
I. Introduction

Diabetes mellitus (DM) is known as the most prevalent 
metabolic disorder caused by the inability of the pancreas to 
produce insulin sufficiently or the body's lack of ability to 
use insulin effectively. There are various factors that cause 
diabetes, such as diet, lifestyle, and genetics [1-6]. Despite 
healthcare advances, the prevalence of diabetes is still grow-
ing, and currently, more than 200 million people worldwide 
are affected by DM [7-9]. The number of patients with dia-
betes, estimated by the World Health Organization (WHO) 
in 2004, was expected to rise from 171 million in 2000 to 
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366 million by 2030 [10-12]; however, the recent estimation 
by the International Diabetes Federation (IDF) indicates 
that the number of diabetic patients will increase to 552 mil-
lion by 2030 [5,13,14]. DM can cause many complications, 
such as damage to the heart, blood vessels, eyes, kidneys, 
and nerves [5,15]. As a serious health concern, DM has been 
declared a global epidemic by the WHO due to its rapidly 
increasing incidence. Nowadays, many multidisciplinary 
studies are being done to support the prevention and treat-
ment of DM, and it has become a worldwide research prior-
ity [5,16]. Thus, the surveillance, prevention, and control of 
diabetes and its complications using two or more disciplines 
are becoming increasingly important [3,5,17] As each disci-
pline has its own potential and added value, the combination 
of them might be a solution for DM [18].
 Artificial intelligence (AI) has been applied in various 
medical fields for many purposes. Actually, AI is defined 
as “a field of science and engineering concerned with the 
computational understanding of what is commonly called 
intelligent behavior with the creation of artifacts that exhibit 
such behavior” [19-23]. AI algorithms have the potential 
to deliver better care especially in combination with recent 
technologies [24]. Because modern medicine has faced 
challenges regarding a large amount of data acquisition, 
analysis, and the application of the obtained knowledge to 
solving complex clinical problems, it is necessary to use AI 
capabilities for these purposes [19,21,25]. AI is composed 
of various intelligent algorithms and techniques, such as 
machine learning (ML), natural language processing (NLP), 
robotics, fuzzy logic (FL), expert systems (ES), knowledge 
base (KB), and the mix of two or more methods (multi-

methods) [21,23]. ML methods are common with the ability 
of conducting these two tasks including either prediction 
(when the outcome variable is a value) or classification (when 
the outcome variable is a class) [26]. These tasks may also 
be applied in DM care for disease probability prediction, 
screening, diagnosis, treatment guidance, and complica-
tion management [19,21,27,28]. Several ML methods as a 
subcategory of AI have been applied to fulfill these clinical 
purposes using their own specific capabilities [29,30]. In de-
tail, they include many techniques, such as artificial neural 
networks (ANN), support vector machine (SVM), decision 
tree (DT), and naive Bayes (NB), for prediction or classifica-
tion of clinical outcomes. In routine medical practice, AI in 
medicine has been linked to the development of programs 
to help physicians in formulating diagnoses, making thera-
peutic decisions, and predicting the critical status, such as 
an emergency or worsening of a patient’s condition, in their 
everyday duties [17,22,24,29]. Considering the importance 
of type 2 diabetes mellitus (T2DM) care as well as assum-
ing that AI applications for diabetes care are effective tools, 
also due to a lack of studies to investigate the application of 
AI for T2DM care, this study reviewed AI algorithms and 
techniques for T2DM care with a specific focus on machine 
learning methods.

II. Methods

1. Research Question 
This study aimed to identify AI applications in T2DM care. 
We reviewed papers that have reported the methods and 
techniques of AI in T2DM care. The study population com-

Table 1. Search strategy of the research

Search strategy

Database PubMed, Embase, ISI Web of Science (September 10, 2012 to September 10, 2017)
Limits Language (only resources in English), Species (studies on humans)
Data September 10, 2017 to October 10, 2017
   #1 “Diabetes Mellitus, Adult-Onset” OR “Diabetes Mellitus, Ketosis-Resistant” OR “Diabetes Mellitus, Maturity-Onset” 

