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  Excessive extracellular matrix (ECM) accumulation is the main feature of chronic renal disease 
including diabetic nephropathy. Plasminogen activator inhibitor (PAI)-1 is known to play an important 
role in renal ECM accumulation in part through suppression of plasmin generation and matrix 
metalloproteinase (MMP) activation. The present study examined the effect of PAI-1 antisense 
oligodeoxynucleotide (ODN) on fibronectin upregulation and plasmin/MMP suppression in primary 
mesangial cells cultured under high glucose (HG) or transforming growth factor (TGF)-β1, major 
mediators of diabetic renal ECM accumulation. Growth arrested and synchronized rat primary 
mesangial cells were transfected with 1μM phosphorothioate-modified antisense or control mis-match 
ODN for 24 hours with cationic liposome and then stimulated with 30 mM D-glucose or 2 ng/ml TGF-β
1. PAI-1 or fibronectin protein was measured by Western blot analysis. Plasmin activity was 
determined using a synthetic fluorometric plasmin substrate and MMP-2 activity analyzed using 
zymography. HG and TGF-β1 significantly increased PAI-1 and fibronectin protein expression as well 
as decreased plasmin and MMP-2 activity. Transient transfection of mesangial cells with PAI-1 
antisense ODN, but not mis-match ODN, effectively reversed basal as well as HG- and TGF-β
1-induced suppression of plasmin and MMP-2 activity. Both basal and upregulated fibronectin secretion 
were also inhibited by PAI-1 antisense ODN. These data confirm that PAI-1 plays an important role 
in ECM accumulation in diabetic mesangium through suppression of protease activity and suggest 
that PAI-1 antisense ODN would be an effective therapeutic strategy for prevention of renal fibrosis 
including diabetic nephropathy.
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INTRODUCTION

  Excessive accumulation of extracellular matrix (ECM) in 
the glomerular mesangium is the major pathologic feature 
in chronic kidney disease including diabetic nephropathy 
[1]. ECM accumulation results from both increased syn-
thesis and decreased degradation of ECM components [2]. 
The plasminogen activator (PA)/plasmin/PA inhibitor (PAI) 
system is thought to play an important role in ECM 
degradation. Plasmin degrades matrix proteins directly and 
indirectly through activation of other proteinases such as 
matrix metalloproteinases (MMP) [3-5]. 
  Plasmin, a serine proteinase, is produced by two 
well-characterized PAs which are urokinase PA (uPA) and 
tissue kinase PA (tPA) [6] and this process is regulated by 
PAI, a specific inhibitor of PAs. PAI-1 is a 50 kD single 
chain glycoprotein, upregulated by various stimuli includ-

ing transforming growth factor-β1 (TGF-β1), and activated 
and stabilized by binding to vitronectin [7-10]. In the nor-
mal human kidney, PAI-1 is undetectable in the basal level 
but the expression is upregulated in several acute and 
chronic kidney diseases [9,10] including diabetic nephrop-
athy [11]. A functional role of PAI-1 in renal diseases was 
established mainly by in vivo studies using PAI-1 knock 
out (KO) mice; renal fibrosis in crescentic glomeruloneph-
ritis [12], unilateral ureteral obstruction [13], and diabetic 
nephropathy [14-16] was attenuated in PAI-1 KO mice. In 
addition, mutant, non-inhibitory human PAI-1 peptide de-
creased proteinuria as well as fibrosis in experimental renal 
injury models [17-19]. 
  Antisense oligodeoxynucleotide (ODN) technique has 
been developed as a promising strategy to modulate tar-
geted gene deletion in vivo as well as in vitro [20-22]. 
Antisense ODN has thus become an attractive new ther-
apeutic agent to inhibit disease-related target gene ex-
pression, although delivery efficiency of antisense ODN to 
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target tissue remains to be improved. 
  Although PAI-1 is known to play an important role in 
renal ECM accumulation in part through suppression of 
plasmin generation and MMP activation, the experimental 
approach for PAI-1 inhibition has been limited in PAI-1 KO 
mice. The present study, therefore, examined the effect of 
PAI-1 antisense ODN on fibronectin accumulation and the 
activity of plasmin and MMP in primary mesangial cells 
cultured under high glucose (HG) or TGF-β1, which are 
both major mediators of diabetic renal ECM accumulation.

METHODS

  All chemicals and tissue culture plates were obtained 
from Sigma-Aldrich Company (St. Louis, MO, USA) and 
Becton Dickinson Labware (Lincoln Park, NJ, USA), re-
spectively, unless otherwise stated.

