
Nutrition Research and Practice 2015;9(6):628-636
ⓒ2015 The Korean Nutrition Society and the Korean Society of Community Nutrition

http://e-nrp.org

 

Estrogen deprivation and excess energy supply accelerate 
7,12-dimethylbenz(a)anthracene-induced mammary tumor growth 
in C3H/HeN mice
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BACKGROUND/OBJECTIVES: Obesity is a risk factor of breast cancer in postmenopausal women. Estrogen deprivation has been 
suggested to cause alteration of lipid metabolism thereby creating a cellular microenvironment favoring tumor growth. The 
aim of this study is to investigate the effects of estrogen depletion in combination with excess energy supply on breast tumor 
development. 
MATERIALS/METHODS: Ovariectomized (OVX) or sham-operated C3H/HeN mice at 4 wks were provided with either a normal 
diet or a high-fat diet (HD) for 16 weeks. Breast tumors were induced by administration of 7,12-dimethylbenz(a)anthracene 
once a week for six consecutive weeks. 
RESULTS: Study results showed higher serum concentrations of free fatty acids and insulin in the OVX+HD group compared 
to other groups. The average tumor volume was significantly larger in OVX+HD animals than in other groups. Expressions 
of mammary tumor insulin receptor and mammalian target of rapamycin proteins as well as the ratio of pAKT/AKT were significantly 
increased, while pAMPK/AMPK was decreased in OVX+HD animals compared to the sham-operated groups. Higher relative 
expression of liver fatty acid synthase mRNA was observed in OVX+HD mice compared with other groups. 
CONCLUSIONS: These results suggest that excess energy supply affects the accelerated mammary tumor growth in estrogen 
deprived mice.
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INTRODUCTION9)

Despite many undeniable therapeutic successes, breast cancer 
remains a major health issue in both developed and developing 
countries. Obesity, as reflected by increased body mass index 
(BMI), is associated with an increased risk of more aggressive 
breast cancer, as well as reduced survival [1]. The association 
between BMI and breast cancer risk becomes particularly strong 
for postmenopausal women [2] and weight gain after meno-
pause is the most important risk factor for breast cancer in 
postmenopausal women [3,4]. However, the 2007 WCRF/AICR 
Second Expert Report [5] followed by the Updated Breast 
Cancer 2010 Report [6] found limited evidence on the associa-
tion between breast cancer risk and dietary components which 
may contribute to body fat mass. The association between 
dietary fat has been a topic of debate for more than 20 years, 
however a recent meta-analysis reported no significant associa-

tion [7,8]. 
Estrogen is a known modulator of lipid and glucose metabolism. 

Systemic loss of estrogen in postmenopausal women is typically 
associated with increased abdominal fat tissue. Studies have 
indicated that estradiol (E2) replacement can prevent meno-
pause induced gains in adipose tissue mass [9,10]. In addition, 
ovariectomized (OVX) rodents rapidly become obese; however 
estrogen administration prevents the increase in body fat [11]. 
Estrogen activates AMP-activated protein kinase (AMPK), promo-
ting fat oxidation and decreased expression of sterol regulatory 
element-binding protein 1c (SREBP1c) in adipose tissue, muscle, 
and the liver [12,13]. SREBP1c stimulates expression of lipogenic 
genes, such as fatty acid synthase (FAS) [12,14]. In addition to 
lipid storage in adipose tissue, estrogen deprivation disturbs 
glucose homeostasis. For example, premenopausal women are 
more insulin sensitive, have insulin-associated improved glucose 
tolerance, and are less likely to develop insulin resistance than 
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AIN93G ND1) HD2)

Macronutrient composition

Carbohydrate, % of energy 63.95 65.71 35.69

Protein, % of energy 19.33 19.30 19.30

Fat, % of energy 16.72 14.99 45.00

Ingredient, g/kg

Cornstarch 397.4 404.0 266.5

Dextrin 132 134.2 88.5

Sucrose 100 101.6 67.1

Fiber 50 50 50

Casein 200 198.0 240.4

L-cystine 3.0 3.0 3.7

Corn oil - 12.44 45.36

Lard - 49.76 181.44

Mineral Mix (AIN-93G-MX) 35.0 34.6 42.1

Vitamin (AIN-93G-VX) 10.0 9.9 12.0

Choline bitartrate 2.50 2.50 3.10

Tert-butylhydroquinone 0.01 0.01 0.02

1) ND: Normal diet (15% energy as fat)
2) HD: High-fat diet (45% energy as fat)

