
Introduction

Mesenchymal stem cells (MSCs), a type of adult stem cells, 
are distributed in various tissues and are capable of multipotent 
differentiation into osteogenic, chondrogenic, and adipogenic 
cell lineages [1]. It is acknowledged that a population of MSCs 
is isolated from adult human adipose tissues, which can be har-
vested in large amounts by liposuction [2]. In recent years, clini-
cal trials with adipose tissue-derived MSCs (ADSCs) are being 
attempted. To achieve improved fat-graft survival, ADSC based-
tissue engineering and regeneration are recently co-introduced 
in the surgical fields where autologous fat grafts alone have been 
in charge [3-6]. Recent studies have also investigated whether 
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stem cell therapy with ADSCs can be used for improving the 
outcome of patients in intensive care units, including the acute 
urogenital organ damage observed in sepsis [7] and toxic shock 
syndrome [8]. Several factors should be considered to achieve 
successful stem cell therapy [9]. Among these, maintaining the 
applied stem cells at an active proliferation state, or the main-
tenance of cell viability, is essential to achieve stem cell therapy 
objectives.

Previous studies raise the possibility that the type-A γ-amino
butyric acid (GABAA) receptor is involved in modulating stem 
cell proliferation [10,11]. Currently, well-known intravenous 
GABAA receptor agonists, etomidate, and midazolam, are used 
for sedation of patients in surgery or in intensive care units. 
They act through the enhancement of GABA mediated inhibi-
tion via the synaptic GABAA receptor [12,13].

However, the effect of clinically available GABAergic agents 
on ADSC proliferation is not known. Thus, our study investi-
gated the effects of the clinically available GABAergic agents, 
etomidate and midazolam, on ADSC proliferation both in con-
trol medium and under induction of adipogenic differentiation 
using the Cell Counting Kit-8 (CCK-8) assay.

Materials and Methods

Isolation and preparation of ADSCs

Ethical approval for this study protocol was obtained from 
the Institutional Review Board of Kangbuk Samsung Hospital 
(IRB File No: 2011-01-031). The ADSCs used in this study 
were obtained from the lipoaspirates of donors after receiving 
informed consent, using a previously reported method [14,15]. 
In brief, the lipoaspirates were washed extensively with sterile 
Dulbecco’s phosphate buffered saline (DPBS) (Biowest, Rue de 
la Caille, Nuaillé, France) to remove the contaminating debris 
and blood cells. The rinsed aspirates were treated with 0.075% 
collagenase type I in DPBS for 60 min at 37oC under gentle agi-
tation and then inactivated with an equal volume of Dulbecco’s 
modified Eagle’s medium (DMEM) (Gibco, Grand Island, NY, 
USA)/ 10% fetal bovine serum (FBS) (Gibco, Grand Island, NY, 
USA). The cell pellet collected by low speed centrifugation for 
10 min was resuspended in DMEM containing 10% FBS and 
strained through a 100-μm mesh filter to remove debris. After 
centrifugation as detailed above, the filtrate was plated onto con-
ventional tissue culture plates in control medium (DMEM, 10% 
FBS, 1% antibiotic/antimycotic solution [Gibco, Grand Island, 
NY, USA]) and incubated at 37oC in a CO2 incubator. The con-
trol medium was replaced with fresh medium after every 3 days. 
During the study period, ADSCs were maintained at a density 
of 8 × 104 cells per well in a 6-well plate in the control medium. 
The ADSCs for this study were from passages 3–5.

Induction of Adipogenic differentiation in ADSCs

ADSCs were incubated at a density of 8 × 104 cells per well 
in a 6-well plate in complete medium for 24 h at 37oC in a CO2 
incubator. After confirming cell adhesion, ADSCs were cultured 
with adipogenic differentiation medium comprising 1 μM dexa-
methasone (Sigma, St. Louis, MO, USA), 1 μM indomethacin 
(Sigma, St. Louis, MO, USA), 500 μM 3-isobutyl-1-methylzan-
thine (Sigma, St. Louis, MO, USA), and 10 μg/ml insulin (Sigma, 
St. Louis, MO, USA) in complete medium [16]. Cell differentia-
tion was induced for 15 days with media replacement once in 
every 3 days.

Cell treatment with GABAergic anesthetics

The ADSCs under control or adipogenic differentiation 
medium were divided into the non-medicated group and 4 ex-
perimental groups based on the type and amount of GABAergic 
agents applied to the cells (n = 3 for each group). ADSCs cul-
tured in control or differentiation medium were simultaneously 
treated with GABAergic anesthetics. During medium changes, 
the prepared etomidate (LipuroⓇ 2% inj, B. Braun, Melsungen, 
Germany) or midazolam (MidazolamⓇ 1% inj, Bukwang phar-
maceutical. Co. Ltd., Ansan, Korea) was added to the cultured 
ADSCs to achieve final concentrations of 1 and 50 μM. The 
concentration of each agent was determined based on previous 
references; the optimal plasma concentrations of each agent for 
sedation were 1 μM for etomidate and 1 μM for midazolam [17], 
and the concentration of etomidate and midazolam resulting in 
declined cardiac performance was beyond 50 μM [18].