Mesangial cell culture 

  Primary rat mesangial cells were isolated from kidneys 
of 100 to 150 g male Sprague-Dawley rats by a conventional 
sieving method and characterized as described previously 
[23]. Cells (between the 8th and 12th passages) were cul-
tured in Dulbecco’s modified Eagle’s medium (DMEM; 
GIBCO BRL., Gaithersberg, MD, USA) containing 20% fe-
tal bovine serum (FBS, GIBCO BRL.), 100 U/ml penicillin, 
100μg/ml streptomycin, 44 mM NaHCO3 and 14 mM N- 
hydroxy-ethylpiperazine-N’-2-ethane sulfonic acid (HEPES). 

Transfection with PAI-1 antisense ODN

  The day before transfection, rat mesangial cells were 
seeded and the transfection of PAI-1 antisense or mis- 
match ODN was carried out using LipofectamineTM Reagent 
(Invitrogen, Carlsbad, CA, USA) following the manu-
facturer’s instructions with 1μM phosphorothioate modi-
fied ODN (Bioneer, Seoul, Korea). The antisense and 
mis-match sense ODN sequences were: PAI-1 antisense 
ODN 5’-GAG GGC TGA AGA CAT C-3’, PAI-1 mis-match 
sense ODN 5’-GAG CGC TGA TGA CAT C-3’. After 24 hour 
transfection, cells were incubated with serum free media 
for an additional 24 hours to stop transfection and were 
then stimulated with 5.6 mM D-glucose, 30 mM D-glucose, 
or 2 ng/ml of TGF-β1 for 48 hours.

Immunoblot analysis 

  Immunoblot analysis was performed to determine se-
creted PAI-1 and fibronectin in the culture media. After 
measuring the concentration of cellular protein using 
Bio-Rad protein assay kit, aliquots of media corresponding 
to the same cellular protein were mixed with sample buffer 
containing sodium dodecyl sulfate (SDS) and β-mercaptoe-
thanol and heated at 95oC for 5 minutes. Samples were ap-
plied to 10% SDS polyacrylamide gel (PAGE) for PAI-1 and 
6% SDS PAGE for fibronectin and electrophoresed. After 
electrophoresis, the proteins were transferred onto nitro-
cellulose membranes. Membranes were incubated with rab-
bit anti-rat PAI-1 (American Diagnostica, Greenwich, CT, 
USA; 1：1,000), washed, and incubated with perox-
idase-conjugated secondary antibody. For fibronectin, rab-
bit anti-human fibronectin that combined primary and sec-
ondary antibodies (DAKO A/S, Glostrup, Denmark; 1：

2,000) was used. After washing, the membranes were vi-
sualized with enhanced chemiluminescence (Amersham 
Life Science). Bands were quantified by TINA 2.0 Image 
program.

Measurement of plasmin activity

  Plasmin activity in the culture media was determined as 
previously described [24] using a synthetic fluorometric 
plasmin substrate methoxysuccinyl-L-Ala-L-Phe-L-Lys-7- 
amido-4-methyl-coumarin. 25μl of 5 fold-concentrated me-
dia was mixed with 31.2μl of dH2O and 112.5μl of 0.2 
M Tris-HCl, pH 7.4, containing 0.2 M NaCl. Each reaction 
was initiated by adding 56.3μl of the substrate in water 
(final concentration 5.0μM). Immediately after the addi-
tion of substrate, each tube was mixed well, transferred to 
a 37oC water bath, and incubated for 40 minutes. After the 
incubation period, each reaction was stopped by the addi-
tion of 25μl of soy bean trypsin inhibitor. The fluorescence 
of each sample was measured in a fluorometer (Wallac 
Victor3 1420 Multilabel Counter, Turku, Finland) at 450 nm 
emission wave length and at 360 nm excitation wave 
length, and calculated using a plasmin standard curve. 

Measurement of MMP-2 activity

  After measuring the concentration of cellular protein us-
ing Bio-Rad assay, media corresponding to the same cel-
lular protein were combined with sample buffer containing 
0.5 M Tris-HCl, 10% SDS, 0.1% bromophenol blue, and 
glycerol and incubated 10 minutes at room temperature. 
Samples were loaded onto 10% SDS PAGE containing 1 
mg/ml of gelatin. After electrophoresis, the gels were in-
cubated in the 2.5% (v/v) triton X-100 renaturing buffer for 
30 minutes with gentle agitation. Gels were subsequently 
developed in the buffer containing 50 mM Tris-HCl, 0.2 M 
NaCl, 5 mM CaCl2, 0.02% (w/v) Triton X-100, pH 7.4. 
Protein staining was performed with Coomassie brilliant 
Blue R-250 0.5% (w/v) in 45% (v/v) methanol, 10% (v/v) ace-
tic acid, and destained in the same solution without dye. 
Digested bands were captured in a gel-scanner and quanti-
fied by TINA 2.0 Image program. 