Table 1. Composition of experimental dietsmen [15,16]. OVX rodents were reported to show dyslipidemia, 
impaired glucose tolerance, and impaired insulin-mediated 
glucose uptake in skeletal muscle [17]. In addition, estradiol 
replacement therapy improved glucose tolerance and insulin 
sensitivity and reduced lipid accumulation in the liver of leptin- 
deficient ob/ob mice [18]. One study suggested postmeno-
pausal women with increased risk of hyperinsulinemia, insulin- 
resistant type 2 diabetes, and metabolic syndrome [19]. 
Association of postmenopausal weight gain with hormone- 
dependent breast cancer development has also been demons-
trated [20]. Previous studies have reported overexpression of 
the insulin receptor (IR) in breast cancer cells [21]. Increased 
insulin binding to the IR leads to stimulation of the pho-
sphoinositide 3-kinase (PI3K)/AKT signaling pathway, which 
plays an important role in breast cancer progression [22]. AKT 
is transported to both cytosolic and nuclear compartments, 
where it phosphorylates various proteins involved in the 
regulation of cell growth and apoptosis. Abnormal AKT 
activation has been observed in various types of cancer [23,24]. 
Therefore, it can be hypothesized that defects in insulin 
sensitivity in postmenopausal women and an increase in fat 
mass may play a role in breast cancer development. However, 
few mechanistic studies have provided evidence to explain the 
association between excess energy intake in breast cancer 
development under conditions with different estrogen availability. 

In this study, we evaluate the effects of estrogen deprivation 
and/or excess energy intake on mammary tumor development 
and growth in a rodent model. Possible molecular mechanisms 
of action are also suggested.

MATERIAL AND METHODS

Animals and experimental design
Three-week old C3H/HeN female mice were obtained from 

Central Laboratory (Seoul, Korea). Animals were housed in 
polycarbonate cages and maintained at a room temperature 
of 26 ± 1˚C, with a relative humidity of 60 ± 5%, and 12 h 
light/12 h darkness exposure. Fresh food was provided every 
2-3 days and food intake was monitored throughout the 
experiment. Body weight was monitored once a week.

After acclimation for one week, animals were either ovarecto-
mized or sham-operated and then randomly assigned to 
different experimental groups. Group 1 consisted of sham- 
operated animals fed a normal diet (15% energy as fat) (SHAM+ 
ND, n = 14); Group 2 consisted of sham-operated animals fed 
a high-fat diet (45% energy as fat) (SHAM+HD, n = 8); Group 
3 consisted of ovariectomized animals fed a normal diet 
(OVX+ND, n = 6); and Group 4 consisted of ovariectomized 
animals fed a high-fat diet (OVX+HD, n = 7). The composition 
of the experimental diet was based on AIN-93G diet (25) as 
shown in Table 1, and soybean oil was substituted with corn 
oil because isoflavones present in soybean oil may act as 
anticarcinogens. A mixture of lard and corn oil was used as 
a source of dietary fat to mimic the fatty acid composition in 
the human diet as used in our previous study (26). Mineral mix, 
vitamins, choline, and tert-butylhydroquinone were adjusted to 
provide an equal amount for each experimental group based 
on difference in daily food consumption of animals in ND and 

HD. At 7 weeks of age, all animals were provided with a dose 
of 1mg 7,12-dimethylbenz(a)anthracene (DMBA) (Sigma, MO, 
USA) dissolved in sesame oil. This dosage was repeated once 
a week for six consecutive weeks. After the last DMBA exposure, 
mice were subjected to regular examination for mammary 
tumors by palpation. Tumor size was measured using a digital 
caliper, and the length and width of each tumor were used 
in the formula [volume = length2 × width/2] to approximate 
volume (cm3). Mice were sacrificed at the age of 19 weeks. All 
mammary tumors were weighed and the size was measured. 
All procedures were approved by the Institutional Animal Care 
and Use committee of Sookmyung Women’s University 
(SMU-IACUC-2010-0625-009).

