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ABBREVIATIONS: AUC, area under the time-plasma concentration 
curve; Cmax, peak plasma concentration; Tmax, time to reach the 
Cmax; BE, bioequivalence; CI, confidence interval; BC, bias-corrected;
BCa, bias-corrected and accelerated.
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  The estimation of 90% parametric confidence intervals (CIs) of mean AUC and Cmax ratios in 
bioequivalence (BE) tests are based upon the assumption that formulation effects in log-transformed 
data are normally distributed. To compare the parametric CIs with those obtained from nonparametric 
methods we performed repeated estimation of bootstrap-resampled datasets. The AUC and Cmax 
values from 3 archived datasets were used. BE tests on 1,000 resampled datasets from each archived 
dataset were performed using SAS (Enterprise Guide Ver.3). Bootstrap nonparametric 90% CIs of 
formulation effects were then compared with the parametric 90% CIs of the original datasets. The 
90% CIs of formulation effects estimated from the 3 archived datasets were slightly different from 
nonparametric 90% CIs obtained from BE tests on resampled datasets. Histograms and density curves 
of formulation effects obtained from resampled datasets were similar to those of normal distribution. 
However, in 2 of 3 resampled log (AUC) datasets, the estimates of formulation effects did not follow 
the Gaussian distribution. Bias-corrected and accelerated (BCa) CIs, one of the nonparametric CIs of 
formulation effects, shifted outside the parametric 90% CIs of the archived datasets in these 2 
non-normally distributed resampled log (AUC) datasets. Currently, the 80∼125% rule based upon the 
parametric 90% CIs is widely accepted under the assumption of normally distributed formulation 
effects in log-transformed data. However, nonparametric CIs may be a better choice when data do 
not follow this assumption.
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INTRODUCTION

  Average bioequivalence (ABE) is commonly tested for PK 
parameters (e.g. AUC and Cmax) obtained from BE studies 
of crossover design. Generally, log (AUC) and log (Cmax) 
values are statistically analyzed using the mixed effect or 
two-stage linear model. Based on the two-one sided test 
(TOST) proposed by Shuirmann (1987) (FDA, 2001), two 
formulations are claimed to be bioequivalent when the 90% 
confidence intervals (CIs) of mean log (AUC) differences and 
log (Cmax) differences fall within the regulatory acceptance 
limits (log (0.8) to log (1.25)). The mean differences in log 
(AUC) or log (Cmax) between the test and the reference 
formulation represent the formulation effect, a key parameter 
in the ABE test (Patterson and Jones, 2002).
  Because AUC and Cmax are positive and right-skewed, 
they have been regarded as log normally-distributed 
(Midha et al., 1993; Chow, 2003). Nonparametric methods 
may be indicated for data which do not follow a normal 
distribution even after some transformation. However, 
because of the poor sensitivity of nonparametric procedures 
for small data, other more reliable methods are needed 

(Pabst and Jaeger, 1990). Since it is unknown what the 
distribution of formulation effects for AUC and Cmax is 
like, we decided to investigate the distribution pattern of 
formulation effect estimates of 1,000 bootstrap-resampled 
datasets from each BE study dataset. In other words, after 
the formulation effect estimate for each resampled dataset 
was obtained by BE tests using SAS, the distribution pattern 
of 1,000 such estimates was analyzed instead of assuming 
it to be log-normal. Although the resampling approach is 
an approximation accepting an assumption that may not 
be true, it is a useful alternative (Henderson, 2005). Then, 
the 90% nonparametric CIs for log (AUC) and log (Cmax) 
differences between 2 formulations in the 1,000 resampled 
datasets were estimated using several different non-
parametric methods. The nonparametric CIs were then 
compared with the 90% CIs obtained from BE tests 
(parametric CIs) on the archived datasets.

METHODS

  Datasets of AUC and Cmax from 3 BE studies (named 
as BE1, BE2 and BE3 henceforth) previously conducted in 
the institution were used for this study. The numbers of 
subjects for BE1, BE2 and BE3 were 23, 23 and 24, 
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Fig. 1. Histograms and normal Q-Q 
plots with skewness, kurtosis and 
Shapiro-Wilk test results showing 
the distribution of formulation effects
(mean differences in log (AUC)s be-
tween test and reference formulation)
estimates in bootstrap-resampled
datasets.