Statistical analysis 

  All results were expressed as means±standard error (SE). 
Analysis of variance was used to assess the differences be-
tween multiple groups. If the F statistics were significant, 
the mean values obtained from each group were then com-
pared by Fisher’s least significant difference. A p value be-
low 0.05 was used to determine statistical significance.

RESULTS

PAI-1 expression levels were suppressed by PAI-1 
antisense ODN 

  In order to confirm the transfection efficiency of PAI-1 
antisense ODN under our experimental condition, we ana-
lyzed PAI-1 mRNA and protein expression. PAI-1 antisense 
ODN significantly decreased PAI-1 mRNA (data not shown) 
and protein (Fig. 1A) expression compared to control. How-
ever, PAI-1 mis-match sense ODN did not affect basal ex-
pression, confirming selectivity of our antisense ODN to 
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Fig. 1. Effect of PAI-1 antisense ODN on HG- (A) and TGF-β1- (B) induced PAI-1 protein expression in mesangial cells. Growth arrested 
and synchronized primary rat mesangial cells were stimulated with 30 mM high D-glucose (HG) (A) or 2 ng/ml of TGF-β1 (B) for 48 
hours after PAI-1 antisense or mis-match sense ODN transfection. PAI-1 protein was measured by Western blot analysis as described 
in the Methods. Data are presented as means±SE of 4 experiments. *p＜0.05 vs control, †p＜0.05 vs HG or TGF-β1, C: control without 
HG or TGF-β1, AS: PAI-1 antisense ODN, MS: PAI-1 mis-match sense ODN.

Fig. 2. Effect of PAI-1 antisense ODN on HG- (A) and TGF-β1- (B) suppressed plasmin activity in mesangial cells. Growth arrested and 
synchronized primary rat mesangial cells were stimulated with 30 mM high D-glucose (HG) (A) or 2 ng/ml of TGF-β1 (B) for 48 hours 
after PAI-1 antisense or mis-match ODN transfection. Plasmin activity in the media was measured as described in the Methods. Data 
are presented as means±SE of 4 experiments. *p＜0.05 vs control without HG or TGF-β1, †p＜0.05 vs HG or TGF-β1, C: control without 
HG or TGF-β1, AS: PAI-1 antisense ODN, MS: PAI-1 mis-match sense ODN.

PAI-1. 
  Next we examined whether PAI-1 antisense ODN admin-
istration had the ability to inhibit PAI-1 upregulation in-
duced in mesangial cells cultured under diabetic conditions. 
Both 30 mM high D-glucose and 2 ng/ml TGF-β1 sig-
nificantly increased mesangial cell PAI-1 protein secretion 
at 48 hours (Fig. 1). PAI-1 antisense ODN effectively in-
hibited both HG- and TGF-β1-induced PAI-1 protein secre-
tion down to control levels. As expected, PAI-1 mis-match 
sense ODN did not affect basal or upregulated PAI-1 pro-
tein expression (Fig. 1A).

Suppressed plasmin activity was recovered in PAI-1 
antisense ODN-transfected mesangial cells

  Both HG and TGF-β1 suppressed plasmin activity in pri-
mary rat mesangial cells, and these suppressions were re-

covered by PAI-1 antisense ODN (Fig. 2). PAI-1 antisense 
ODN also increased basal plasmin activity (Fig. 2), suggest-
ing that PAI-1 suppresses basal plasmin activity in cul-
tured mesangial cells. Neither basal nor HG-suppressed 
plasmin activity was affected by PAI-1 mis-match sense 
ODN (Fig. 2A). 

MMP-2 activity was restored in PAI-1 antisense ODN- 
transfected mesangial cells

  Suppressed MMP-2 activity was also restored by PAI-1 
antisense ODN in HG- and TGF-β1-treated mesangial 
cells (Fig. 3). Additionally, PAI-1 antisense ODN increased 
basal MMP-2 activity (Fig. 3), as did basal plasmin activity. 
PAI-1 mis-match sense ODN did not show any effect on 
basal or HG-stimulated MMP-2 activity (Fig. 3A). 
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Fig. 4. Effect of PAI-1 antisense ODN on HG- (A) and TGF-β1- (B) increased fibronectin secretion in mesangial cells. Growth arrested 
and synchronized primary rat mesangial cells were stimulated with 30 mM high D-glucose (HG) (A) or 2 ng/ml of TGF-β1 (B) for 48 
hours after PAI-1 antisense or mis-match sense ODN transfection. Fibronectin protein was detected by Western blot analysis as described 
in the Methods. Data are presented as means±SE of 4 experiments. *p＜0.05 vs control without HG or TGF-β1, †p＜0.05 vs HG or TGF-β1,
C: control without HG or TGF-β1, AS: PAI-1 antisense ODN, MS: PAI-1 mis-match sense ODN.

