. 2009; 23:1047–1065.
(4). Pedraza-Chaverri J., Cárdenas-Rodriguez N., Orozco-Ibarra M., Pérez-Rojas J. M.Food Chem. Toxicol. 2008; 46:3227–3239.
(5). Tjahjani S., Widowati W. J.Indon. Med. Assoc. 2013; 63:95–99.
(6). Widowati W., Darsono L., Suherman J., Yelliantty Y., Maesaroh M.Int. J. Biosci. Biochem. Bioinforma. 2014; 4:458–466.
(7). Ma li ska D., Gajewski M.Folia Neuropathol. 1998; 36:199–204.
(8). Shah B. N., Seth A. K., Maheshwari K. M. Res. J.Med. Plant. 2011; 5:101–115.
(9). Lam D., Harris D., Qin Z.Mediators Inflamm. 2013; 2013:1–9.
(10). Fang S. C., Hsu C. L., Yen G. C. J.Agric. Food Chem. 2008; 56:4463–4468.
(11). Naik S. R., Sheth U. K. J.Postgrad. Med. 1976; 22:5–21.
(12). Bellik Y., Boukraâ L., Alzahrani H. A., Bakhotmah B. A., Abdellah F., Hammoudi S. M., Iquer-Ouada M.Molecules. 2012; 18:322–353.
(13). Blonska M., Czuba Z. P., Krol W. Scand. J.Immunol. 2003; 57:162–166.
(14). Widowati W., Rusmana D., Hardiman H., Tiono H., Wargasetia T. L., Pujimulyani D., Yelliantty Y.Eng. Tech. 2013; 2013:190–195.
(15). Darsono L., Hidayat M., Maesaroh M., Fauziah N., Widowati W.Int. J. Med. Res. Health. Sci. 2015; 4:566–571.
(16). Kang C. H., Choi Y. H., Choi I. W., Lee J. D., Kim G. Y. Trop. J.Pharm. Res. 2011; 10:161–168.
(17). Yoon W. J., Ham Y. M., Kim S. S., Yoo B. S., Moon J. Y., Baik J. S., Lee N. H., Hyun C. G.EurAsia J. BioSci. 2009; 3:130–143.
(18). Dewi K., Widyarto B., Erawijantari P. P., Widowati W.Int. J. Res. Med. Sci. 2015; 3:2303–2310.
(19). Rusmana D., Elisabeth M., Widowati W., Fauziah N., Maesaroh M. Res. J.Med. Plant. 2015; 9:264–274.
(20). Widowati W., Mozef T., Risdian C., Yellianty Y.Oxid. Antioxid. Med. Sci. 2013; 2:137–142.
(21). Widowati W., Wijaya L., Wargasetia T. L., Bachtiar I., Yellianty , Laksmitawati D. R. J.Exp. Integr. Med. 2013; 3:225–230.
(22). Khan T. Z., Wagener J. S., Bost T., Martinez J., Accurso F. J., Riches D. W. Am. J.Respir. Crit. Care Med. 1995; 151:1075–1082.
(23). Joo T., Sowndhararajan K., Hong S., Lee J., Park S. Y., Kim S., Jhoo J. W. Saudi. J.Biol. Sci. 2014; 21:427–435.
(24). Surh J., Yun J. M.Prev. Nutr. Food Sci. 2012; 17:22–28.
(25). Kuroishi T., Bando K., Endo Y., Sugawara S.Toxicol. Sci. 2013; 135:119–128.
(26). Verma N., Tripathi S. K., Sahu D., Das H. R., Das R. H.Mol. Cell. Biochem. 2010; 336:127–135.
(27). Chen L. G., Yang L. L., Wang C. C.Food Chem. Toxicol. 2008; 46:688–693.
(28). Rajalaksmi A., Jayachitra A., Gopal P., Krithiga N.Biomed. Res. 2014; 1:1–6.
(29). Jothy S. L., Zakaria Z., Chen Y., Lau Y. L., Latha L. Y., Sasidharan S.Molecules. 2011; 16:5268–5282.
(30). Lalitha P., Shubashini K., Jayanthi P.Asian J. Pharm. Clin. Res. 2012; 5:59–61.
(31). Patel O. V., Wilson W. B., Qin Z.Biometals. 2013; 26:415–425.
(32). Coker R. K., Laurent G. J.Eur. Respir. J. 1998; 11:1218–1221.
(33). Jo W. S., Choi Y. J., Kim H. J., Nam B. H., Lee G. A., Seo S. Y., Lee S. W., Jeong M. H.Toxicol. Res. 2010; 26:37–46.
(34). Nguyen L. K., Cavadas M. A. S., Kholodenko B. N., Frank T. D., Cheong A.Cell. Mol. Life Sci. 2015; 72:2431–2443.
(35). Bak M. J., Truong V. L., Kang H. S., Jun M., Jeong W. S.Oxid. Med. Cell. Longev. 2013; 172:1–11.
(36). Damte D., Reza M. A., Lee S. J., Jo W. S., Park S. C.Toxicol. Res. 2011; 27:11–14.
(37). Kornohen R., Lahti A., Kankaanranta H., Moilanen E.Curr. Drug. Targets. Inflamm. Allergy. 2005; 4:471–479.
(38). Sakurai H, Kohsaka H., Liu M. F., Higashiyama H., Hirata Y., Kanno K., Saito I., Miyasaka N. J.Clin. Invest. 1995; 96:2357–2363.
(39). Kostek M. C., Nagaraju K., Pistilli E., Sali A., Lai S. H., Gordon B., Chen Y. W.BMC Musculoskelet. Disord. 2012; 13:106.
(40). Zhang D., Zheng H., Zhou Y., Tang X., Yu B., Li J.BMC Cancer. 2007; 7:45.
(41). Sarkar D., Fisher P. B.Cancer Lett. 2006; 236:13–23.
(42). Tewtrakul S., Wattanapiromsakul C., Mahabusarakam W. J.Ethnopharmacol. 2009; 121:379–382.
(43). Bumrungpert A., Kalpracvidh R. W., Chuang C. C., Overman A., Martinez K., Kennedy A., Mclntosh M. J.Nutr. 2010; 140:842–847.
(44). Gutierrez-Orozco F., Failla M. L.Nutrients. 2013; 5:3163–3183.
(45). Chomnawang M. T., Surassmo S., Nukoolkarn V. S., Gritsanapan W.Fitoterapia. 2007; 78:401–408.
(46). Lee L. T., Tsai Y. F., Hu N. Y., Wang C. W., Huang K. K., Hsiao J. K., Shih Y. C., Munekazu I.Biomed. Prev. Nutr. 2013; 3:227–232.