Preparation of blood and tissue samples
At the end of the experiment, animals were sacrificed and 

the mammary tumor, mammary fat pad, liver, spleen, and 
abdominal fat pad were removed, rinsed in normal saline, and 
weighed. Blood was collected from the inferior vena cava into 
EDTA-free tubes and centrifuged at 1,550 × g for 20 minutes. 
All samples were stored at -80˚C until assayed.

Serum measurements
Serum insulin concentration was determined using a 

commercially-available enzyme-linked immunosorbent assay 
(ELISA) kit (Millipore, MA, USA). Serum free fatty acid (FFA) 
concentration was also determined using an ELISA kit (Wako, 
Osaka, Japan) according to the manufacturer’s instructions. 

Western blots
Protein expression of IR, mammalian target of rapamycin 

(mTOR), p-mTOR, AKT, pAKT, AMPK, and phosphorylated AMPK 
(pAMPK) was measured in mammary tumor tissue samples. 
Because only two animals in the OVX+ND group developed 
tumors, statistical analyses were performed in SHAM+ND, SHAM 



630 Postmenopausal obesity and breast cancer

Primer Sequences (5’-3’)

SREBP1c1) Forward: GAT CAA AGA GGA GCC AGT GC

Reverse: TAG ATG GTG GCT GCT GAG TG

FAS2) Forward: GGG GGT GGG AGG ACA GAG AT

Reverse: CAC ATG GGC TGA CAG CTT GG

GAPDH3) Forward: TGT GTC CGT CGT GGA TCT GA

Reverse: CCT GCT TCA CCA CCT TCT TGA

1) SREBP1c: sterol regulatory element-binding transcription factor 1
2) FAS: fatty acid synthase
3) GAPDH: glyceraldehyde-3-phosphate dehydrogenase

Table 2. Gene Primers

Body
(g)

Liver
(% of B.W.)

Spleen
(% of B.W.)

Abdominal fat
(% of B.W.)

Mammary fat pad
(% of B.W.)

SHAM+ND 22.04 ± 2.73 4.43 ± 0.77 0.61 ± 0.76 2.27 ± 1.39 0.64 ± 0.53

SHAM+HD 21.50 ± 2.47 4.92 ± 0.79 0.87 ± 0.78 2.74 ± 1.50 0.77 ± 0.66

OVX+ND 22.26 ± 1.65 4.35 ± 0.62 0.34 ± 0.17 2.21 ± 1.46 0.97 ± 0.52

OVX+HD 20.50 ± 1.23 4.19 ± 1.30 0.33 ± 0.09 2.73 ± 2.02 0.91 ± 1.25

Diet NS NS NS NS NS

OVX NS NS NS NS NS

Values are presented as a mean ± SD. Data were analyzed by one way-analysis of variance (ANOVA) followed by Duncan’s multiple range test. Two-way ANOVA was used 
to determine the interactions between ovariectomy and diet. Liver, spleen, abdominal fat, and mammary fat pad weight were calculated as percentage of body weight. SHAM: 
sham-operated fed normal diet; SHAM+HD: sham-operated fed high-fat diet; OVX+ND: ovariectomized fed normal diet; OVX+HD: ovariectomized fed high-fat diet.

Table 3. Effects of estrogen deprivation and excess energy supply on body and organ weights of experimental animals