Fig. 3. Effect of PAI-1 antisense ODN on HG- (A) and TGF-β1- (B) suppressed MMP-2 activity in mesangial cells. Growth arrested and 
synchronized primary rat mesangial cells were stimulated with 30 mM high D-glucose (HG) (A) or 2 ng/ml of TGF-β1 (B) for 48 hours 
after PAI-1 antisense or mis-match ODN transfection. MMP-2 activity was detected by gelatin zymography as described in the Methods. 
Data are presented as means±SE of 4 experiments. *p＜0.05 vs control without HG or TGF-β1, †p＜0.05 vs HG or TGF-β1, C: control 
without HG or TGF-β1, AS: PAI-1 antisense ODN, MS: PAI-1 mis-match sense ODN.

Fibronectin protein upregulation was also abrogated 
in PAI-1 antisense ODN-transfected mesangial cells 

  HG and TGF-β1 induced fibronectin secretion, as well 
as PAI-1 antisense ODN, but not mis-match sense ODN, 
decreased fibronectin upregulation (Fig. 4). PAI-1 antisense 
ODN also reduced basal fibronectin protein secretion.

DISCUSSION

  The present study demonstrated that suppression of 
PAI-1 gene by PAI-1 antisense ODN effectively increased 

plasmin and MMP-2 activity and decreased fibronectin se-
cretion in primary mesangial cells. It is well known that 
renal PAI-1 expression is overexpressed in pathologic con-
ditions associated with fibrosis including diabetic nephrop-
athy [11]. PAI-1 is also overexpressed in renal cells cultured 
under diabetic conditions such as HG [25] and TGF-β1 
[4,24,26]. Data from genetically modified mice such as 
PAI-1 overexpressed transgenic or null mice suggest PAI-1 
as a therapeutic target for renal fibrosis. With respect to 
therapeutic interventions for renal PAI-1, mutant non-in-
hibitory PAI-1 peptide [17-19] and PAI-1 decoy peptide [27] 
have been used to block PAI-1 synthesis in vivo as well 
as in vitro. In the present study, phosphorothioate-modified 
PAI-1 antisense ODN was used to study the role of PAI-1 
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in primary cultured rat mesangial cells. We successfully 
knocked down both basal and stimulated PAI-1 mRNA and 
protein expression in primary mesangial cells using 1μM 
of phosphorothioate-modified antisense ODN. In human 
vascular endothelial and smooth muscle cells, 1μM PAI-1 
antisense ODN was effective to inhibit both basal and TGF-
β1-induced PAI-1 expression [28].
  PAI-1 down-regulation by antisense ODN was accom-
panied by increased both basal and suppressed plasmin and 
MMP-2 activity in our experimental condition. PAI-1 anti-
sense ODN furthermore increased basal and TGF-β1-sup-
pressed plasmin activity in human vascular endothelial and 
smooth muscle cells [28]. Therefore, these results support 
the notion that increased plasmin activity may play an im-
portant role in PAI-1 antisense ODN therapy limiting 
fibrosis. However, a recent study [27] demonstrated that 
treatment with PAI-1 decoy peptides reduced tubulointer-
stitial fibrosis in unilateral ureteral obstruction mice model 
without significant effect on plasmin activity but with in-
creased PA activity along with hepatocyte growth factor 
(HGF) expression. The authors speculated HGF-dependent 
ECM degradation as an antifibrotic mechanism of PAI-1 
decoy peptide. 
  ECM overproduction in diabetic nephropathy has been 
well documented in many studies, and decreased ECM de-
grading enzymes are also related with tissue fibrosis. In 
the present study, PAI-1 antisense ODN effectively sup-
pressed basal and stimulated fibronectin protein secretion. 
As discussed above, the increment of plasmin and MMP-2 
activity may have played a role in decreased fibronectin 
accumulation. On the other hand, PAI-1 can activate profi-
brotic protein synthesis via the uPA receptor [14,16]. We 
have also observed that recombinant PAI-1 stimulates 
TGF-β1 promoter activity and induces fibronectin and col-
lagen I expression in mouse mesangial cells [16]. It is possi-
ble that PAI-1 antisense ODN-mediated fibronectin protein 
may be mediated by active suppression of ECM synthesis. 
The relative role of active suppression of ECM synthesis 
and increased ECM degradation in response to PAI-1 anti-
sense ODN remains to be studied.
  In summary, the present data demonstrated that PAI-1 
antisense ODN effectively inhibited PAI-1 mRNA and pro-
tein expression, and subsequent changes in plasmin and 
MMP-2 activity in primary mesangial cells, and suggested 
that PAI-1 antisense ODN may be a potential therapeutic 
agent to inhibit renal PAI-1 upregulation and to prevent 
chronic kidney diseases including diabetic nephropathy. 
However, further study is necessary to investigate whether 
antifibrotic therapeutic potential of antisense ODN is bet-
ter than those of small molecules or mutant PAI-1.
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