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Diagnosis is a critical step for clinical treatment. Many individual studies have been conducted to determine the accuracy of 
various diagnostic tests, but they had small sample sizes and correspondingly inadequate statistical strength. Combining the re-
sults from several such studies can help increase the statistical strength and precision of their results. Meta-analysis is a useful 
tool for evaluating the accuracy of diagnostic tests and can be used to obtain precise estimates when multiple small studies for 
a given test and subject pool are available. The need for meta-analysis on studies examining diagnostic test accuracy has in-
creased noticeably, and more meta-analyses on diagnostic test accuracy studies are being published. A meta-analysis of diag-
nostic test accuracy studies differs from a typical meta-analysis because diagnostic test accuracy studies report a pair of statistics, 
such as sensitivity and specificity, rather than a single statistic. Therefore, meta-analyses of the diagnostic test accuracy need to 
deal with two summary statistics simultaneously. More complex statistical methods are required for conducting meta-analyses 
using diagnostic test accuracy studies compared to that required for conventional meta-analysis. This is because the sensitivity 
and specificity are generally inversely correlated due to a threshold effect, and there is considerable heterogeneity in the results 
of test accuracy studies. This review provides an overview of the process of meta-analysis of the diagnostic test accuracy. (J 
Rheum Dis 2018;25:3-10)
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INTRODUCTION

Diagnostic tests have been used to identify the presence 
or absence of a disease in a patient for the purpose of the 
treatment. Accurate diagnosis is therefore the corner-
stone of good clinical care and provides the basis for prop-
er treatments. Meta-analysis is a statistical technique 
used to combining results from different studies on the 
same topic and is becoming a popular method for resolv-
ing discrepancies in results regarding diagnostic test ac-
curacy [1,2]. The basic principle of a meta-analysis is that 
the limitations of individual studies, such as small sample 
sizes and correspondingly inadequate statistical strength, 
can be overcome by combining the results from several 
studies to increase the statistical strength and precision 
in estimating effects [1]. Therefore, meta-analysis of 

studies examining the accuracy of diagnostic tests can 
provide more precise assessments when multiple small 
studies addressing the same test and patients are avail-
able [3]. This technique also examines the discrepancies 
in the results of different studies by addressing be-
tween-study heterogeneity, thus providing a more precise 
measurement of diagnostic test accuracy [4]. 
The accuracy of a diagnostic test is a measure of how 

well the test discriminates between patients with and 
those without the target condition [5]. Studies examining 
the accuracy of diagnostic tests report a pair of statistics, 
such as sensitivity and specificity, rather than a single 
one. Therefore, a meta-analysis of diagnostic test accu-
racy studies differs from typical meta-analyses, because 
the method used for conducting a meta-analysis for diag-
nostic test accuracy deals with two summary statistics si-
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multaneously, and considerable heterogeneity in the re-
sults of the test accuracy studies is common [6]. Since 
sensitivity and specificity are generally inversely corre-
lated and may be affected by a threshold effect, more com-
plex statistical methods are required for conducting 
meta-analyses of diagnostic test accuracy studies [7].
The need for such meta-analyses has obviously in-

creased recently, and more meta-analyses of diagnostic 
test accuracy studies are being published. In this review, 
we aimed to describe an overview of the process of con-
ducting a meta-analysis using studies examining the ac-
curacy of diagnostic tests for providing guidance for con-
ducting and understanding meta-analysis of diagnostic 
test accuracy in the future. 

MAIN SUBJECTS

Diagnostic test accuracy
Diagnostic test accuracy refers to the ability of a test to 

distinguish between patients with the disease and those 
without. Diagnostic test accuracy studies compare the ac-
curacy of the diagnostic test of interest (the ‘index test’) 
to that of an existing diagnostic test (the ‘reference test’); 
thus, the index test(s) is the diagnostic test whose accu-
racy is being investigated and the reference test is the 
‘gold standard’ test to which the results of the index test 
will be compared [8]. 
The accuracy of a diagnostic test can be measured in a 

