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Therapeutic Window for Cycloheximide Treatment after

Hypoxic-Ischemic Brain Injury in Neonatal Rats

We have previously shown that cycloheximide significantly inhibited apoptosis, and
reduced ensuing cerebral infarction in a newborn rat model of cerebral hypoxia-
ischemia. This study was performed to determine the therapeutic window for cyclo-
heximide therapy. Seven day-old newborn rat pups were subjected to 100 min of
8% oxygen following a unilateral carotid artery ligation, and cycloheximide was given
at 0, 6, 12 and 24 hr after hypoxia-ischemia (HI). Apoptosis or necrosis was identi-
fied by performing flow cytometry with a combination of fluorescinated annexin V
and propidium iodide, and the extent of cerebral infarction was evaluated with triph-
enyl tetrazolium chloride (TTC) at 48 hr and 72 hr after HI, respectively. With cyclo-
heximide treatment at O hr after HI, both apoptotic and necrotic cells by flow cytome-
try were significantly reduced, only necrotic cells were significantly reduced at 6 and
12 hr, and no protective effect was seen if administration was delayed until 24 hr
after HI compared to the HI control group. Infarct volume, measured by TTC, was
significantly reduced by 92% and 61% when cycloheximide was given at 0 or 6 hr
after HI respectively; however, there was an insignificant trend in infarct reduction
if cycloheximide was administered 12 hr after HI, and no protective effect was ob-
served when administration was delayed until 24 hr after HI. In summary, cyclohex-
imide was neuroprotective when given within 6 hr after Hl in the developing new-

Won Soon Park, Dong Kyung Sung*,
Saem Kang*, Soo Hyun Koo,

Yu Jin Kim, Jang Hoon Lee,

Yun Sil Chang, Munhyang Lee

Department of Pediatrics, Samsung Medical Center,
Sungkyunkwan University School of Medicine,
Samsung Biomedical Research Institute™, Seoul,
Korea

Received : 12 October 2005
Accepted : 12 December 2005

Address for correspondence

Munhyang Lee, M.D.

Department of Pediatrics, Samsung Medical Center,
Sungkyunkwan University School of Medicine, 50
Irwon-dong, Gangnam-gu, Seoul 135-710, Korea
Tel : +82.2-3410-3522, Fax : +82.2-3410-0043

born rat brain.

Key Words : Hypoxia-Ischemia, Brain; Animals, Newborn; Apoptosis; Cycloheximide

INTRODUCTION

Perinatal asphyxia is an important cause of neonatal mor-
tality and permanent neurologic sequelae such as cerebral
palsy, mental retardation, learning disability, and epilepsy
in survivors (1-3). As most asphyxial events occur before birth,
it is practically impossible to institute some neuroprotective
treatments during the primary hypoxic-ischemic insult. How-
ever, it has become clear that although cerebral hypoxia-ische-
mia may cause immediate cell death during the insult, it can
also lead to delayed cerebral injury hours, days or even weeks
later (4-6). Thus the brain damage ongoing during reoxy-
genation-reperfusion could give us a therapeutic window
during which we may be able to intervene before delayed
irreversible cell death occurs, and thus to inhibit or reverse
permanent neonatal brain damage (3, 5, 7-9).

There are two major forms of cell death that can be dis-
tinguished during hypoxic-ischemic brain injury (10-13).
Necrosis is a rapid passive form of cell death characterized
by prominent acute cell body swelling with subsequent cell
lysis. Apoptosis is a delayed active form of cell death charac-
terized by compaction of the cell body and internucleosomal
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DNA cleavage, and requiring new protein synthesis (14). In
an adult rodent model of middle cerebral artery occlusion
(MCAO) with cycloheximide treatment, the therapeutic
window, of up to 6 hr, existed only in the apoptotic cell death
following mild ischemia, but not in the acute necrosis follow-
ing severe ischemia (15). In the developing brain, apoptosis
has been found to play an important role in mediating neu-
rodegeneration in pathological conditions (4, 5, 9, 12, 16).
Furthermore, newborn brain infarction developed and pro-
gressed in a much delayed fashion (17, 18); apoptotic cells
were still observed at the peri-infarct area even weeks after
the hypoxic-ischemic insult (18). Therefore, these findings
raise the intriguing possibility that a delayed anti-apoptotic
therapeutic intervention might prove to be valuable in reduc-
ing neonatal hypoxic-ischemic brain injury.

In our previous study (18), we demonstrated that apopto-
sis plays an important role in the development of delayed
brain injury, and cycloheximide even when given after hypox-
ia-ischemia (HI) inhibits apoptosis, and reduces the ensuing
cerebral infarction in a newborn rat pup model. These results
suggest that anti-apoptotic treatments may have a useful role
as neural rescue therapies for newborn infants (5). However,
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enrollment of newborns for clinical trials can take several
hours for a mother to recover from a delivery and to give
informed consent, and it is practically impossible to start any
therapy immediately after birth. As there is a danger that
delay in applying potentially brain-saving treatments beyond
the therapeutic window might abolish or drastically reduce
its therapeutic effectiveness (3, 7, 8, 19), better understand-
ing of the therapeutic window must be obtained before trans-
lation of experimental results to clinical trials. The present
study was thus performed to determine the therapeutic win-
dow for cycloheximide treatment on neonatal hypoxic-ische-
mic brain injury.