+HD, and OVX+HD animals. Tumor tissue was homogenized 
with a PRO-PREPTM protein extraction solution (Intron Biotechn-
ology Inc., Gyeonggi, Korea), left on ice for 20 minutes, and 
centrifuged (16,600 × g, 10 min, 4°C). Protein content was 
determined against a standardized control, using a Bio-Rad 
Protein Assay kit (Bio-Rad Laboratories, Inc., CA, USA); 50 μg 
of protein from each sample was separated by 4-12% and 6% 
sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 
then transferred to PVDF membranes (Koma Biotechnology, 
Seoul, Korea). The membranes were blocked with 2% skim milk 
(Amersham Corp., IL, USA) and incubated with specific antibo-
dies for IR (Santa Cruz Biotech, CA, USA), pAKT (Ser473) (Cell 
Signaling, MA, USA), AKT (Cell Signaling, MA, USA), mTOR (Cell 
Signaling, MA, USA), pAMPK (Cell Signaling, MA, USA), AMPK 
(Cell Signaling, MA, USA), cyclin D1 (Cell Signaling, MA, USA), 
CDK4 (Cell Signaling, MA, USA), and β-actin (Sigma, MO, USA). 
The membranes were washed with PBS/Tween 20 (PBST) 
containing 0.1% Tween 20 (Sigma, MO, USA). Reactive bands 
were visualized using an enhanced chemiluminescence (ECL) 
system (Amersham Corp., IL, USA). Stripping was checked by 
re-exposure to enhanced chemiluminescence (ECL), and was 
detected using a LAS 3000 (Fujifilm, Tokyo, Japan). The mem-
branes were subsequently blocked and reprobed. The intensity 
of the bands was quantified using a Bio-Rad GS-800 densitometer 
equipped with the Quantity One program (Bio-Rad Laboratories, 
Inc., CA, USA).

Real-time quantitative PCR
Total RNA was extracted from liver tissue using TRIzol reagent, 

according to the manufacturer’s instructions (Invitrogen, CA, 
USA). Total RNA (1 μg) from liver tissue was reverse-transcribed 
using a cDNA Synthesis kit (PhileKorea Technology, Seoul, 
Korea) according to the manufacturer’s instructions. First strand 
cDNA was generated from 1 μg RNA using both oligo (DT)18 
primer mix and random hexamer primer mix. Real-time 
quantitative PCR was performed on a 7500 Fast Real time PCR 
system (Applied Biosystems, CA, USA) using a QuantiMix SYBR 
Kit (PhileKorea Technology, Seoul, Korea). Primers for SREBP1c, 
FAS, and Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 
were synthesized by Bioneer (Bioneer, Daejeon, Korea) (Table 
2). Relative fold-changes in expression were determined using 
the 2-△△CT (relative quantification) analysis protocol. Expression 
of the GAPDH housekeeping gene was used to normalize PCR 
reactions. Each experiment was repeated three times.

Statistical analysis
Statistical analysis was performed using the SAS package 

(release 9.1, SAS Institute Inc., NC, USA). Data are expressed as 
the mean ± SD. One-way analysis of variance (ANOVA) and 
Duncan’s multiple test were used to determine statistical 
differences between the treatment groups. Interactions between 
two variables were examined using two-way ANOVA. P-values 
less than 0.05 were considered significant. Only two mice 
developed mammary tumors in the OVX+ND group; therefore, 
statistical analyses on tumor tissue were performed for animals 
in the SHAM+ND, SHAM+HD, and OVX+HD groups using 
one-way ANOVA.

RESULTS

Body and organ weights
There was no significant difference in body weights between 

experimental groups (Table 3). No significant difference in the 
weights of liver, spleen, abdominal adipose tissue, or mammary 
fat pad was observed. Neither diet nor OVX affected body 
weight and organ weights was observed between groups.

Mammary tumor development
At the end of the study period, the percentage of tumor- 

bearing mice in each group was 57.1% in the SHAM+ND group, 
75% in the SHAM+HD group, 33.3% in the OVX+ND group, and 
42.9% in the OVX+HD group (Table 4). Number of tumors of 
tumor bearing mice in each group was 1.63, 1.50, 1.50, and 
1.67, respectively. The average mammary tumor volume was 
significantly higher in the OVX+HD group than in the other 
groups. Both diet and OVX showed significant association with 
tumor size, and there was no significant interaction between 
ovariectomy and diet.
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Group (n) Tumor number
Number of TBM

(% animals)
Tumor number

/TBM
Average tumor volume (cm3)

SHAM+ND (14) 13 8 (57.14) 1.63 0.09 ± 0.07b

SHAM+HD (8) 9 6 (75) 1.50 0.22 ± 0.21b

OVX+ND (6) 3 2 (33.33) 1.50 0.17 ± 0.22b

OVX+HD (7) 5 3 (42.86) 1.67 0.84 ± 0.60a

Values are presented as a mean ± SD. abMeans with different superscripts are significantly different at (P < 0.05). SHAM: sham-operated fed normal diet; SHAM+HD: 
sham-operated fed high-fat diet; OVX+ND: ovariectomized fed normal diet; OVX+HD: ovariectomized fed high-fat diet; TBM: tumor-bering mouse.

