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INTRODUCTION 

CD4+CD25+FoxP3+ regulatory T (Treg) cells are specialized T 
cells involved in the maintenance of immune homeostasis, 
and their dysregulation is involved in various autoimmune 
and inflammatory diseases. In many inflammatory diseases, 
tumor necrosis factor (TNF) is produced by various immune 
cells, including activated macrophages, monocytes, and T 
cells. However, the interactions between TNF and Treg cells 
have not been clearly elucidated.1 Though some studies have 
suggested that TNF enhances the suppressive function of Treg 
cells,2-4 others have shown that TNF reduces the suppressive 
function of Treg cells.5-7 

Under inflammatory conditions, Treg cells that stably ex-
press FoxP3 acquire the ability to produce pro-inflammatory 
cytokines. Treg cells that produce pro-inflammatory cytokines 

are referred to as T helper (Th)-like Treg cells. These cells ex-
press lineage-specific transcription factors and chemokine re-
ceptors.8,9 Th1-like Treg cells produce IFN-γ and express T-bet 
and CXCR3, which are Th1-specific molecules.8,10 Th17-like 
Treg cells produce IL-17A and express STAT3, RORγt, and 
CCR6, which are Th17-specific molecules.9,11 Th1- and Th17-
like Treg cells have been proposed to suppress Th1 and Th17 
effector T cell responses, respectively, via tissue migration 
mediated by specific chemokine receptors, such as CXCR3 
and CCR6.8-11 Meanwhile, however, Th1- or Th17-like Treg 
cells have also been suggested to be involved in the pathogen-
esis of autoimmune and inflammatory diseases.12 We recently 
reported that Treg cells can produce TNF in patients with 
acute viral hepatitis and that TNF-producing Treg cells exhib-
ited Th17-like features.13

In this review, we describe the effects of TNF on Treg cells 
and TNF-producing Treg cells and the possible implications 
of this interaction in various human diseases.

TUMOR NECROSIS FACTOR 

TNF is a pro-inflammatory cytokine first discovered as an en-
dotoxin-induced factor in 1975.14 TNF plays a role in septic 
shock, cachexia, and the pathogenesis of various autoim-
mune and inflammatory diseases. TNF is produced by mono-
cytes and macrophages, as well as other immune cells, in-
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cluding dendritic cells, B cells, activated natural killer cells, 
and activated T cells.15,16 When exogenous or endogenous 
stimuli induce the production of TNF, it is initially expressed 
on the cell surface in membrane-bound form (mTNF, 26 
kDa), which is then cleaved by a metalloproteinase, TNFα 
converting enzyme (TACE), and released as soluble TNF 
(sTNF, 17 kDa).17,18

TNF has two cell membrane receptors, TNFR1 (p55) and 
TNFR2 (p75). TNFR1 is a major TNF receptor ubiquitously 
expressed on most cell types. TNFR1 binding to either mTNF 
or sTNF leads to recruitment and clustering of TNF receptor-
associated factor (TRAF), TNFR-associated death domain 
(TRADD), and receptor-interacting protein-1 (RIP1).19-21 This 
complex activates activator protein-1 (AP-1), mitogen-activat-
ed protein kinases (MAPKs), and nuclear factor κ-light-chain-
enhancer of activated B cells (NF-κB), which are important 
factors in the expression of multiple inflammatory cytokines. 
TNFR1 can also activate another signaling pathway: the 
TNFR1 signaling complex can recruit FAS-associated death 
domain protein (FADD), which activates apoptotic caspase 
cascades and the pro-apoptotic protein BH3 interacting do-
main death agonist (BID).22,23 

The expression of TNFR2 is restricted to immune cells24 and 
binds with higher affinity to mTNF than sTNF.25 Binding of 
TNF to TNFR2 recruits TRAF1, 2, and 3, as well as cellular in-
hibitor of apoptosis proteins 1/2 (cIAP1/2). TNFR2 does not 
possess a death domain and its activation results in different 
signaling than TNFR1. The downstream signals of TNFR2 ac-
tivate both the canonical and non-canonical NF-kB path-
ways,26,27 as well as the phosphoinositide 3-kinase (PI3K)-pro-
tein kinase B (Akt) signaling pathway directly related to 
survival and cell proliferation. Interestingly, TNFR2 is more 
highly expressed on Treg cells, compared to non-Treg effector 
T cells,28 whereas TNFR1 expression is not different between 
Treg and non-Treg CD4+ T cells.29 TNFR2 is upregulated in a 
suppressive subset of Treg cells2 and is required for the stabili-
zation of Treg cells in the murine system.24 In humans, 
TNFR2+ Treg cells express higher levels of CTLA-4, which is 
involved in the suppressive activity of Treg cells, compared to 
TNFR2- Treg cells and non-Treg CD4+ T cells.28 Furthermore, 
TNFR2 may play a role in the suppressive activity of Treg cells, 
although the underlying mechanisms have only recently be-
gun to be clarified.