Determination of proliferative ability of ADSCs

The CCK-8 assay allows sensitive colorimetric determina-
tion of cell viability in cell proliferation and cytotoxicity assays. 
A highly water-soluble tetrazolium salt, WST-8 [2-(2-methoxy-
4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-
tetrazolium, monosodium salt], is reduced by the dehydro-
genase activity in cells to generate a yellow-colored formazan 
dye, which is soluble in tissue culture media. The amount of 
the formazan dye, generated by the dehydrogenase activity in 
cells, is directly proportional to the number of living cells. The 
assay was conducted in ADSCs at 0, 3, 6, 9, 12, and 15 days af-
ter induction of cell proliferation or adipogenic differentiation 
according to the manufacturer’s instructions. In brief, ADSCs 
cultured in a 6-well plated were washed with PBS and then in-
cubated in the dark with a mixture of control medium and the 
CCK-8 reagent at a ratio of 20 : 1. After 90 min at 37oC in a 5% 
CO2 incubator, the cells were analyzed using an enzyme-linked 
immunosorbent assay (ELISA) reader with the wavelength set 
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to 450 nm. The absorbance values from the ELISA reader were 
used to determine the degree of cellular proliferation.

Statistical analysis

To prove whether cell viability values measured by the CCK-8 
assay at each time point showed normal distribution, the Kol-
mogorov-Smirnov test was performed. Since the data showed 
non-normal distribution at some measured time points, the 
Kruskal Wallis test was used to compare the data among 5 com-
parison groups.

Statistical significances were determined after Bonferroni’s 
method to adjust type I error. The data were analyzed using 
PASW Statistics 18.0 (SPSS Inc., Chicago, IL, USA). Values of P 
< 0.05 were considered statistically significant.

Results

Values obtained from the CCK-8 assay are presented as me-
dian (Q1-Q3) (Tables 1 and 2). According to the Kolmogorov-
Smirnov test, the results of the CCK-8 assay were not normally 
distributed at day 12 and 15 in control media (both P < 0.001), 
and at day 6 and 9 in adipogenic differentiation media (P < 0.001 
and P = 0.001, respectively). Thus, because the data were not 
normally distributed, the statistical analyses were performed 
using Kruskal-Wallis test to investigate the differences in cell 
proliferation among groups.

In the control medium, no statistical difference in cell vi-
ability was observed at 0, 3, 6, 9, 12, and 15 days among the 
control group and the midazolam and etomidate groups with a 
dose for sedation, at 1 μM, and a high dose for suppression of 
cardiac function, at 50 μM (Table 1). Even under adipogenic dif-

Table 1. Results of the CCK-8 Assay for Adipose Derived Mesenchymal Stem Cells in Control Medium

No medication
(Control)

(n = 3)

Etomidate
1 μM

(n = 3)

Etomidate
50 μM
(n = 3)

Midazolam
1 μM

(n = 3)

Midazolam
50 μM
(n = 3)

P value

Day 0 0.439
(0.436, 0.441)

0.447
(0.445, 0.447)

0.422
(0.422, 0.427)

0.415
(0.409, 0.422)

0.427
(0.393, 0.430)

0.186

Day 3 0.475
(0.467, 0.476)

0.470
(0.414, 0.472)

0.431
(0.427, 0.433)

0.399
(0.395, 0.400)

0.417
(0.409, 0.421)

0.462

Day 6 0.557
(0.546, 0.559)

0.580
(0.579, 0.582)

0.571
(0.548, 0.572)

0.525
(0.484, 0.527)

0.509
(0.502, 0.514)

0.144

Day 9 0.713
(0.699, 0.730)

0.627
(0.620, 0.689)

0.688
(0.681, 0.689)

0.585
(0.576, 0.589)

0.504
(0.491, 0.510)

0.066

Day 12 0.911
(0.910, 0.916)

0.907
(0.907, 0.916)

0.901
(0.900, 0.906)

0.820
(0.819, 0.822)

0.729
(0.728, 0.736)

0.120

Day 15 1.038
(1.027, 1.044)

0.817
(0.806, 0.825)

0.784
(0.781, 0.788)

0.829
(0.829, 0.833)

0.757
(0.755, 0.761)

0.066

Values are presented as median (Q1-Q3). 