number of ways and is commonly reported using several 
statistical parameters: sensitivity and specificity, positive 
and negative predictive values (PPV and NPV), positive 
and negative likelihood ratios (PLR and NLR), diagnostic 
odds ratio (DOR), or receiver operating characteristic 
(ROC) curve [5,9]. The sensitivity of a test refers to the 
probability that the index test result will be positive in a 
patient, while the specificity is the probability that the in-
dex test result will be negative in a control [10]. In other 
words, sensitivity is the probability that a person with the 
condition of interest will have a positive result, while spe-
cificity is the probability of a person without the con-
dition having a negative result. The PPV is the probability 
that a patient with a positive test result is diseased, while 
the NPV is the probability that a control with a negative 
test result is non-diseased. Likelihood ratio (LR) assesses 
the probability or likelihood that the test result obtained 
would be expected in patients with disease than in those 
without disease. PLR is considered as the best indicator 
for ruling-in the diagnosis: the higher the PLR, the more 

indicative of a disease is the test. NLR is a good indicator 
for ruling-out the diagnosis [11]. Diagnostic evidence 
based on PLRs and NLRs is defined as follows: PLRs ＞10 
and NLRs ＜0.1, conclusive diagnostic evidence; PLRs 
＞5 and NLRs ＜0.2, strong diagnostic evidence; PLRs of 
2∼5 and NLRs of 0.2∼0.5, weak diagnostic evidence; 
and PLRs of 1∼2 and NLRs 0.5∼1, negligible evidence 
[11]. The DOR summarizes the diagnostic accuracy of the 
test with a single number that describes how many times 
higher the odds of obtaining a positive result are in a dis-
eased patient relative to that in a non-diseased control. 
However, its use is limited because it cannot be used di-
rectly in clinical practice [12].
A ROC curve is useful for evaluating the performance of 

a diagnostic test accuracy [13]. The ROC curve repre-
sents the relationship between the sensitivity and specif-
icity of the test at various thresholds. The ROC curve is 
obtained by varying the positivity threshold across all 
possible values and plotting the sensitivity (true positive 
rate) against 1-specificity (false positive rate) [13]. The 
summary ROC (sROC) curve is the estimate of an ordi-
nary ROC curve adjusted for the study outcomes in the 
ROC space [10] and displays the results of individual 
studies in the ROC space. The sROC curve is recom-
mended for evaluating the accuracy of a diagnostic test 
based on data from a meta-analysis [14]. The area under 
the curve (AUC) and the index Q are useful summaries of 
the curve [15]. The AUC is the probability that a diseased 
individual will have a higher test result than a non-dis-
eased individual for a randomly selected pair of in-
dividuals, where the test result is 1 for a perfect test and 
0.5 for a completely uninformative test [15]. The AUC 
can also be interpreted as the average sensitivity of the 
test taken over all specificity values (or, equivalently, as 
the average specificity over all sensitivity values) [13]. An 
AUC of ＞0.9, 0.7∼0.9, and 0.5∼0.7 can be regarded as 
a high, moderate, and low diagnostic accuracy, respectively 
(or 0.9∼1=excellent, 0.8∼0.9=very good, 0.7∼0.8=good, 
0.6∼0.7=sufficient, 0.5∼0.6=bad) [16]. The Q* index 
is another useful global estimate of test accuracy for com-
paring sROC curves and is defined at the point where sen-
sitivity equals specificity on a sROC curve [13]. A Q* val-
ue of 1.0 indicates 100% accuracy (i.e., sensitivity and 
specificity of 100%) [13].
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Method of conducting a meta-analysis of diag-
nostic test accuracy
1) Step 1. Searching for heterogeneity
Heterogeneity between studies is especially common in 

meta-analyses on diagnostic test accuracy, due to differ-
ences in study populations and testing procedures. Before 
statistically pooling the data from the included studies, 
between-study heterogeneity should be tested [17]. The 
heterogeneity test examines the null hypothesis, i.e., that 
there are no differences between the findings of primary 
studies. Cochran’s Q test is used to determine whether 
variations between primary studies represent true differ-
ences or are due to chance [18], and it is calculated by 
summing the squared deviation of each study’s estimate 
from the overall estimate and then comparing it with the 
chi-squared distribution for κ–1 degrees of freedom (df), 
where κ is the number of studies [18]. Due to the low 
statistical strength of Cochran’s Q test, a p-value＜0.10 
(not 0.05) is considered to indicates the presence of het-
erogeneity [19]. Another common indicator of hetero-
geneity is the I2 value, which quantifies the effect of heter-
ogeneity and does not depend on the number of studies or 
the type of outcome data. I2 values range from 0 to 100% 
and represent the proportion of inter-study variability 
that can be attributed to heterogeneity rather than to 
chance (I2=100%×[Q−df]/Q) [20]. I2 values of 25%, 
50%, and 75% are interpreted as low, moderate, and high 
estimates, respectively. However, Cochrane Q test results 
or I2 statistics alone may not provide complete informative, 
as they do not account for heterogeneity due to threshold 
effects.