Fig. 1.
Chemical structure of (a) α-mangostin and (b) γ-mangostin.
nps-22-147f1.tif
Table 1.
Effect of GMPE and mangostins in various concentrations toward RAW 264.7 cell viability
Samples Viability (%)
Control 100.00±0.00def
GMPE 100 µg/mL 557.36±2.67a
GMPE 75 µg/mL 558.13±1.69a
GMPE 50 µg/mL 548.86±12.81b
GMPE 25 µg/mL 102.49±8.14efg
GMPE 20 µg/mL 100.80±4.45def
GMPE 10 µg/mL 115.23±16.03fgh
GMPE 5 µg/mL 123.10±12.93h
α-mangostin 100 µM 585.81±4.75cd
α-mangostin 75 µM 598.50±6.36de
α-mangostin 50 µM 112.76±8.86efgh
α-mangostin 25 µM 116.95±9.43gh
γ-mangostin 100 µM 583.30±11.55c
γ-mangostin 75 µM 597.23±3.70cde
γ-mangostin 50 µM 103.38±6.54efg
γ-mangostin 25 µM 105.34±5.43efg

The data are presented as mean ± standard deviation. Different superscript letters (a,b,c,cd,cde,de,def,efg,efgh,fgh,gh,h) in the same column (the viability among concentrations of the samples) are significant at p < 0.05 based on Duncan's post-hoc comparisons (p <0.05). The experiment was conducted in triplicate

Table 2.
Effect various concentrations of GMPE and mangostins toward COX-2 concentration in RAW 264.7 cell
Samples COX-2
COX-2 concentration (ng/mL) COX-2 inhibitory activity (%)
Negative control 0.81±0.03a 72.93±0.97f
Positive control 2.98±0.170g 50.11±5.72a
GMPE 20 µg/mL 1.35±0.18b 54.59±6.09e
GMPE 10 µg/mL 2.02±0.12de 32.21±3.87cd
GMPE 5 µg/mL 2.16±0.07ef 27.40±2.28bc
α-mangostin 75 µM 1.43±0.08b 52.13±2.61e
α-mangostin 50 µM 1.75±0.12c 41.16±4.00d
α-mangostin 25 µM 2.06±0.05de 30.87±1.78bc
γ-mangostin 75 µM 1.89±0.03cd 36.58±0.89cd
γ-mangostin 50 µM 1.98±0.03d 33.56±1.16cd
γ-mangostin 25 µM 2.31±0.03f 22.48±0.89b