EFFECTS OF TNF ON regulatory T CELLS

Successful treatment of several inflammatory disorders, such 
as rheumatoid arthritis (RA), ankylosing spondylitis, psoriasis, 
and vasculitis, with anti-TNF agents suggests the importance 
of TNF in inflammatory processes in the human immune sys-
tem. As a bridging cytokine between innate and adaptive im-
mune responses in inflammation, TNF exerts pleiotropic ef-

fects on Treg cells. 
Treg cells in patients with autoimmune diseases are ex-

posed to the inflammatory milieu, including TNF, which is 
provided by various immune cells. At a highly pro-inflamma-
tory site, such as the synovial fluid of RA patients, TNF pro-
duced by activated monocytes diminishes the suppressive ac-
tivity of Treg cells and contributes to chronic inflammation:7 
the direct effect of TNF on Treg cells has been investigated 
primarily in RA patients. TNF appears to suppress the func-
tion of Treg cells in RA patients by reducing FoxP3 expres-
sion.6 Interestingly, the anti-TNF antibody infliximab was 
found to restore the reduced FoxP3 expression in RA patients.6 
Another study demonstrated that TNF activates the canonical 
NF-κB pathway and disturbs the suppressive function in hu-
man Treg cells, particularly for the CD45RA- population, 
though FoxP3 levels remain stable.5 Restoration of the com-
promised function of Treg cells in RA patients by anti-TNF 
treatment also suggests that TNF down-regulates the suppres-
sive function of Treg cells.1 

While the negative effects of TNF on Treg cell function and 
proliferation were reported first, recent studies have shown 
contrasting effects for TNF on the function of Treg cells. In 
healthy human subjects, the suppressive activity of Treg cells 
was maintained after exposure to TNF in vitro.30 A murine 
model of graft versus host disease also showed that TNF en-
hances the suppressive function of Treg cells but does not 
change the function of non-Treg CD4+ T cells.4 The positive ef-
fect of TNF on Treg cell function was further supported by 
TNF-deficient mice developing prolonged and exacerbated 
experimental autoimmune encephalomyelitis.31 TNFR2-me-
diated signaling was also recently reported to be important in 
the effect of TNF on Treg cells:32 TNFR2 is expressed in the 
subpopulation of Treg cells with superior suppressive ability. 
In addition, TNFR2 has been shown to stabilize the pheno-
type and function of Treg cells in a murine model,24 even in a 
highly inflammatory environment, which destabilizes FoxP3 
expression in Treg cells. 

TNFR2 is expressed on suppressive Treg cells, and it has 
been used to isolate suppressive Treg cells for therapeutic ap-
plication.2,33,34 In addition, as mTNF effectively stimulates 
TNFR2,35 a method was developed for mTNF-induced stimu-
lation of isolated Treg cells for immunosuppressive therapy.36 
Chemical agonists of TNFR2 have also been used for the se-
lective expansion of suppressive Treg cells.37 

The effect of TNF on Treg cells in tumor tissues was report-
ed recently. TNF induced proliferation of Treg cells at tumor 
sites via TNFR2, and TNFR2+ Treg cells enhanced the escape 
of tumor cells from immune surveillance.38 In the B16F10 mu-
rine model of metastatic melanoma, TNF was shown to acti-
vate Treg cells and expand the suppressive subpopulation. Si-
lencing of TNF or TNFR2 expression reversed the immuno-
tolerant tumor microenvironment to prevent metastasis.39 
Meanwhile, increased expression of TNFR2 among Treg cells 
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was observed in malignant ascites from ovarian cancer pa-
tients.40 Thus, TNFR2+ Treg cells can be targeted to enhance 
anti-tumor immune responses.

Analysis of Treg cells in patients undergoing anti-TNF treat-
ment has provided understanding of the effect of TNF on Treg 
cells. Decreased function of Treg cells has been reported in 
RA patients, as well as its reversal by anti-TNF agents.31,41 More 
than a decade after the first clinical use of anti-TNF agents in 
humans, the mechanism underlying the restorative effect of 
anti-TNF agents on Treg cells was discovered.42 Anti-TNF an-
tibody adalimumab was found to promote the interaction of 
monocytes and Treg cells and to expand Treg cells, particu-
larly via TNFR2.42 Considering the positive role of TNF signal-
ing via TNFR2 on Treg cells with respect to immunomodula-
tion, selective blocking antibodies against TNFR1 have been 
tested in a murine collagen-induced arthritis model and pri-
mary cell culture obtained from the synovial tissues of RA pa-
tients with positive results.43,44 Anti-TNF agents rarely induce 
unexpected, so-called ‘paradoxical’ exacerbation of autoim-
mune diseases, such as psoriasis.31 A study in the murine pso-
riasis model has shown that the disturbance of Treg cells and 
relative expansion of the Th17 population contribute to the 
paradoxical exacerbation.45