2) Step 2. Testing the threshold effect
Sensitivity and specificity of the studies are combined in 

an integrated value of all studies (pooling) by the weighted 
mean (by sample size or inverse variance of each study). 
However, this is often inappropriate due to the difference 
of threshold of the index test, because there is a relation-
ship between the cut-off point and the sensitivity and 
specificity. Increasing the threshold increases the specif-
icity, but decreases the sensitivity [21]. Different studies 
may use different cut-off points that influence the estima-
tion of summary points, and variations in the diagnostic 
test accuracy may be partly due to such variations in 
cut-off points. When a threshold effect exists, there is a 
negative correlation between sensitivities and specific-
ities, which leads to a typical pattern of “shoulder arm” 
plot in a sROC space [22]. Spearman’s correlation co-

efficient between the sensitivity and specificity of all stud-
ies can test for the presence of a threshold effect [22]. 
Spearman’s correlation coefficient r≥0.6 generally in-
dicates a threshold effect [12].

3) Step 3. Deciding the model for statistical pooling
Meta-analysis combines the effect sizes of the included 

studies by weighting the data according to the sample size 
and variability within each study. The choice of statistical 
method for meta-analysis depends on the heterogeneity 
observed in the results [11]. The fixed effect model as-
sumes that genetic factors have similar effects on disease 
susceptibility in all the studies and that the observed var-
iations are caused by chance alone [23]. The random ef-
fects model assumes that different studies exhibit sub-
stantial diversity and assesses both intra-study sampling 
errors and inter-study variances [24]. In the absence of 
heterogeneity, a fixed effects model is used for meta-ana-
lysis. When a significant Q value (p＜0.10) is calculated, 
indicating the existence of heterogeneity in the studies, a 
random effects model is applied for the meta-analysis. 
Both models offer similar results for homogeneous study 
groups; however, if heterogeneity is present, the random 
effects model usually provides wider confidence intervals 
than the fixed effects model.
The paired nature of diagnostic test accuracy data makes 

meta-analysis complicated. Due to the threshold effect, 
sensitivity and specificity are expected to be heterogeneous. 
Meta-analyses of studies reporting pairs of sensitivity and 
specificity estimates have often used the linear regression 
model for the construction of sROC curves, as proposed 
by Moses et al. [22]. The Moses-Littenberg method is the 
most commonly used simple model for deriving a sROC 
in meta-analysis of diagnostic tests. However, this is a 
kind of fixed-effects model, since it does not consider the 
heterogeneity between studies. Thus, it is usually used 
for exploratory purposes. More advanced methods such 
as the hierarchical sROC model and bivariate analysis 
have been proposed to overcome the limitations of the 
Moses-Littenberg model [7,25]. These models account 
for both within- and between-study heterogeneity [7,25]. 

4) Step 4. Dealing with heterogeneity
It is also important to determine the possible causes of 

heterogeneity when heterogeneity exists in the studies 
included in the meta-analysis. The heterogeneity can be 
explained by analyzing study subgroups or by meta-re-
gression. Subgroup analysis performs meta-analysis based 
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Figure 1.  (A) Sensitivity and (B)
specificity estimates for ultra-
sound used for the diagnosis of 
gout. Circles and lines repre-
sent point estimates and 95% 
confidence intervals (CI), re-
spectively. Circled areas repre-
sent relative study sizes. Df: de-
grees of freedom.

on important potential confounders such as patient char-
acteristics, test methods, and study design, and an assess-
ment is made to determine how much the factors affect 
the test accuracy. Subgroup analysis can detect homoge-
neous subgroups with respect to important potential 
confounders. Meta-regression is a regression analysis 
that explores possible factors contributing to hetero-
geneity [4]. The DOR is normally used for meta-regression, 
as it is a unitary measure of diagnostic performance that 
encompasses sensitivity and specificity or PLR and NLR 
[13]. 