MATERIALS AND METHODS
Hypoxia-ischemia

The experimental protocols described herein were reviewed
and approved by the animal care and use committee of the
Samsung Biomedical Research Institute, Seoul Korea. This
study also followed the institutional and National Institute
of Health guidelines for laboratory animal care.

Unilateral carotid artery ligation was performed in 7-day
old Sprague Dawley rat pups (Daihan Biolink Co., Seoul,
Korea) under methoxyflurane anesthesia. The neck was incised
in the midline, and the right common carotid artery was
permanently ligated with 4-0 silk. Total time of surgery in
each animal never exceeded 5 min. Following surgery, rats
were returned to their mother for recovery and feeding for 2
hr. The pups were then exposed to a 100 min-period of hy-
poxia (8% Oz, 92% No) by placing them in an airtight cham-
ber partially submerged in a temperature controlled water
bath to maintain the ambient temperature inside the cham-
ber at a constant 36°C . In the HI with cycloheximide treat-
ment group, the rat pups received an intraperitoneal injec-
tion of cycloheximide at a dose of 0.6 mg/kg (20) at 0, 6, 12
or 24 hr of recovery, and an equal volume of normal saline
was given to a HI control group. Then, the rat pups were
returned to their dam until sacrifice; the whole brain tissue
was obtained under deep pentobarbital anesthesia (60 mg/
kg, intraperitoneal) for flow cytometry and triphenyl tetra-
zolium chloride (TTC) at 48 and 72 hr after HI, respectively.
Eight animals were used in each subgroup of analyses.

Flow cytometry

To evaluate the extent of apoptotic and necrotic cells, the
mid-portion of ipsilateral cerebral cortex was dissociated into
a single cell, and flow cytometry was done with a combina-
tion of PI (Sigma, St. Louis, MO, U.S.A.) and annexin V-
fluorescein isothiocyanate (FITC) (Pharmingen, San Diego,
CA, US.A.) at 48 hr after hypoxia-ischemia. The flow analysis
was performed by a PAS (Particle analyzing system, Partec,
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Munster, Germany) equipped with an argon ion laser tuned
at 2 488 nm wavelength. The green FITC-annexin V fluo-
rescence was measured at 530+ 15 nm, and the red PI fluo-
rescence was measured at 600 nm (18, 21).

Morphometric analysis of infarct volume

Infarct volumes were measured by morphometric analysis
of infarct areas that were defined by TTC (Sigma, St. Louis,
MO, U.S.A.) at 72 hr after HI (15). This method provides
an overall measure of cell injury presented by depleted NA-
DPH and hence the inability to reduce TTC to its colored
form. After intracardiac perfusion with 20 mL of 0.9% NaCl,
brains were cooled in ice-cold saline for 5 min, and then sliced
into 1 mm thick coronal sections using rat brain matrices
(Harvard Bioscience, South Natick, MA, U.S.A.). The brain
slices were incubated in phosphate-buffered saline (pH 7.4)
containing 2% TTC at 37°C for 20 min, and then stored in
10% neutral-buffered formalin. A cross-sectional area of the
TTC-stained region for each brain slice was determined using
an Optimas 6.51 Image Analysis System (Media Cybernetics
Inc., Silver Spring, MD, U.S.A.). After integration of these
stained areas, the indirect method of Swanson was used to
determine infarct volume (subtraction of residual right hemi-
sphere cortical volume from the cortical volume of the intact
left hemisphere) (22).

Statistical analysis

All data are expressed as mean =& standard deviation. Data
were analyzed by one-way ANOVA or Kruskal-Wallis test
for inter-group comparisons. A p-value of <0.05 was consid-
ered significant.