Table 4. Effects of estrogen deprivation and excess energy supply on mammary tumor number, multiplicity, and volume

Group Insulin (ng/mL) FFA (mEq/L)

SHAM+ND 0.65 ± 0.29b 0.60 ± 0.16b

SHAM+HD 0.98 ± 0.54b 0.85 ± 0.42ab

OVX+ND 0.76 ± 0.42b 0.75 ± 0.15ab

OVX+HD 2.73 ± 1.71a 1.00 ± 0.24a

Significance P < 0.05 P < 0.05

OVX P < 0.01 N.S.

Diet P < 0.01 P < 0.01

OVX × Diet P < 0.05 N.S.

Values are presented as a mean ± SD Data were analyzed by one way-analysis 
of variance (ANOVA) followed by Duncan’s multiple range test. abMeans with 
different superscripts are significantly different at P < 0.05. Two-way ANOVA was 
used to determine the interactions between ovariectomy and diet. SHAM: 
sham-operated fed normal diet; SHAM+HD: sham-operated fed high-fat diet; 
OVX+ND: ovariectomized fed normal diet; OVX+HD: ovariectomized fed high-fat 
diet; FFA: free fatty acids.

Table 5. Effects of estrogen deprivation and excess energy supply on serum 
insulin and FFA concentrations

Group SREBP1c FAS

SHAM+ND 1.00 1.00b

SHAM+HD 1.49 ± 0.94 1.19 ± 0.64b

OVX+ND 1.48 ± 0.79 1.01 ± 0.59b

OVX+HD 2.32 ± 3.41 2.55 ± 2.41a

Significance N.S. P < 0.05

OVX N.S. N.S.

Diet N.S. P < 0.05

OVX × Diet N.S. N.S.

Relative expression of the indicated lipogenic genes was detected by real-time PCR 
in liver tissue. abMeans with different superscripts are significantly different at P < 
0.05. Two-way ANOVA was used to determine the interactions between ovariectomy 
and diet. SHAM: sham-operated fed normal diet; SHAM+HD: sham-operated fed 
high-fat diet; OVX+ND: ovariectomized fed normal diet; OVX+HD, ovariectomized 
fed high-fat diet; SREBP1c: sterol regulatory element-binding protein 1; FAS: fatty

Table 6. Effects of excess energy supply and estrogen deprivation on lipogenic
gene expression 

(A) (B) (C) (D)

Fig. 1. Effects of excess fat and estrogen deprivation on expression of IR(A), AKT & pAKT (B), mTOR & pmTOR (C), and AMPK & pAMPK (D) protein in mammary 
tumor tissue samples. Because only two animals developed tumors in the OVX+ND group, statistical analyses were performed in SHAM+ND, SHAM+HD, and OVX+HD animals. Tumors 
tissue protein was extracted, separated, and incubated with respective antibodies. Reactive bands were visualized using enhanced chemiluminescence (ECL). The intensity of the bands 
was quantified using a Bio-Rad GS-800 densitometer. Values with different letters are significantly different based on “one way-analysis of variance (ANOVA) followed” by Duncan’s multiple 
range test (P < 0.05). SHAM+ND: sham-operated fed normal diet; SHAM+HD: sham-operated fed high-fat diet; OVX+HD, ovariectomized fed high-fat diet.

Serum concentration of insulin and free fatty acids
Significantly higher circulating concentrations of insulin were 

observed in the OVX+HD group compared with the other 
groups (Table 5). A significant difference in FFA concentration 
was observed between the OVX+HD group and SHAM+ND 
group. Two-way ANOVA indicated significant association of FFA 
concentrations with diet, while insulin concentrations showed 
significant association with both ovariectomy and diet. A 
significant interaction was observed between ovariectomy and 
diet.