An example of a meta-analysis of diagnostic test 
accuracy
Monosodium urate crystals precipitate on the articular 

surface of hyaline cartilage and this precipitate forms a 
hyperechoic, bright band that parallels the hyperechoic 
bony cortex, forming a “double contour” of hyperechoic 
bone and bright-appearing monosodium urate deposits, 
as visualized on ultrasound images [26]. We performed a 

meta-analysis using published data of the sensitivity and 
specificity of ultrasound according to the double-contour 
sign for the diagnosis of gout in order to assess the diag-
nostic capability of ultrasound. Studies were selected for 
the analysis if they included (i) case-control, cross-sec-
tional, or cohort studies, (ii) sufficient data to calculate 
the sensitivity and specificity of US according to the dou-
ble contour sign, and (iii) patients with gout diagnosed 
on the basis of the classification criteria [27,28] or the 
demonstration of monosodium urate crystals in a joint 
aspirate. Within- and between-study variations and het-
erogeneities were assessed using Cochran’s Q-statistic 
and I2 value, respectively. We used a random effects mod-
el to combine the sensitivity, specificity, PLR, NLR, and 
DOR estimates due to heterogeneity and analyzed sROC 
curves and Q* index. To examine the potential source of 
heterogeneity observed in the meta-analysis, subgroup 
analysis and meta-regression were performed with the 
following covariates: (i) sample size, (ii) study design, 
and (iii) diagnostic criteria. Statistical manipulations for 
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Figure 2. Summary receiver-operating characteristic curves 
for ultrasound for the diagnosis of gout. Solid circles represent
the individual studies included in this meta-analysis. The 
curve shown is a regression line that summarizes the overall 
diagnostic accuracy. SE (AUC): standard error of the area un-
der the curve, Q*: an index defined by the point on the sum-
mary receiver operating characteristic (sROC) curve, where 
the sensitivity and specificity are equal, SE (Q*): Q* index 
standard error.

this meta-analysis were performed using Meta-DiSc, ver-
sion 1.4 (Unit of Clinical Biostatistics team, Hospital 
Universitario Ramón y Cajal, Madrid, Spain) [29].
Eleven studies including 938 patients with gout and 788 

controls (patients with non-gout inflammatory arthritis) 
were included in the meta-analysis (Figure 1). The pooled 
sensitivity and specificity of US were 65.1% (95% con-
fidence interval [CI], 62.0∼68.2) and 89.0% (95% CI, 
96.6∼91.1), respectively (Table 1, Figure 1). The PLR, 
NLR, and DOR were 5.889 (3.365∼10.30), 0.359 (0.266∼
0.485), and 17.61 (11.11∼17.92), respectively (Table 2) 
[30-40]. The AUC of US was 0.858 and the Q* index was 
0.789, indicating good diagnostic accuracy (Table 1, 
Figure 2). Some between-study heterogeneity was found 
in the meta-analysis. Meta-regression showed that the 
sample size, study design, and diagnostic criteria were 
not sources of heterogeneity. A similar pattern was found 
in the subgroup analysis according to diagnostic criteria 
(Table 1). In conclusion, the meta-analysis indicated that 
US offers very good diagnostic accuracy and can play an 
important role in the diagnosis of gout.

CONCLUSION

Meta-analysis is a useful tool for summarizing research 
on diagnostic test accuracy by combining data from multi-

ple studies using statistical techniques, thus increasing 
the precision and statistical power of the evaluations of 
diagnostic test accuracy in the primary research. It is 
therefore necessary for clinicians to be able to understand 
the results of meta-analyses of diagnostic test accuracy 
studies. Such meta-analyses differ from typical meta-analy-
sis, because meta-analysis of diagnostic test accuracy 
studies need to deal with two summary statistics simul-
taneously. Since sensitivity and specificity are generally 
inversely correlated due to a threshold effect, and consid-
erable heterogeneity in the results of test accuracy studies 
is to be expected, more complex statistical methods are 
required for conducting meta-analyses of diagnostic test 
accuracy studies. This review provides an overview of the 
process of a meta-analysis conducted using studies inves-
tigating the accuracy of diagnostic tests to help in con-
ducting and understanding meta-analysis of diagnostic 
test accuracy in the future. 
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