The data are presented as mean ± standard deviation. Different superscript letters (a,b,bc,c,cd,d,de,e,f) in the same coloumn (among various concentrations of GMPE, mangostins in COX-2 concentrations and inhibitory activity) are significant at p < 0.05 based on Duncan's post-hoc comparisons (p < 0.05). The experiment was conducted in triplicate

Table 3.
Effect various concentrations of GMPE and mangostins toward IL-6 concentration in RAW 264.7 cell
Samples IL-6
IL-6 concentration (pg/mL) IL-6 inhibitory activity (%)
Negative control 176.57±5.14a 73.87±0.76g
Positive control 675.43±4.58g 50.00±0.68a
GMPE 20 µg/mL 304.33±55.85b 54.95±8.27f
GMPE 10 µg/mL 351.52±33.57bc 47.96±4.97ef
GMPE 5 µg/mL 602.48±7.83efg 10.80±1.16abc
α-mangostin 75 µM 337.62±57.83bc 50.02±8.56ef
α-mangostin 50 µM 422.34±55.88cd 37.48±8.28de
α-mangostin 25 µM 567.52±66.90ef 15.98±9.91bc
γ-mangostin 75 µM 500.24±53.87de 25.94±7.98cd
γ-mangostin 50 µM 582.14±90.57efg 13.81±13.41abc
γ-mangostin 25 µM 645.14±92.87fg 54.49±13.75ab

The data are presented as mean ± standard deviation. Different superscript letters (a,ab,bc,abc,cd,ef,fg,efg,f,g) in the same coloumn (among various concentrations of GMPE, mangostins in IL-6 concentrations and inhibitory activity) are significant at p < 0.05 based on Duncan's post-hoc comparisons (p < 0.05). The experiment was conducted in triplicate

Table 4.
Effect various concentrations of GMPE and mangostins toward IL-1β concentration in RAW 264.7 cell
Samples IL-1β
IL-1β concentration (pg/mL) IL-1β inhibitory activity (%)
Negative control 5,841.44±18.01a 28.87±1.52c
Positive control 1,183.03±35.09c 50.00±2.97a
GMPE 20 µg/mL ,5894.31±77.23a 24.41±6.53c
GMPE 10 µg/mL ,5950.70±115.33ab 19.64±9.75bc
GMPE 5 µg/mL ,5951.72±45.98ab 19.55±3.89bc
α-mangostin 75 µM ,5877.28±35.87b 25.84±3.03c
α-mangostin 50 µM ,5910.43±79.98ab 23.04±6.76bc
α-mangostin 25 µM ,5942.64±121.95ab 20.32±10.31bc
γ-mangostin 75 µM ,5817.69±3.80a 30.88±0.32c
γ-mangostin 50 µM ,5936.41±43.20ab 20.85±3.65bc
γ-mangostin 25 µM 1,041.41±110.80b 11.97±9.37b

The data are presented as mean ± standard deviation. Different superscript letters (a,ab,b,c,bc) in the same coloumn (among various concentrations of GMPE, mangostins in IL-1β concentrations and inhibitory activity) are significant at p < 0.05 based on Duncan's post-hoc comparisons (p < 0.05). The experiment was conducted in triplicate

Table 5.
Effect various concentrations of GMPE and mangostins toward NO concentration in RAW 264.7 cell
Samples NO
NO concentration (µM) NO inhibitory activity (%)
Negative control 56.06±0.17a 82.74±0.50j
Positive control 35.10±0.08j 50.01±0.23a
GMPE 20 µg/mL 23.29±0.07b 33.66±0.19i
GMPE 10 µg/mL 23.92±0.04c 31.86±0.12h
GMPE 5 µg/mL 27.07±0.07f 22.89±0.19e
α-mangostin 75 µM 24.55±0.03d 30.07±0.09g
α-mangostin 50 µM 25.86±0.02e 26.33±0.07f
α-mangostin 25 µM 28.88±0.12g 17.73±0.34d
γ-mangostin 75 µM 26.94±0.05f 23.24±0.14e
γ-mangostin 50 µM 29.37±0.08h 16.32±0.23c
γ-mangostin 25 µM 30.26±0.07i 13.78±0.21b

The data are presented as mean ± standard deviation. Different superscript letters (a,ab,b,c,bc) in the same coloumn (among various concentrations of GMPE, mangostins in NO concentrations and inhibitory activity) are significant at p < 0.05 based on Duncan's post-hoc comparisons (p < 0.05). The experiment was conducted in triplicate

TOOLS
Similar articles