OR “Diabetes Mellitus, Non-Insulin Dependent” OR “Diabetes Mellitus, Non-Insulin-Dependent” OR “Diabetes 
Mellitus, Noninsulin Dependent” OR “Diabetes Mellitus, Noninsulin-Dependent Diabetes Mellitus, Slow-Onset” 
OR “Diabetes Mellitus, Stable” OR “Diabetes Mellitus, Type II” OR “MODY” OR “Maturity-Onset Diabetes” OR 
“Maturity-Onset Diabetes Mellitus” OR “NIDDM” OR “Noninsulin-Dependent Diabetes Mellitus” OR “Type 2 
Diabetes” OR “Type 2 Diabetes Mellitus”

   #2 “Artificial Intelligence” OR “Computer Heuristics” OR “Expert Systems” OR “Fuzzy Logic” OR “Knowledge Bases” 
OR “Machine Learning” OR “Natural Language Processing” OR “Neural Networks” OR “Robotics” OR “Prediction 
Model”

Search #1 AND #2
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prised people with T2DM, the intervention was using AI for 
health-related applications in the area of T2DM; the com-
parison was excluded; outcomes were the identification of 
various methods and techniques using AI in T2DM care.

1) Search strategy 
This study was a review that was conducted in 2018. Search-
es were done in scientific databases, including PubMed, Web 
of Science, and Embase, based on the combination of related 
keywords based on mesh terms (Table 1). All steps of search-
es were done based on the Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses (PRISMA) checklist. 
The searches were done by two researchers independently to 
prevent possible bias. The search results referred to a third 
person who reviewed contradictions, and made decisions in 
cases where there were disagreements. 
 The searches were limited to papers published in the Eng-
lish language and a 5-year period of time (2012–2017).

2) Inclusion and exclusion criteria
The inclusion criteria were original articles, clinical trials, 
and meta-analysis reports. Also, those works that had model 

performance evaluation, such as accuracy, sensitivity, speci-
ficity, and area under the curve (AUC) were included. Exclu-
sion criteria were non-English articles, unavailable full text, 
other study types except clinical trial, and meta-analysis. 
Other article types included review articles, letters to editors, 
short communications, etc. Also conference articles were ex-
cluded. Non-human-study papers and papers without model 
performance evaluation criteria were removed.

3) Selection process
The process of article selection was based on PRISMA (Fig-
ure 1). Finally, 31 papers were selected. All steps in the selec-
tion and evaluation of the quality of the papers were done 
by two researchers. Cases of disagreement were referred to a 
third person to make the final decision. The data extraction 
form had eight categories, including the author’s name, pub-
lication year, AI methods applied, algorithms used, health 
applications for T2DM, clinical variables, optimal algo-
rithms, and the best performance of the model based on the 
related indexes. After data extraction, we summarized and 
reported the findings in tables and figures according to the 
objectives of the study.
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Figure 1. Process of PRISMA for data collection.
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III. Results

According to the study search terms, 31 papers were re-
viewed in details. Table 2 showed the breakdown of articles 
categories. Most of the papers (n = 9) were published in 
2016. Table 2 presents information about the selected stud-
ies.
 In this study a variety of variables were considered, as 
shown in Table 2. They comprised the following: (1) AI 
methods (ML, KB, ANN, FL, ES, NLP, and robotic); (2) in 
case that the applied AI method was ML, we analyzed the 
algorithms of ML (ANN, SVM, NB, etc.); (3) we also studied 
the AI applications of health aspects for T2DM (risk factor 
analysis, screening and diagnosis, treatment, nephropathy, 
neuropathy, diabetic foot, etc.); (4) clinical variables were 
clinical features which were applied to be analyzed by using 
AI methods; and (5) the best performance values of math-
ematics models were listed and compared. For this purpose, 
we only studied those papers with reported performance 

values as inclusion criteria.
 As shown in Figure 2, 71% of papers applied ML, 23% used 
multiple methods, and just 6% of them used the KB method. 
Results show other methods, such as FL, ES, NLP and ro-
botic, have not been applied to T2DM separately.
 Table 3 shows the frequency of AI methods used when 
multiple methods were used. In 16 articles, two or more AI 
methods were used for T2DM concurrently. ML (n = 5) was 
the most frequently used method together with other AI 
techniques. 
 Figure 3 shows the frequency of algorithms applied specifi-
cally in ML. In 51 cases, ML algorithms were used for T2DM 
care. As seen in Figure 3, SVM was the most frequently used 
algorithm. NB was the second most commonly used algo-
rithm. Moreover, the results show that logistic regression, 
which is one of the most famous statistical algorithms was 
applied in 13 cases in the reviewed research.
 Figure 4 shows the frequency of AI applications to health 
aspects of T2DM. The results showed that the most common 

ML
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Figure 2.  Frequency (percentage) of artificial intelligence meth-
ods used in type 2 diabetes mellitus. ML: machine 
learning, FL: fuzzy logic, ES: expert system, KB: knowl-
edge base, NLP: natural language processing.