respectively. All 3 studies used the standard two-sequence, 
two-period crossover design. Results of BE1 and BE3 sat-
isfied the BE criteria, but that of BE2 did not.
  Estimation of formulation effects and their standard 
errors in the 3 aforementioned archived datasets was per-
formed using SAS (Enterprise Guide version 3.0, SAS 
Institute Inc, Cary, North Carolina, USA). Bootstrap-re-
sampling was repeated 1,000 times using the MACRO func-
tion of SAS for each archived dataset. BE tests were also 
performed for these 1,000 resampled datasets to find the 
distribution of the point estimates of formulation effects. 
For this purpose, normal Q-Q (Quantile to Quantile) plots, 
histograms and density curves were plotted, and skewness 
and kurtosis therein were also calculated. Shapiro-Wilk 
tests were also performed to obtain p values of the normality 
of the distribution. Several nonparametric 90% CIs of for-
mulation effects in bootstrap-resampled datasets were then 

compared with the parametric 90% CIs obtained from BE 
tests on the 3 archived datasets. We estimated nonparametric 
CIs including percentile CI, bootstrap-t CI, Bias-corrected 
(BC) CI and Bias-corrected and accelerated (BCa) CI (Efron 
and Tibshirani, 1993; Bonate, 2005).
  To compare the lengths of nonparametric and parametric 
90% CIs, we adopted the term “percent coverage” which was 
mentioned by Bonate (Bonate, 2005). The percent coverage 
is 90% and 45% when the length of the nonparametric CI 
is identical to or half of the parametric CI, respectively.

RESULTS 

  Fig. 1 illustrates the distributions of estimated formulation 
effects of log (AUC) in bootstrap-resampled datasets using 
histogram-density curves and normal Q-Q (Quantile to 
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Fig. 2. Histograms and normal Q-Q 
plots with skewness, kurtosis and 
Shapiro-Wilk test results showing 
the distribution of formulation effects
(mean differences in log (Cmax) be-
tween test and reference formulation)
estimates in bootstrap-resampled
datasets.

Quantile) plots. Shapiro-Wilk normality test results are also 
given in the panels. The formulation effects for BE2_AUC 
showed a right-skewed distribution. Although the skewness 
of the formulation effect distribution for BE1_AUC was not 
visually evident, it did not pass the Shapiro-Wilk test (p＜ 
0.05) (Fig. 1). In the case of Cmax, all histograms for the 
formulation effect distribution passed the Shapiro-Wilk test 
(Fig. 2). When we compared the 4 different nonparametric 
bootstrap 90% CIs of formulation effects with the para-
metric 90% CIs from the archived datasets, there were 
slight differences between them. The nonparametric per-
centile 90% CIs showed lower percent coverages for all 3 
BE studies (80∼86%). The bootstrap-t 90% CIs were wider 
than parametric CIs for BE1 and BE2 studies (about 93∼
112%) but not for BE3 (about 87%). Bootstrap BC and BCa 
90% CIs had percent coverage less than 90% (79∼88%) for 
all 3 BE studies (Table 1).

  In 2 cases where the distribution of formulation effects 
did not pass the Shapiro-Wilk normality tests (BE1_AUC, 
BE2_AUC), their BCa 90% CIs shifted over the boundaries 
of the parametric 90% CIs (BE1_AUC andBE2_AUC). 
However, the other 4 cases with normally distributed for-
mulation effects showed slightly narrower ranges without 
the shifts observed in BE1_AUC and BE2_AUC (Fig. 3). 

DISCUSSION

  The basic assumption of the parametric BE test is that 
log-transformed AUC and Cmax are normally distributed. 
If this assumption is not true, BE may have to be tested 
non-parametrically. In this study, we attempted to test the 
log-normality of the formulation effect using bootstrap- 
resampling methods. There are several ways to determine 
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Fig. 3. Comparison of BCa 90% CIs 
with parametric CIs (solid lines,
parametric 5% and 95% points;
dotted lines, BCa 5th and 95th 
percentile points; density curve, anti-
cipated parametric distribution of 
formulation effects from the archived
datasets). *BE1_AUC and BE2_AUC
were found to have non-normally 
distributed formulation effects by 
Shapro-Wilk tests.

Table 1. The 90% confidence intervals (CI) of formulation effects in the archived and bootstrap-resampled datasets and percent 
coverages of nonparametric CIs in contrast with parametric CIs

　
Log (AUC) Log (Cmax)

Parametric Nonparametric Parametric Nonparametric

Dataset Parameter Archived-t Percentile Bootstrap-t BC BCa Archived-t Percentile Bootstrap-t BC BCa

BE1

BE2

BE3

5%
95%
90% Interval
% coverage
5%
95%
90% Interval
% coverage
5%
95%
90% Interval
% coverage

−0.059
 0.033
 0.092
90
 0.061
 0.168
 0.107
90
−0.202
−0.079
 0.123
90

−0.056
 0.028
 0.084
82.297

0.07
 0.168
 0.098
82.444
−0.191
−0.079
 0.112
81.686

−0.064
 0.031
 0.095
92.828
 0.071
 0.205
 0.134

112.332 
−0.203
−0.083

0.12
87.374

−0.059
 0.026
 0.085
82.687
 0.075
0.18

 0.105
88.489
−0.197
−0.086
 0.111
81.248

−0.06
 0.027
 0.086
84.15
 0.077
 0.173
 0.096
80.177
−0.197
−0.086
 0.111
81.175