TNF-PRODUCING regulatory T CELLS

Treg cells typically produce anti-inflammatory cytokines, 
such as IL-10, TGF-β, and IL-35, which are involved in the 
suppressive function of Treg cells; however, they can also pro-
duce pro-inflammatory cytokines under certain inflammato-
ry conditions.46-48 Treg cells have been found to produce IFN-γ 

in patients with multiple sclerosis and type I diabetes,49,50 and 
IL-17A in patients with Crohn’s disease and RA.9,51-57 These in-
flammatory Treg cells may be involved in the pathogenesis of 
autoimmune and inflammatory diseases.12 During microbial 
infection, inflammatory Treg cells may contribute to the elim-
ination of microbial pathogens by secreting pro-inflammatory 
cytokines. However, they may also enhance inflammation 
and exacerbate host injury during infection. 

A study investigating RA suggested that memory Treg cells 
(CD4+CD45RO+CD25+CD127low) acquire the ability to produce 
pro-inflammatory cytokines, including not only IFN-γ and IL-
17, but also TNF, in response to inflammatory stimuli.58 These 
Treg cells maintain their suppressive capacity. In addition, 
Treg cells from healthy donors appeared to acquire the ability 
to produce pro-inflammatory cytokines, including TNF, in co-
culture with autologous monocytes activated by lipopolysac-
charide. These data suggest that activated monocytes potently 
induce the production of pro-inflammatory cytokines by Treg 
cells.

Another recent study reported that Treg cells from patients 
with acute hepatitis A (AHA) produce pro-inflammatory cyto-
kines in direct ex vivo assays.13 A high proportion of Treg cells 
in the peripheral blood of patients with AHA produced TNF, 
and TNF-producing Treg cells were associated with severe liv-
er injury, indicating that TNF-producing Treg cells are in-
volved in the process of immune-mediated liver injury during 
AHA (Fig. 1). TNF-producing Treg cells from AHA patients 
were confirmed to be bona fide Treg cells, not activated T cells 
transiently expressing Foxp3, based on hypo-methylation at 
the Treg-specific demethylated region.4 TNF-producing Treg 
cells from patients with AHA exhibited features of Th17-like 
cells, as characterized by up-regulation of RORγt, CCR6, and 

Fig. 1. TNF-producing Treg cells in AHA patients. Treg cells from AHA patients produce TNF and exhibit reduced suppressive activity due to inflammatory 
conversion. In AHA patients, TNF-producing Treg cells are associated with severe liver injury mediated by immunopathologic mechanisms. Two possible 
mechanisms have been proposed to explain how TNF-producing Treg cells are involved in liver injury. (A) First, the reduced suppressive activity of TNF-
producing Treg cells may lead to unchecked activation of effector T cells, which contributes to liver injury. (B) Second, TNF produced by Treg cells may 
directly contribute to liver injury. The magnified figure on the right shows the phenotypic characteristics of TNF-producing Treg cells. TNF, tumor necrosis 
factor; AHA, acute hepatitis A; Treg, regulatory T.
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IL-17A. Importantly, RORγt inhibition decreased the produc-
tion of TNF by Treg cells, indicating that TNF is produced by 
Treg cells from AHA patients in a RORγt-dependent manner. 

TNF-producing Treg cells from AHA patients have been 
shown to express low levels of CD39 (ectonucleoside triphos-
phate diphosphohydrolase-1), which contributes to the sup-
pressive activity of Treg cells. Treg cells from AHA patients 
have reduced suppressive functions, compared to Treg cells 
from healthy individuals. However, blockade of TNF does not 
restore the suppressive activity of Treg cells, indicating that 
TNF itself is not responsible for the reduced suppressive func-
tions of Treg cells from AHA patients.13 Interestingly, the rela-
tive frequency of TNF-producing Treg cells in peripheral 
blood is also increased in patients with other inflammatory 
liver diseases, including chronic hepatitis B and C and toxic/
drug-induced hepatitis.13

CONCLUSIONS

Here, we reviewed the relationship between TNF and Treg 
cells in regards to the effects of TNF on Treg cells and TNF-
producing Treg cells. TNF is a pleiotropic cytokine reported to 
exert a variety of effects on Treg cells. TNF downregulates the 
suppressive function of Treg cells in co-culture,6 but inconsis-
tently increases the suppressive function of Treg cells and 
promotes their proliferation under certain circumstances.2,59,60 
Whether these discrepancies can be attributed to the micro-
environment in which Treg cells meet TNF remains unclear. 

Treg cells produce TNF under specific disease-related in-
flammatory conditions. The functions of TNF-producing Treg 
cells depend on environmental cues, and further investigation 
is needed to determine the specific characteristics of TNF-
producing Treg cells and related mechanisms. Understanding 
the detailed mechanism underlying how Treg cells produce 
TNF and the pathological role of these cells in human disease 
is important, as these cells may serve as therapeutic targets for 
the treatment of various inflammatory diseases.
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