Table 3. Frequency of AI methods when multiple methods were 
applied

AI methods uses in multi methods Frequency (%)

Machine learning 5 (31.25)
Fuzzy logic 4 (25.00)
Expert systems 4 (25.00)
Knowledge base systems 3 (18.75)
Total 16 (100)

AI: artificial intelligence.

Risk factor analysis
Screening and diagnostic
Treatment
Complications diagnosis
Other45%10%

26%

13%
6%

Figure 4.  Frequency of artificial intelligence applications for 
health aspects of type 2 diabetes mellitus.

Figure 3.  Frequency of machine learning algorithms used for 
type 2 diabetes mellitus care. SVM: support vector ma-
chine, ANN: artificial neural network, NB: naïve Bayes, 
DT: decision tree, RF: random forest, CART: classifica-
tion and regression trees,  KNN: k-nearest neighbor.
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medical application of AI for T2DM care was in screening 
and diagnosis, with a 45% frequency. Then, complication 
diagnosis was the next most frequent application of AI (26%).

IV. Discussion

According to the results, the main AI applications are related 
to ML use for knowledge production and model develop-
ment, which has been widely used in many healthcare ap-
plications [9]. It is a key technology to transform biomedical 
datasets into actionable knowledge that is useful for the ad-
vancement of clinical practice and healthcare through rules 
developed by medical experts, statistical methods, and ML 
algorithms with the ability of self-improvement [9,30,61]. 
Actually, ML methods often achieve high accuracy due to 
looser assumptions regarding data distribution in compari-
son to other methods [8,10,11,17,30]. The results of this 
study indicate that main clinical variables in running and 
designing ML models and systems for type 2 diabetes care, 
were body mass index (BMI), fasting blood sugar (FBS), 
blood pressure (systolic and diastolic), HbA1c, triglycerides 
(TG), low-density lipoprotein (LDL), high-density lipopro-
tein (HDL), family history, and demographic variables (Table 
2). This study supports the evidence from previous reports 
that have identified some important clinical variables that 
are used in data mining methods in diabetes research [29]. 
 According to the results of this study, models based on 
ML algorithms in T2DM care have been mainly focused on 
pre-diabetes screening and diagnostic outcomes, risk factor 
analysis, treatment, and complication categorization. That 
is, ML algorithms have been mainly used to classify diabetic 
prone cases for pre-diabetes, diabetes, and advanced diabetes 
based on the patients’ HbA1c level. They are used to ana-
lyze T2DM risk factors in various populations to determine 
which categories of patients may require more attention to 
prevent (1) disease occurrence, (2) progress to worse stages, 
and (3) advancing to complications [29,51]. This study re-
vealed that there has been limited research on estimating the 
probability of these outcomes rather than classifying patients 
based on their disease outcomes in the given three catego-
ries. According to previous classification experiments, SVM, 
which has been widely used for diabetic data analysis has 
outperformed other algorithms. This may be attributed to its 
capability to apply hyperlinks to separate classes in a three-
dimensional space [61,62]. Also, NB, which has been used in 
several cases for the purpose of determining diabetes-related 
outcomes is usually applied for prediction task only for small 
datasets [29]. Using this algorithm, the probability of spe-