Liver SREBP1c and FAS mRNA expression 
Liver SREBP1c and FAS are involved in regulation of lipoge-

nesis. The relative expression of SREBP1c was increased in the 
OVX+HD group, although without statistical significance (Table 
6). In addition, significantly higher FAS expression was observed 
in the OVX+HD group. These results indicate that the coexis-
tence of OVX and HD affected the expression of lipogenic 
genes. However, no statistically significant interaction was 
found between OVX and diet.
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(A) (B)

Fig. 2. Effects of excess fat and estrogen deprivation on expression of cell cycle 
regulatory CCND1 and CDK4 protein in mammary tumor tissue samples. Because 
only two animals developed tumors in the OVX+ND group, statistical analyses were 
performed in SHAM+ND, SHAM+HD, and OVX+HD animals. Tumor tissue protein was 
extracted, separated, and incubated with respective antibodies. Reactive bands were 
visualized using enhanced chemiluminescence (ECL). The intensity of the bands was 
quantified using a Bio-Rad GS-800 densitometer. SHAM+ND: shamoperated fed normal 
diet; SHAM+HD: sham-operated fed high-fat diet; OVX+HD: ovariectomized fed high-fat 
diet.

Tumor tissue IR, AKT, mTOR, and AMPK expression
To determine the molecular mechanisms responsible for 

tumor growth, expression of IR-mediated signaling molecules 
including AKT and pAKT was measured in mammary tumor 
tissues. Significantly higher tissue protein expression levels of 
IR were observed in the OVX+HD group compared to the 
SHAM+ND and SHAM+HD groups (Fig. 1A), and significantly 
higher pAKT/AKT levels were observed in the OVX+HD group 
compared to the SHAM+ND group (Fig. 1B). Significantly higher 
protein expression of mTOR was observed in the OVX+HD 
group, while significantly lower expression of pAMPK/AMPK was 
observed in the OVX+HD group compared to expression in 
other groups (Fig. 1C and 1D).

Cell cycle regulation
Activation of AMPK and mTOR was involved in regulation of 

the cell cycle, including cyclin D1 (CCND1) and CDK4 protein. 
Elevated expression levels of CCND1 and CDK4 were observed 
in the OVX+HD group compared to other groups, but without 
statistical significance (Fig. 2A, B).

DISCUSSION

Despite an inverse relationship between BMI and breast 
cancer risk in premenopausal women, obesity is a recognized 
risk factor in postmenopausal breast cancer development [27]. 
Although it is presumed that the interaction between obesity 
and breast cancer risk is altered by the availability of estrogen, 
evidence supporting the association between dietary compo-
nents including dietary fat and the risk of breast cancer is 
limited. Because estrogen is known to regulate fat metabolism, 
including lipogenesis and lipolysis, it is presumable that 
interactions between dietary fat intake, energy metabolism, and 
estrogen availability play a critical role in mammary tumor 
development. 

Estrogen deprivation often leads to diminished insulin sensi-
tivity, possibly due to accelerated fat accumulation. Previous 
studies have shown that estradiol repletion can overcome 

high-fat diet-induced or FFA-induced insulin resistance [28,29]. 
Accordingly, high circulating concentrations of insulin in 
postmenopausal women may be a possible connection between 
postmenopausal obesity and breast cancer risk [30]. 