−0.083
 0.162
 0.245
90
 0.259
0.43

 0.171
90
−0.203
−0.005
 0.198
90

−0.077
 0.157
 0.234
86.031
 0.267
 0.422
 0.155
81.484
−0.19
−0.013
 0.177
80.292

−0.097
 0.171
 0.268
98.379
 0.256
 0.434
 0.178
93.522
−0.197
−0.005
 0.192
87.142

−0.07
0.161
0.23

84.598
0.272

 0.426
 0.154
80.748
−0.194
−0.014

0.18
81.653

−0.071
0.162
0.233

85.59
0.272
0.424

 0.152
79.854
−0.19
−0.016

0.175
79.158

Archived-t, parameter estimation from t distribution using the REML method in the archived datasets; BC, bias-corrected CI; BCa, 
bias correctedand accelerated CI; 90% Interval, the interval between 5% (or percentile) and 95% (or percentile); % (percent) coverage, 
the length of nonparametric 90% CIs measured in relation to the parametric 90% CI. (i.e., when the 2 lengths are the same, the 
% coverage is 90) percent of the CI which bootstrap 90% CI covers in contrast to the parametric 90% CI; %, percent for the archived 
datasets and percentile for the bootstrap-resampled datasets.
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whether samples originate from a normal distribution or 
not. A simple graphical way of testing normality is the nor-
mal probability (or Q-Q) plot method. A more formal test 
of normality is the Shapiro-Wilk test that is recommended 
when the sample size is small to medium. Skewness and 
kurtosis may also be utilized along with these tests. Unless 
there is direct evidence that the log-normality is not valid, 
log-transformed AUC and Cmax should be used for statistical 
analysis with the parametric method (Lacey et al., 1997). 
If data do not show a normal distribution even after trans-
formation, nonparametric methods are needed. Parameters, 
such as Tmax that cannot be normally or log-normally 
distributed, also need nonparametric tests. However, when 
applied to a small-sized sample, as is common in BE studies, 
nonparametric procedures give unsatisfactory results for 
sensitivity. Determining the pattern of parameter distribution 
is a prerequisite for selecting the most appropriate statistical 
method for BE tests (Pabst and Jaeger, 1990; Steyn et al., 
1991). In this context, we employed the bootstrap-resampling 
method for investigating the distribution of formulation 
effects. Although bootstrapped results are usually approx-
imate, they can sometimes be more reliable and more in-
formative than a priori assumptions of the distribution. The 
bootstrap can be implemented to inferences of correlations 
or ratios of variables when other analytic tools are not readily 
available. BE tests may be one such implementation 
(Sprent and Smeeton, 2001). There are several methods for 
calculating bootstrap CI. The percentile method is most 
commonly used. However, this method is highly influenced 
by the symmetry of the distribution pattern, and the CIs 
tend to be underestimated (percent coverage＜90%) when 
the distribution of the resampled parameters is asymme-
trical. The bootstrap-t method is one of the pivot methods 
that transform the bootstrap estimator into a pivot 
statistics. The distribution of pivot statistics is obtained 
directly from given data without the use of normal or 
Student’s t distribution. In practice, however, bootstrap-t 
can be influenced by a few outliers and tends to overesti-
mate the CIs when the distribution is skewed. The BC 
method corrects the asymmetry of the bootstrap distri-
bution, but it is not a truly nonparametric method because 
it relies upon monotonic transformation that results in a 
normal distribution (Bonate, 2005). The BCa method, how-
ever, has been recommended for general use from its merit 
of correcting skewness (Efron and Tibshirani, 1993). In our 
study, the formulation effects of log (AUC) and log (Cmax) 
showed a normal distribution in 4 of the 6 cases. The non-
parametric 90% CIs of normally distributed formulation 
effects were slightly different from the parametric 90% CIs 
of the archived datasets. However, when formulation effects 
were not normally distributed, the nonparametric 90% CIs 
based upon the bootstrap-resampling method shifted outside 
the parametric CIs’ boundaries. 
  According to the EMEA guideline (EMEA, 2006), non-
parametric methods are recommended for untransformed 
Tmax only. This is supposed to be from the fact that the 

number of subjects in BE studies are too small to conclude 
the normality of the distribution of the log-transformed 
AUC or Cmax by statistical tests. Nevertheless, this report 
exemplified the usefulness of nonparametric BE tests as an 
addition to the conventional BE test by comparing several 
different methods known.
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