cific outcome occurrence, such as pre-diabetes occurrence 
probability, can be calculated; while by using the algorithm 
of NB the probability of specific outcome occurrence such as 
pre-diabetes occurrence can be calculated, there is no report 
of conducting this work in practice. Generally, ANN, and 
DT in the frame of C5, CART, and RF have been applied for 
both classification and prediction purposes [63,64]; how-
ever, there has been no report of applying these algorithms 
for diabetes-related outcome prediction using big data, even 
with a satisfactory and generalization level.
 The performance of AI techniques and its models applied 
to T2DM care are shown in the eighth and ninth columns of 
Table 2. Regarding the best performance of ML techniques, 
it is obvious that there are no particular best techniques for 
every condition. For example, decision trees that classify 
cases by sorting them based on feature values show varying 
performance in different studies. It has been reported that 
there is a relationship between the performance of applied 
techniques and the following subjects, including the type 
of issues analyzed, the type of input data (discrete or con-
tinuous), and finally, the emerging overlapping in outcome 
classes [65-67].
 In the area of AI application for T2DM care, there have 
been some scattered observational studies which need more 
trials to be applied in routine care. For example, a study 
presented a patient-level sequential modeling approach to 
implementing personalized prescription. In this approach, 
previous records of a patient were applied to the prediction 
of future prescriptions to improve accuracy. The effective-
ness of this method was tested by implementing prediction 
models based on recurrent neural networks (RNN) [68]. 
Another study performed a literature review of efforts to use 
artificial intelligence techniques for diabetes management. 
The results demonstrate that AI methods are not only suit-
able for use in clinical practice but also self-management of 
diabetes. Also, these methods have the potential for improv-
ing patients’ quality of life [24]. The present study focused 
on ML techniques to predict T2DM outcomes. The frequen-
cies of various types of applications, as well as health aspects 
of T2DM care, were studied. Other AI methods may provide 
additional powerful tools to support diabetes care.
 Furthermore, an experiment used the Q-learning algo-
rithm in the area of reinforcement learning of AI to develop 
personalized treatment plans based on glucose level to pro-
vide different basal dose levels automatically for the treat-
ment of each diabetes patient. This approach is a model free 
of reinforcement learning technique, which is used to deter-
mine the optimal treatment policy from a patient’s treatment 
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history and related laboratory results. The results reveal that 
this approach is an effective tool for personalized diabetes 
management [69].
 As seen in Table 2, there have been several reports of 
multiple-method applications in T2DM care. Most of the 
ML algorithms have been used with FL, KB, and ES to cre-
ate multiple-method-based systems for users in the area of 
diabetes control, including patients, physicians/nurses, man-
agers, and policymakers. In the frame of these systems, ML 
applications for T2DM data analysis are used for knowledge 
production to enrich the system’s knowledge base incremen-
tally. They use diabetes patients’ real data collected in a data 
repository over time to create a rich knowledge base. The 
knowledge base might also include experts’ knowledge. The 
fuzzy method can either use real data or experts’ knowledge 
to enrich the knowledge base [70]. 
 Similarly, robotics technologies learn from humans and 
from the environment [71]. Despite many applications of ML 
in the framework of an indirect ES or direct ES, according to 
our inclusion criteria, there have been no reports of studies 
using robotics and NLP technology to support T2DM care 
that have evaluated model performance at the same time.
 There have been reports on other areas of DM research us-
ing robotics, such as using a robot for pancreas transplanta-
tion, pancreatectomy surgery, and monitoring and training 
to improve the care of elderly with dementia [72-74]. Also, 
the management of type 1 diabetes in children is improved 
by robots. Robots can keep track of individuals’ performance 
and can offer tailored lessons to enhance learning [75]. 
 One of the most interesting findings of this study was that 
AI has often shown success in the prediction of related issues 
in T2DM. For example, in treatment, a study predicted DPP-
IV inhibitors with ML approaches with 87.2% accuracy [31]. 
In screening and diagnosis, another investigation predicted 
hypoglycemia using ML models with 97% accuracy [40]. In 
the diagnosis of complications (nephropathy), a study pre-
dicted microalbuminuria using multiple AI methods (ML, 
FL, ES) with 92% accuracy [45]. In risk factor analysis, an-
other study predicted the risk of type 2 diabetes, hyperten-
sion, and comorbidity using ML models with 85% accuracy 
[58].
 The results of this study may support researchers and de-
velopers of AI-based systems and models in the care of pa-
tients with T2DM in choosing methods, models, algorithms, 
and efficient and optimal systems. It is suggested that ML, 
specifically SVM and NB, algorithms are considered by de-
signers and developers of patterns and systems. The present 
study also identified the most important clinical variables 

used in the design and development of artificial intelligence 
systems and models for the care of patients with T2DM. This 
can provide insights for choosing key variables in T2DM, 
and in data analysis and system development using AI-based 
methods.
 One of the limitations of this study was the number of da-
tabases that were reviewed. In this work, PubMed, Embase, 
and Web of Science were reviewed. In fact, the focus of this 
review was clinical databases; therefore, more technical da-
tabases, such as IEEE and Scopus should be considered for 
further reviews. Future investigation should focus on the ef-
fect of AI on clinical outcomes and its impact. 
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