However, a limited number of studies have examined the 
interactive effects of estrogen deprivation and excess dietary 
energy supply on mammary tumor development. Genetically 
obese ovariectomized Zucker rats showed higher susceptibility 
to DMBA-induced mammary tumor development compared to 
sham-operated rats [31]. However, in another study high-fat diet 
stimulated mammary tumor development was not ovarian- 
dependent [32]. In this study, we evaluated the effects of 
estrogen deprivation on breast tumor growth in mice fed either 
a 45% fat diet or 15% fat diet. The animal model of DMBA- 
induced mammary gland tumors was used because this 
carcinogen has been implicated in mammary tumorigenesis 
that is histologically similar to hormone-dependent human 
breast adenocarcinomas [33]. Results showed that there was no 
difference in body weight among experimental groups. Previous 
studies have shown that body weight of C3H/HeN mice fed 
HD was higher than that of ND supplemented C3H/HeN mice 
[34,35]. In many other studies, OVX rodents became obese 
rapidly with body fat accumulation [12,36,37]. However, mice 
treated with DMBA had significantly lower final body weights, 
body fat weights, and carcass energy contents compared to 
mice that received the corn oil placebo [38]. Another study also 
reported that DMBA treatment resulted in suppression of body 
weight gain of the animals [39] possibly due to rapid growth 
of tumor tissues, which accelerates tissue wasting, indicating 
that the absence of body weight gain in animals with either 
high-fat feeding or OVX might be due to tumor-induced tissue 
wasting. Estrogen depletion is known to be associated with 
dysregulation of lipid metabolism, which may contribute to the 
accumulation of intra-abdominal fat in postmenopausal women 
[40]. Estradiol reduces fatty acid and triglyceride synthesis 
through the down-regulation of lipoprotein lipase and fatty acid 
synthase [12]. We have determined the liver tissue expression 
of SREBP1c and FAS, both of which are involved in lipogenesis. 
Results showed higher liver tissue expression of SREBP1c and 
FAS in the OVX+HD group compared to the other groups, 
although no statistical significance was found in SREBP1c 
expression. The fact that cancer cachexia and tissue wasting 
are often associated with decreased insulin sensitivity and 
hyperglycemia has also been pointed out [41], indicating that 
tumor growth and hypercatabolism can lead to hyperinsu-
linemia. 

Estradiol depletion is associated with insulin resistance in 
humans and rodents [29,30,42]. The increased circulating 
concentration of FFA in OVX rodents contributes to develop-
ment of insulin resistance [43,44]. Postmenopausal insulin 
resistance is also associated with an elevated blood concen-
tration of inflammatory markers, TG, LDL-cholesterol, and FFA 
[45,46]. Our study results clearly showed significantly higher 
concentrations of circulating insulin in the OVX+HD group than 
other groups. 

In addition, the levels of IR increased significantly in tumor 
tissues of the OVX+HD group. Because insulin has been 
suggested as a key molecule to explain obesity-related cancers 
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including colon and breast, we hypothesized that the larger 
tumor size in OVX+HD may be mediated through the higher 
availability of insulin as well as the up-regulation of IR in tumor 
tissues. Another recent study reported that tumor weight was 
significantly higher in OVX mice fed a high-fat diet, compared 
to OVX mice fed a low fat diet in a mouse breast cancer model 
[47]. In addition, obese mice inoculated with mouse mammary 
tumor virus (MMTV) Wnt-1 mammary tumor cells did not exhibit 
tumor growth in the presence of estrogen; however, in the 
absence of the ovaries, obese mice exhibited higher Wnt-1 
tumor growth [48]. These results suggest a strong association 
of excess energy intake with tumor growth in the absence of 
ovarian estrogen. Therefore, it is presumable that excess energy 
intake of postmenopausal women may pose greater risk of 
developing tumors compared to that of premenopausal 
women. 

The tumor incidence was 75% in the SHAM+HD group, 57.1% 
in the SHAM+ND group, 33.3% in the OVX+ND group, and 
42.9% of the OVX+HD group, indicating no clear association 
between the number of tumors and OVX or dietary energy. 
Although further investigations are necessary, the higher 
concentrations of circulating insulin due to OVX and the excess 
energy supply may not be directly associated with DMBA- 
induced cancer initiation. Because only two animals developed 
tumors in the OVX+ND group, no statistical comparisons for 
tumor tissue biomarkers of cell growth were made with animals 
in this group. It was reported that breast tumor incidence in 
Zucker rats, where 30% of the lean sham-operated group, 59% 
of the obese sham-operated group, 0% of the lean ovariec-
tomized group, and 36% of the obese ovariectomized group 
developed mammary tumors [31], implying that DMBA-induced 
mammary tumor formation is dependent on estrogen levels as 
other studies have also indicated [49-51]. However, it has been 
suggested that estrogen synthesized from adipose tissue is 
sufficient to promote mammary tumor development [52]. In this 
study, since OVX+ND mice were shown to have little adipose 
tissue, the level of systemic and local estrogen production may 
not be sufficient for development of tumors. In another study 
examining incidence of mammary cancer induced by DMBA 
combined with different concentrations of estradiol in 8-week- 
old Sprague-Dawley rats, it was found that mammary tumors 
appear for the first time between the 12th -17th week [28]. 
Fifty percent of mice had tumors by the 36th, 19th, and 18th 
week, with estradiol doses of 1, 2, and 3 mg, respectively. At 
the 36th week, the incidence rate of breast tumors was 50%, 
73%, and 100%, for estradiol doses of 1, 2, and 3 mg, respec-
tively. These results imply that estrogen plays an important role 
in the initiation of mammary tumor formation induced by 
DMBA. In our study, OVX was performed at 4 weeks, which 
may have caused depletion of circulating estrogen required for 
initiation of carcinogenesis.