Table 2. Results of the CCK-8 Assay for Adipose Derived Mesenchymal Stem Cells in Adipogenic Differentiation Medium

No medication
(Control)

(n = 3)

Etomidate
1 μM

(n = 3)

Etomidate
50 μM
(n = 3)

Midazolam
1 μM

(n = 3)

Midazolam
50 μM
(n = 3)

P value

Day 0 0.576
(0.487, 0.577)

0.484
(0.460, 0.496)

0.484
(0.477, 0.505)

0.514
(0.495, 0.515)

0.447
(0.431, 0.466)

> 0.999

Day 3 0.494
(0.494, 0.497)

0.494
(0.491, 0.496)

0.446
(0.445, 0.449)

0.493
(0.488, 0.494)

0.476
(0.474, 0.477)

0.132

Day 6 0.920
(0.903, 0.926)

0.636
(0.634, 0.640)

0.643
(0.642, 0.648)

0.637
(0.636, 0.641)

0.625
(0.623, 0.629)

0.144

Day 9 1.112
(1.088, 1.114)

1.164
(1.146, 1.179)

1.236
(1.202, 1.250)

1.117
(1.114, 1.130)

0.855
(0.836, 0.874)

0.090

Day 12 1.207
(1.195, 1.218)

0.856
(0.832, 0.865)

0.915
(0.914, 0.924)

0.911
(0.909, 0.916)

0.505
(0.498, 0.508)

0.066

Day 15 0.654
(0.650, 0.662)

0.570
(0.569, 0.573)

0.626
(0.587, 0.629)

0.686
(0.682, 0.689)

0.435
(0.430, 0.436)

0.072

Values are presented as median (Q1-Q3).
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ferentiation medium, the dehydrogenase activities of viable cells 
measured by the CCK-8 assay were not statistically different at 
any of the time points among the control and medication groups 
(Table 2).

Discussion

The present study revealed that the clinically available GABAA 
receptor agonists, etomidate and midazolam, did not influence 
the proliferation of ADSC when compared to that in the non-
medicated group.

In the field of stem cell biology, it is known that GABAA re-
ceptor is expressed not only in neural stem cells [19], but also in 
different types of extraneural stem cells in the undifferentiated 
proliferative state [10,20]. As observed with embryonic stem 
cells [10], the GABAA receptor, which is a binding site for etomi-
date or midazolam, is also expressed in human ADSCs [21]. 
However, the GABAA receptor subunit composition in ADSCs 
is not yet reported, even though Andang et al. [10] reported that 
embryonic stem cells express the GABAA receptor subunits α1, 
α3-5, β3, ε, π, and θ; they did not examine the ρ subunits.

Moreover, GABAA receptor is involved in modulating the cell 
cycle, especially DNA synthesis [10,22], and the activity of the 
GABAA receptor on stem cells or on progenitor cells has an in-
fluence on cell proliferation [10,11]. Additionally, GABA along 
with the activating GABAA receptor is known as a cell-cycle reg-
ulator [22,23]. Previous studies like these raised the possibility 
that clinically available GABAA receptor agonists, like etomidate 
and midazolam, might affect stem cell proliferation.

The specific role of each subunit of the GABAA receptor in 
the cell cycle was recently demonstrated in studies on hepatocel-
lular carcinoma cells [24].

Thus, we suppose that cell viability might differ between AD-
SCs treated with etomidate and midazolam because both GA-
BAergic agents have different binding affinities on the specific 
subunit of the GABAA receptors [25,26], which determines the 
potency and efficacy of each agent.

The etomidate binding sites are discovered near the α1 and β3 
subunits of the GABAA receptor [27]. Etomidate is highly sensi-
tive to the receptor containing the β2 or β3 subunit, but not the 
β1 subunit [25]. In animal studies, β2 and β3 subunits are shown 

to play different roles in the anesthetic action of etomidate [28]. 
The β3 subunit participates in the loss of consciousness whereas 
β2 is involved in the sedative properties of agent.

Midazolam is a kind of benzodiazepine, which produces 
various actions by binding to its specific site on the GABAA re-
ceptor that is composed of the respective α-subunit (α1, α2, α3, 
α5) and the γ2-subunit. Each subunit of the benzodiazepine site 
plays a role in the pharmacologic effects of various agents [29]. 
The anesthetic action of midazolam is obtunded in the absence 
of the β3 subunit [26]. The modulatory effect of midazolam on 
GABA activated currents via the GABAA receptor is negatively 
influenced by the co-expression of both α6 and β3 subunits [30].

However, our study revealed that the clinically available 
GABAA receptor agonists, etomidate and midazolam, did not 
modulate the proliferation of stem cells. 

However, our study has the limitation that the sample size 
used was not sufficient to perform parametric statistics. Thus, a 
further study with a sufficient sample size is needed to confirm 
the effect of GABAergic anesthetics on ADSC proliferation.

In conclusion, the current study demonstrates that the clini-
cally available GABAergic anesthetics, etomidate and mid-
azolam, did not influence the proliferation ability of ADSCs in 
control medium. It is also suggested that these anesthetics do 
not influence the differentiation ability of these cells as observed 
by the absence of changes in cell proliferation after mixing an-
esthetics with stem cell differentiation inducers. Additionally, 
although it is known that etomidate and midazolam have dif-
ferent affinities for the GABAA receptor subunits, they showed 
similar effects on ADSC proliferation both in the control and 
adipogenic differentiation media.
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