RESULTS
Flow cytometry

Representative analysis and regional percentage of an an-
nexin V versus PI dot plot of ipsilateral cerebral cortex in HI
control and HI with cycloheximide-treated groups (0, 6, 12,
24 hr after HI, respectively) at 48 hr after HI are presented
in Fig. 1. When cycloheximide was given immediately after
hypoxia-ischemia (0 hr), the percentage of damaged, necrotic
and apoptotic cells in the respective area of Q1 (annexin V7/
PI'), Q2 (annexin V'/PI') and Q4 (annexin V'/PI") decreased,
and the live cells in Q3 (annexin V7/PI) increased significantly
compared to the HI control group. When cycloheximide
was administered 6 hr after HI, the damaged and necrotic
cells in Q1 and Q2 were significantly decreased, and the
decrease of apoptotic cells in Q4 did not reach a statistical
significance compared to the HI control group. With cyclo-
heximide treatment at 12 hr after HI, only the necrotic cells
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Fig. 1. Representative flow cytogram of an annexin V binding (abscissa) versus propidium iodide (PI) uptake (ordinate) (A) and regional
cell percentage (B) in the ipsilateral hemisphere of the newborn rat brain cells at 48 hr after hypoxia-ischemia. The numbers in the left upper
quadrant (Q1), right upper quadrant (Q2), left lower quadrant (Q3) and right lower quadrant (Q4) represent the percentage of damaged
(annexin V'/PI"), necrotic (annexin V*/PI%), live (annexin V/PI), and apoptotic (annexin V*/PI') cells, respectively. HI represents hypoxia-
ischemia control group; HI_0, 6, 12, 24 represent hypoxia-ischemia with cycloheximide treatment group at 0, 6, 12 and 24 hr post HI, respec-
tively. All values are mean =+ standard deviation. *, p<0.05 compared to HI; ', p<0.05 compared to HI_0; ¥, p<0.05 compared to HI_6.
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with cycloheximide treatment group at 0, 6, 12, 24 and 24 hr after hours following a primary hypoxic-ischemic insult when
HI (HI_O, 6, 12, 24), respectively. Note significantly reduced infarct intervention can attenuate irreversible brain damage in new-
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in Q2 were significantly reduced compared to the HI con- ness, time is a critical element for successful clinical trials
trol group, and no protective effect was seen if administra- (3, 7, 8, 19). Furthermore, a trend of better neuroprotection
tion was delayed until 24 hr after HI. with the earlier administration of cycloheximide after HI

was observed in the present study. These findings suggest
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that an early selection of patients and administration of the
treatment as soon as possible is of utmost importance for max-
imal neuroprotection in clinical trials (3, 8).

In an adult rat model of MCAO (15), cycloheximide reduced
infarct volume when given up to 6 hr after 30 min of mild
transient ischemia. However, if the duration of ischemic insult
was increased to 90 min, the therapeutic window for delayed
cycloheximide was only 30 min, and even pretreatment of
cycloheximide was ineffective in permanent MCAO. These
findings further support a therapeutic window for cyclohex-
imide treatment exists only in the apoptotic delayed form of
cell death, but not for acute necrosis. The same therapeutic
window of up to 6 hr with cycloheximide treatment observed
both in the newborn rat pup model of the present study and
in the adult model of MCAO (15), also suggests that the
mode of neuronal death, apoptosis or necrosis, rather than
the maturity of the brain itself are the important factors for
this therapeutic window.

Further study will be necessary to elucidate the mechanisms
underlying the cycloheximide-induced neuroprotective effects
observed here. The reason why inhibition of protein synthesis
should block apoptosis has not been completely understood,
but presumably some critical protein must be synthesized
de novo before apoptosis can proceed (14). However, actions
of cycloheximide relevant to apoptosis other than the inhi-
bition of death protein synthesis have also been recognized.
Furukawa et al. (23) showed that cycloheximide treatment
at low levels insufficient to fully inhibit protein synthesis
enhances Bcl-2 expression. Cycloheximide can also attenu-
ate free radical stress by inhibiting prostaglandin synthesis
(24), and by increasing the availability of cysteine for glu-
tathione synthesis (25).

In our previous (18) and present studies, significant reduc-
tion of both apoptotic and necrotic cells, measured by flow
cytometry and brain infarction, was observed with cyclohex-
imide treatment. As a working hypothesis, we think it is likely
that inhibition of apoptosis with cycloheximide might also
attenuate the secondary necrotic cells representing the sec-
ondary degradation of apoptotic cells (12, 26), and the ensu-
ing tissue necrosis (cerebral infarction). Administration of
cycloheximide within the therapeutic window could atten-
uate activation of the neurotoxic, probably apoptotic, cascade
ultimately leading to delayed cell death and irreversible brain
damage hours, days or months later (3, 5, 7-9, 15). Apop-
totic neuronal death is a relatively slow and multi-step pro-
cess, and the entire process, from the initial trigger to the
destruction of the cell, can take hours or even days (4-6, 27).
However, our data demonstrating a therapeutic window less
than 6 hr after HI to inhibit or reverse apoptosis with cyclo-
heximide suggests that although the whole apoptotic process
may be gradual and delayed, the fate of cells would be deter-
mined early after the insult, and once the apoptotic events
proceed beyond the critical control point, the cell may become
irreversibly committed to death (27, 28).
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In conclusion, cycloheximide treatment was effective in
attenuating brain injury within a 6 hr therapeutic window
after HI in a newborn rat pup model. Our data support the
possibility that protein synthesis inhibitors, as well as other
anti-apoptotic strategies, may have therapeutic utility in
hypoxic-ischemic events of the developing newborn brain
even when treatment is delayed for up to 6 hr after the pri-
mary asphyxial insult.
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