Hyperinsulinemia can indirectly affect tumorigenesis through 
activation of insulin/AKT signaling. A previous study reported 
that larger tumor size in obese women is the result of growth 
stimulation, and IR-mediated AKT signaling is a major growth 
pathway [53]. Another study indicated that IR was overex-
pressed in human breast cancer cells [54]. To investigate 
involvement of IR-mediated AKT pathway signaling in mammary 

tumor growth, we measured protein expression levels of IR and 
AKT in tumor tissues. IR protein level was significantly higher 
in the OVX+HD group compared to the other groups, and AKT 
phosphorylation and mTOR expression were also significantly 
higher in the OVX+HD group. mTOR, which regulates essential 
cell growth signals through cell cycle progression, is an important 
downstream effector of AKT [55]. A previous study reported that 
in breast cancer, activation of the AKT/mTOR pathway is 
responsible for cell survival [56]. Therefore, it is presumable that 
IR-mediated AKT activation is responsible for the larger tumor 
size in the OVX+HD group. Epidemiological evidences have 
suggested that excess body fat is a risk factor for development 
of breast cancer in postmenopausal women, but not in 
premenopausal women [2,3]. Results from this study showing 
an interactive effect of high-fat diet and OVX on circulating 
concentration of insulin support higher breast cancer risk 
among postmenopausal women with excess body weight. 

We found that OVX+HD suppressed the activation of AMPK, 
which is potentially associated with tumor cell growth. Interes-
tingly, it is reported that the levels of AMPK phosphorylation 
are reduced by OVX and excess fat mass [57,58]. In addition, 
AMPK is known as a major tumor suppressor kinase that acts 
through p53-dependent cell cycle regulation [59,60]. AMPK is 
also known to suppress cell proliferation through down regula-
tion of mTOR [61]. Metformin, a well-known AMPK activator, 
has been consistently shown to inhibit breast cancer cell growth 
[56]. In this study, we found that the OVX+HD group showed 
higher AMPK expression, which may have led to down- 
regulated expression of mTOR, thereby suppressing tumor 
growth. Estrogen has been implicated in maintenance of insulin 
sensitivity [62], and stimulated AMPK phosphorylation by17β
-estradiol through estrogen receptor α in 3T3-L1 adipocytes has 
also been reported [63]. In addition, injections of estradiol 
resulted in activation of AMPK in ovariectomized mice [64]. 
Therefore, it is possible that the significantly larger tumor size 
observed in the OVX+HD group resulted from the combined 
effects of OVX and excess energy supply. A previous study 
reported that mTOR facilitates CCND1, which is required for the 
G1 to S phase transition of the cell cycle [65]. We measured 
protein expression of CCND1 and CDK4 as downstream targets 
of mTOR in mammary tumor tissue. Although expression levels 
of CCND1 and CDK4 were not significantly different, the 
OVX+HD group tended to show higher expression levels of cell 
cycle-controlling molecules. 

In conclusion we demonstrate that a high-fat diet in OVX 
animals leads to development of insulin resistance, which may 
accelerate mammary tumor growth through the IR-mediated 
AKT pathway and inactivation of AMPK in vivo. The current 
study clearly showed that dietary fat induces systemic insulin 
resistance and mammary tumor growth in estrogen-deprived 
animals in the absence of body weight gain. High circulating 
insulin in combination with increased IR in tumor tissues may 
result in stimulation of AKT/mTOR signaling and inactivation of 
AMPK leading to the acceleration of solid tumor growth. The 
current results suggest that a high-fat diet can stimulate breast 
cancer progression in postmenopausal women even those 
maintaining normal BMI. 
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